J. Mater. Sci. Technol. ›› 2021, Vol. 86: 11-19.DOI: 10.1016/j.jmst.2020.12.071
• Research Article • Previous Articles Next Articles
Haiting Weia, Shuiyuan Yanga, Cuiping Wanga,*(), Changrui Qiua, Kairui Lina, Jiajia Hana, Yong Lua,*(
), Xingjun Liub,c,d,**(
)
Received:
2020-10-01
Accepted:
2020-12-25
Published:
2021-09-30
Online:
2021-09-24
Contact:
Cuiping Wang,Yong Lu,Xingjun Liu
About author:
**State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology, Shenzhen 518055, China.E-mail addresses: xjliu@hit.edu.cn (X. Liu).Haiting Wei, Shuiyuan Yang, Cuiping Wang, Changrui Qiu, Kairui Lin, Jiajia Han, Yong Lu, Xingjun Liu. Novel and durable composite phase change thermal energy storage materials with controllable melting temperature[J]. J. Mater. Sci. Technol., 2021, 86: 11-19.
Fig. 2. SEM images of (a, a1) pristine Al, (b, b1) CM-4.5-Ar, (c, c1) CM-4.5-N2 obtained at various magnifications, and element (Al, O, Si, N) mappings of sample CM-4.5-N2.
Element | CM-4.5-Ar (at.%) | CM-4.5-N2 (at.%) |
---|---|---|
O | 48.09 | 39.59 |
Al | 47.18 | 46.88 |
Si | 4.73 | 2.22 |
N | - | 11.31 |
Total | 100.00 | 100.00 |
Table 1 Elemental composition of samples CM-4.5-Ar and CM-4.5-N2.
Element | CM-4.5-Ar (at.%) | CM-4.5-N2 (at.%) |
---|---|---|
O | 48.09 | 39.59 |
Al | 47.18 | 46.88 |
Si | 4.73 | 2.22 |
N | - | 11.31 |
Total | 100.00 | 100.00 |
Fig. 3. (a) SEM image and (b) element Al, (c) element O, (d) element Si, (e) element N mappings of cross-sectional CM-4.5-N2; (f) SEM image of cracked CM-4.5-N2.
Sample | Melting temperature (℃) | Melting latent heat (J/g) | Crystallization temperature (℃) | Crystallization latent heat (J/g) |
---|---|---|---|---|
CM-4.5-Ar | 573.2/612.3 | 255.8 | 571.2/629.8 | -248.9 |
CM-4.0-N2 | 570.6/637.9 | 228.4 | 640.7 | -221.6 |
CM-4.5-N2 | 571.7/627.8 | 190.5 | 628.1 | -185.2 |
CM-5.0-N2 | 571.5/610.2 | 165.4 | 566.5 | -160.3 |
Table 2 Thermophysical properties of CM-4.5-Ar, CM-4.0-N2, CM-4.5-N2, and CM-5.0-N2.
Sample | Melting temperature (℃) | Melting latent heat (J/g) | Crystallization temperature (℃) | Crystallization latent heat (J/g) |
---|---|---|---|---|
CM-4.5-Ar | 573.2/612.3 | 255.8 | 571.2/629.8 | -248.9 |
CM-4.0-N2 | 570.6/637.9 | 228.4 | 640.7 | -221.6 |
CM-4.5-N2 | 571.7/627.8 | 190.5 | 628.1 | -185.2 |
CM-5.0-N2 | 571.5/610.2 | 165.4 | 566.5 | -160.3 |
Composite PCMs | Melting temperature (℃) | Melting latent heat (J/g) | References |
---|---|---|---|
Al-Si/Al2O3-Cu | 570 | 100 | [ |
Al-Si/Al2O3 | 577 | 183 | [ |
Al-Si/Al2O3 | 577 | 201 | [ |
Bi/Ag | 236‒252 | 20.1-37.6 | [ |
SnxZn1-x/SiOx | 278‒429 | 67.41-96.09 | [ |
Al-Si/Al2O3-AlN | 571.5‒637.9 | 165.4‒228.4 | This study |
Table 3 Comparison of thermal storage property between some reported high temperature composite PCMs and the Al-Si/Al2O3-AlN synthesized in this study.
Composite PCMs | Melting temperature (℃) | Melting latent heat (J/g) | References |
---|---|---|---|
Al-Si/Al2O3-Cu | 570 | 100 | [ |
Al-Si/Al2O3 | 577 | 183 | [ |
Al-Si/Al2O3 | 577 | 201 | [ |
Bi/Ag | 236‒252 | 20.1-37.6 | [ |
SnxZn1-x/SiOx | 278‒429 | 67.41-96.09 | [ |
Al-Si/Al2O3-AlN | 571.5‒637.9 | 165.4‒228.4 | This study |
Sample | Thermal conductivity (W m-1 K-1) |
---|---|
CM-4.5-Ar | 2.462 ± 2.351 × 10-3 |
CM-4.0-N2 | 2.134 ± 1.146 × 10-3 |
CM-4.5-N2 | 1.723 ± 2.342 × 10-3 |
CM-5.0-N2 | 1.417 ± 1.216 × 10-3 |
Table 4 Thermal conductivity of samples CM-4.5-Ar, CM-4.0-N2, CM-4.5-N2 and CM-5.0-N2.
Sample | Thermal conductivity (W m-1 K-1) |
---|---|
CM-4.5-Ar | 2.462 ± 2.351 × 10-3 |
CM-4.0-N2 | 2.134 ± 1.146 × 10-3 |
CM-4.5-N2 | 1.723 ± 2.342 × 10-3 |
CM-5.0-N2 | 1.417 ± 1.216 × 10-3 |
Fig. 7. (a) XRD patterns of CM-4.5-N2 after different thermal cycles; SEM images of CM-4.5-N2 after different thermal cycles: (b) 500, (c) 1000, (d) 2000, (e) 3000, and the element mappings of CM-4.5-N2 after 3000 thermal cycles: (f) element Al, (g) element O, (h) element Si, (i) element N.
Fig. 9. (a) Heating curve of sample CM-4.5-N2 in the calcination process, inset shows the optical images of four intermediate products (S1, S2, S3, S4); (b) XRD patterns of S1, S2, S3, S4, and SEM images of (c) S1, (d) S2, (e) S3, (f) S4.
[1] |
S. Chu, A. Majumdar, Nature 488 (2012) 294-303.
DOI URL |
[2] |
H.T. Wei, C.P. Wang, S.Y. Yang, J.J. Han, M.J. Yang, J.B. Zhang, Y. Lu, X.J. Liu, Chem. Eng. J. 391(2020) 123539-123548.
DOI URL |
[3] |
R. Karami, B. Kamkari, Energy Convers. Manage. 210(2020) 112679-112692.
DOI URL |
[4] |
N. Sheng, C. Zhu, S. Hiroki, A. Tomohiro, T. Nomura, Sol. Energy Mater. Sol. Cells 191 (2019) 141-147.
DOI URL |
[5] |
H.R. Abbasi, H. Pourrahmani, Energy Convers. Manage. 211(2020) 112761-112778.
DOI URL |
[6] |
M.M. Kenisarin, Renew. Sust. Energy Rev. 14(2010) 955-970.
DOI URL |
[7] |
G.S. Sodhi, A.K. Jaiswal, K. Vigneshwaran, P. Muthukumar, Energy Convers. Manage. 188(2019) 381-397.
DOI URL |
[8] |
B. Zhao, M. Cheng, C. Liu, Z. Dai, Appl. Energy 178 (2016) 784-799.
DOI URL |
[9] |
Y. Tao, Y. He, Z. Qu, Sol. Energy 86 (2012) 1155-1163.
DOI URL |
[10] |
C. Li, B. Zhang, B. Xie, X. Zhao, J. Chen, Energy Convers. Manage. 208(2020) 112586-112598.
DOI URL |
[11] |
H. Tian, W. Wang, J. Ding, X. Wei, C. Huang, Sol. Energy Mater. Sol. Cells 149 (2016) 187-194.
DOI URL |
[12] |
Z. Huang, X. Gao, T. Xu, Y. Fang, Z. Zhang, Appl. Energy 115 (2014) 265-271.
DOI URL |
[13] | M. Liu, J. Gomez, N. Turchi, H. Tay, W. Saman, F. Bruno, Sol. Energy Mater. Sol. Cells 139 (2015) 110-116. |
[14] |
S. Guillot, A. Faik, A. Rakhmatullin, J. Lambert, E. Veron, P. Echegut, Appl. Energy 94 (2012) 174-181.
DOI URL |
[15] |
H. Tian, W. Wang, J. Ding, X. Wei, M. Song, J. Yang, Appl. Energy 148 (2015) 87-92.
DOI URL |
[16] |
N. Gokon, S. Nakamura, T. Hatamachi, T. Kodama, Energy 68 (2014) 773-782.
DOI URL |
[17] |
T. Nomura, C. Zhu, N. Sheng, G. Saito, T. Akiyama, Sci. Rep. 5(2015) 9117-9124.
DOI URL |
[18] | A. Fernandez, G. Barreneche, M. Belusko, M. Segarra, F. Bruno, L. Gabeza, Sol. Energy Mater. Sol. Cells 171 (2017) 275-281. |
[19] |
R. Fukahori, T. Nomura, C. Zhu, N. Sheng, N. Okinaka, T. Akiyama, Appl. Energy 170 (2016) 324-328.
DOI URL |
[20] |
P.J. Shamberger, N.M. Bruno, Appl. Energy 258 (2020) 113955-113982.
DOI URL |
[21] |
T. Kawaguchi, H. Sakai, N. Sheng, A. Kurniawan, T. Nomura, Appl. Energy 276 (2020) 115487-115495.
DOI URL |
[22] | K. Li, X. Cheng, N. Li, X. Zhu, Y. Wei, K. Zhai, H. Wang, J. Mater. Sci. A 5 (2017) 24232-24246. |
[23] |
C. Lai, S. Lin, Y. Chu, C. Chang, Y. Chueh, Nano Energy 25 (2016) 218-224.
DOI URL |
[24] |
R. Fukahori, T. Nomura, C. Zhu, N. Sheng, N. Okinaka, T. Akiyama, Appl. Energy 163 (2016) 1-8.
DOI URL |
[25] |
Q. Li, L. Cong, X.S. Zhang, B. Dong, B.Y. Zou, Z. Du, Y.X. Xiong, C. Li, Sol. Energy Mater. Sol. Cells 211 (2020) 110511-110520.
DOI URL |
[26] |
H.T. Wei, C.P. Wang, S.Y. Yang, J.J. Han, M.J. Yang, J.B. Zhang, Y. Lu, X.J. Liu, Sol. Energy Mater. Sol. Cells 203 (2019) 110166-110174.
DOI URL |
[27] |
F. He, G. Song, X. He, C. Sui, M. Li, Ceram. Int. 41(2015) 10689-10696.
DOI URL |
[28] |
T. Nomura, N. Sheng, C. Zhu, G. Saito, D. Hanzaki, T. Hiraki, T. Akiyama, Appl. Energy 188 (2017) 9-18.
DOI URL |
[29] | N. Sheng, C. Zhu, G. Saito, T. Hiraki, M. Haka, Y. Hasegawa, H. Sakai, T. Akiyama, T. Nomura, J. Mater. Sci. A 6 (2018) 18143-18153. |
[30] |
N. Sheng, C. Zhu, H. Sakai, Y. Hasegawa, T. Akiyama, T. Nomura, Sol. Energy Mater. Sol. Cells 200 (2019) 109925-109932.
DOI URL |
[31] |
N. Yoshikawa, A. Kikuchi, S. Taniguchi, J. Am. Ceram 85(2002) 1827-1834.
DOI URL |
[32] |
N. Lin, Y. Han, J. Zhou, K. Zhang, T. Xu, Y. Zhu, Y. Qian, Energy Environ. Sci. 8(2015) 3187-3191.
DOI URL |
[33] | M. Radwan, M. Bahgat, A.A. El-Geassy, J.Eur. Ceram. Soc. 26(2006) 2485-2488. |
[34] |
Z. Wei, W. Xie, X. Zhang, Z. Zhang, Y. Li, H. Xia, B. Wang, Z. Shi, J. Eur. Ceram 40(2020) 4462-4468.
DOI URL |
[35] |
M.L. Lu, Y.Y. Ma, H. Wu, R.Y. Wang, ACS Nano 9 (2015) 1341-1351.
DOI URL |
[36] |
P. Zhang, X. Xiao, Z.W. Ma, Appl. Energy 165 (2016) 472-510.
DOI URL |
[37] |
Z. Khan, Z. Khan, A. Ghafoor, Energy Convers. Manage. 115(2016) 132-158.
DOI URL |
[1] | Yang Li, Ying Jiang, Bin Liu, Qun Luo, Bin Hu, Qian Li. Understanding grain refining and anti Si-poisoning effect in Al-10Si/Al-5Nb-B system [J]. J. Mater. Sci. Technol., 2021, 65(0): 190-201. |
[2] | Shenbao Jin, Zhenjiao Luo, Xianghai An, Xiaozhou Liao, Jiehua Li, Gang Sha. Composition-dependent dynamic precipitation and grain refinement in Al-Si system under high-pressure torsion [J]. J. Mater. Sci. Technol., 2021, 68(0): 199-208. |
[3] | Jiajia Tian, Kangwei Xu, Junhua Hu, Shijie Zhang, Guoqin Cao, Guosheng Shao. Durable self-polishing antifouling Cu-Ti coating by a micron-scale Cu/Ti laminated microstructure design [J]. J. Mater. Sci. Technol., 2021, 79(0): 62-74. |
[4] | Mengdan Hu, Taotao Wang, Hui Fang, Mingfang Zhu. Modeling of gas porosity and microstructure formation during dendritic and eutectic solidification of ternary Al-Si-Mg alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 76-85. |
[5] | X.Y. Jiao, J. Wang, C.F. Liu, Z.P. Guo, G.D. Tong, S.L. Ma, Y. Bi, Y.F. Zhang, S.M. Xiong. Characterization of high-pressure die-cast hypereutectic Al-Si alloys based on microstructural distribution and fracture morphology [J]. J. Mater. Sci. Technol., 2019, 35(6): 1099-1107. |
[6] | Yuanyuan Chen, Zhangping Hu, Yifei Xu, Jiangyong Wang, Peter Schützendübe, Yuan Huang, Yongchang Liu, Zumin Wang. Microstructure evolution and interface structure of Al-40 wt% Si composites produced by high-energy ball milling [J]. J. Mater. Sci. Technol., 2019, 35(4): 512-519. |
[7] | Kaiqi Hu, Qingfei Xu, Xia Ma, Qianqian Sun, Tong Gao, Xiangfa Liu. A novel heat-resistant Al-Si-Cu-Ni-Mg base material synergistically strengthened by Ni-rich intermetallics and nano-AlNp microskeletons [J]. J. Mater. Sci. Technol., 2019, 35(3): 306-312. |
[8] | Zilong Zhao, Xuegang Xing, Jinyu Ma, Liping Bian, Wei Liang, Yide Wang. Effect of addition of Al-Si eutectic alloy on microstructure and mechanical properties of Mg-12wt%Li alloy [J]. J. Mater. Sci. Technol., 2018, 34(9): 1564-1569. |
[9] | Qun Luo, Kang Li, Qian Li. Thermodynamic investigation of phase equilibria in Al-Si-V system [J]. J. Mater. Sci. Technol., 2018, 34(9): 1592-1601. |
[10] | Li Runxia, Liu Lanji, Zhang Lijun, Sun Jihong, Shi Yuanji, Yu Baoyi. Effect of Squeeze Casting on Microstructure and Mechanical Properties of Hypereutectic Al-xSi Alloys [J]. J. Mater. Sci. Technol., 2017, 33(4): 404-410. |
[11] | Huan Qiao, Xiangzhen Zhu, Tong Gao, Yuying Wu, Xiangfa Liu. Influence of Deformation on the Microstructure and Low-temperature Refining Behavior of Al-3.5P Master Alloy [J]. J. Mater. Sci. Technol., 2015, 31(4): 391-396. |
[12] | Yuna Wu, Hengcheng Liao, Jian Yang, Kexin Zhou. Effect of Si Content on Dynamic Recrystallization of Al-Si-Mg Alloys During Hot Extrusion [J]. J. Mater. Sci. Technol., 2014, 30(12): 1271-1277. |
[13] | Zhongping He, Yanlin He, Yi Gao, Lin Li, Shuigen Huang, Omer Van der Biest. Computer Simulation of Fe-Al-Si System Diffusion Couples [J]. J Mater Sci Technol, 2011, 27(8): 729-734. |
[14] | H.C. Liao M. Zhang J.J. Bi K. Ding X. Xi S.Q. Wu. Eutectic Solidification in Near-eutectic Al-Si Casting Alloys [J]. J Mater Sci Technol, 2010, 26(12): 1089-1097. |
[15] | Hengcheng Liao,Ke Ding,Juanjuan Bi,Min Zhang,Huipin Wang Lei Zhao. Eutectic Solidification in Al-13.0%Si Alloys with Combined Addition of Strontium and Boron [J]. J Mater Sci Technol, 2009, 25(04): 437-440. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||