J. Mater. Sci. Technol. ›› 2021, Vol. 86: 1-10.DOI: 10.1016/j.jmst.2021.01.028
• Research Article • Next Articles
Dan Shia,b,1, Lusheng Liua,1, Zhaofeng Zhaia, Bin Chena,b, Zhigang Lua,b, Chuyan Zhanga,c, Ziyao Yuana,b, Meiqi Zhoua,b, Bing Yanga, Nan Huanga,*(), Xin Jianga,c,*(
)
Received:
2020-11-02
Accepted:
2021-01-25
Published:
2021-09-30
Online:
2021-09-24
Contact:
Nan Huang,Xin Jiang
About author:
xjiang@imr.ac.cn (X. Jiang).Dan Shi, Lusheng Liu, Zhaofeng Zhai, Bin Chen, Zhigang Lu, Chuyan Zhang, Ziyao Yuan, Meiqi Zhou, Bing Yang, Nan Huang, Xin Jiang. Effect of oxygen terminated surface of boron-doped diamond thin-film electrode on seawater salinity sensing[J]. J. Mater. Sci. Technol., 2021, 86: 1-10.
Fig. 1. FE-SEM images of H-BDD (a), O-BDD (b), O-BDD-RIE (c), H-BDD-RIE (d) electrodes with inset graphs of corresponding contact angles; enlarged surface (e) and cross-sectional (f) FE-SEM images of O-BDD-RIE electrode; Raman spectra (g) and XRD patterns (h) of H-BDD, O-BDD, O-BDD-RIE and H-BDD-RIE electrodes.
H-BDD | O-BDD | O-BDD-RIE | H-BDD-RIE | |
---|---|---|---|---|
C 1 s | 95.0 | 84.9 | 69.4 | 91.3 |
O 1 s | 2.0 | 11.4 | 20.6 | 4.5 |
N 1 s | 0.0 | 1.2 | 1.5 | 0.0 |
B 1 s | 2.8 | 2.2 | 2.2 | 3.0 |
Si 2p | 0.2 | 0.3 | 6.3 | 1.2 |
Table 1 Summary of the survey scans XPS Data for H-BDD, O-BDD, O-BDD-RIE and H-BDD-RIE electrodes (at.%).
H-BDD | O-BDD | O-BDD-RIE | H-BDD-RIE | |
---|---|---|---|---|
C 1 s | 95.0 | 84.9 | 69.4 | 91.3 |
O 1 s | 2.0 | 11.4 | 20.6 | 4.5 |
N 1 s | 0.0 | 1.2 | 1.5 | 0.0 |
B 1 s | 2.8 | 2.2 | 2.2 | 3.0 |
Si 2p | 0.2 | 0.3 | 6.3 | 1.2 |
H-BDD | O-BDD | O-BDD-RIE | H-BDD-RIE | |
---|---|---|---|---|
C-sp2 | 1.0 | 0.1 | 0.2 | 0.8 |
C-H | 36.0 | 12.2 | 12.1 | 31.1 |
C-sp3 | 39.5 | 42.6 | 42.6 | 42.8 |
C-O | 21.4 | 24.1 | 32.9 | 9.4 |
C=O | 2.0 | 21.0 | 12.2 | 15.9 |
Table 2 The relative abundance of the components obtained from deconvolution of the C1 s spectra for H-BDD, O-BDD, O-BDD-RIE and H-BDD-RIE electrodes (%).
H-BDD | O-BDD | O-BDD-RIE | H-BDD-RIE | |
---|---|---|---|---|
C-sp2 | 1.0 | 0.1 | 0.2 | 0.8 |
C-H | 36.0 | 12.2 | 12.1 | 31.1 |
C-sp3 | 39.5 | 42.6 | 42.6 | 42.8 |
C-O | 21.4 | 24.1 | 32.9 | 9.4 |
C=O | 2.0 | 21.0 | 12.2 | 15.9 |
Fig. 3. CVs in 0.1 M H2SO4 (a) and 1 M KCl containing 1 mM [Fe(CN)6]3-/4- (b) based on H-BDD, O-BDD, O-BDD-RIE and H-BDD-RIE electrodes at a scan rate of 100 mV/s and Nyquist plots (c) (inset shows the magnification Nyquist plots of O-BDD and O-BDD-RIE electrodes), Bode representations (d) of electrochemical impedance spectra of H-BDD, O-BDD, O-BDD-RIE and H-BDD-RIE electrodes in 0.1 M H2SO4.
Potential Windows (V) | ΔEp (mV) | Cdl (μF/cm2) | |
---|---|---|---|
H-BDD | 3.56 | 68.22 | 1.01 |
O-BDD | 2.79 | 74.59 | 8.83 |
O-BDD-RIE | 3.02 | 100.92 | 35.41 |
H-BDD-RIE | 3.34 | 75.22 | 2.93 |
Table 3 Potential Windows (±1 mA/cm2) in 0.1 M H2SO4, ΔEp in 1 M KCl containing 1 mM [Fe(CN)6]3-/4- and double layer capacitances (Cdl, Calculated at 0.2 V) in the standard seawater (S = 40 ‰) based on H-BDD, O-BDD, O-BDD-RIE and H-BDD-RIE electrodes.
Potential Windows (V) | ΔEp (mV) | Cdl (μF/cm2) | |
---|---|---|---|
H-BDD | 3.56 | 68.22 | 1.01 |
O-BDD | 2.79 | 74.59 | 8.83 |
O-BDD-RIE | 3.02 | 100.92 | 35.41 |
H-BDD-RIE | 3.34 | 75.22 | 2.93 |
Fig. 4. Current response towards different salinity using electrodes of H-BDD, O-BDD, O-BDD-RIE and H-BDD-RIE (a) and differential capacitance curve based on H-BDD, O-BDD, O-BDD-RIE and H-BDD-RIE electrodes in the standard seawater (S = 40‰). Scan rate = 100 mV/s. (The standard deviations are all below 1.03 × 10-5 A/cm2 (n = 5)).
Fig. 5. Stability evaluation of current response towards different salinity for H-BDD (a), O-BDD (b), O-BDD-RIE (c) and H-BDD-RIE (d) electrodes during 90 days. (The standard deviations are all below 1.76 × 10-5 A/cm2 (n = 5)).
Fig. 6. Current response towards different salinity using O-BDD-RIE electrode in the standard seawater and real seawater (The standard deviations are all below 5.25 × 10-6 A/cm2 (n = 5)).
[1] | R. Feistel, R. Wielgosz, S.A. Bell, M.F. Camoes, J.R. Cooper, P. Dexter, A.G. Dickson, P. Fisicaro, A.H. Harvey, M. Heinonen, O. Hellmuth, H.J. Kretzschmar, J.W. Lovell-Smith, T.J. McDougall, R. Pawlowicz, P. Ridout, S. Seitz, P. Spitzer, D. Stoica, H. Wolf, Metrologia 53 (2016) R1-R11. |
[2] |
S. Wang, T. Liu, X. Wang, Y. Liao, J. Wang, J. Wen, Measurement 135 (2019) 527-536.
DOI URL |
[3] |
M.D. Anguelova, P. Huq. J. Mar. Sci. Eng. 5(2017) 41-58.
DOI URL |
[4] |
A. Rahimi, B. Honarvar, M. Safari, J. Pet. Sci. Eng. 187(2020), 106739.
DOI URL |
[5] | M. Sonehara, N. Van Toai, T. Sato, IEEE Trans. Magn. 52(2016) 1-4. |
[6] |
H.P. Schwan, Ann. N. Y. Acad. Sci. 148(1968) 191-209.
DOI URL |
[7] |
T. Pauporte, R. Durand. J. Appl. Electrochem 30(2000) 35-41.
DOI URL |
[8] |
D. Malleo, J.T. Nevill, A. van Ooyen, U. Schnakenberg, L.P. Lee, H. Morgan, Rev. Sci. Instrum. 81(2010), 016104.
DOI URL |
[9] |
M.R. Abidian, D.C. Martin, Biomaterials 29 (2008) 1273-1283.
DOI URL |
[10] |
P. Mirtaheri, S. Grimnes, O.G. Martinsen, IEEE Trans. Biomed. Eng. 52(2005) 2093-2099.
DOI URL |
[11] |
P.B. Ishai, M.S. Talary, A. Caduff, E. Levy, Y. Feldman, Meas. Sci. Technol. 24(2013), 102001.
DOI URL |
[12] |
K. Nakata, T. Ozaki, C. Terashima, A. Fujishima, Y. Einaga, Angew. Chem. 53(2014) 871-874.
DOI URL |
[13] |
D. Miao, T. Liu, Y. Yu, S. Li, G. Liu, Y. Chen, Q. Wei, K. Zhou, Z. Yu, L. Ma, Appl. Surf. Sci. 514(2020), 146091.
DOI URL |
[14] |
B. Zhou, Z. Yu, Q. Wei, H. Long, Y. Xie, Y. Wang, Appl. Surf. Sci. 377(2016) 406-415.
DOI URL |
[15] |
D. Shi, N. Huang, L. Liu, B. Yang, Z. Zhai, Y. Wang, Z. Yuan, H. Li, Z. Gai, X. Jiang, Appl. Surf. Sci. 512(2020), 145652.
DOI URL |
[16] |
N. Simon, H. Girard, D. Ballutaud, S. Ghodbane, A. Deneuville, M. Herlem, A. Etcheberry, Diamond Relat. Mater. 14(2005) 1179-1182.
DOI URL |
[17] |
T. Matsunaga, T. Kondo, T. Osasa, A. Kotsugai, I. Shitanda, Y. Hoshi, M. Itagaki, T. Aikawa, T. Tojo, M. Yuasa, Carbon 159 (2020) 247-254.
DOI URL |
[18] |
H. Notsu, I. Yagi, T. Tatsuma, D.A.T.A. Fujishima, Electrochem. Solid-State Lett. 2(1999) 522-524.
DOI URL |
[19] | T.A. Silva, G.F. Pereira, O. Fatibello-Filho, K.I.B. Eguiluz, G.R. Salazar-Banda, J.Electroanal. Chem. 769(2016) 28-34. |
[20] |
M. Bernard, C. Baron, A. Deneuville, Diamond Relat. Mater. 13(2004) 896-899.
DOI URL |
[21] | A.D.E. Gheeraert, J. Mambou, Carbon 73 (1999) 107-111. |
[22] |
J.P. Goss, P.R. Briddon, Phys. Rev. B 73 (2006), 085204.
DOI URL |
[23] |
P.W. May, W.J. Ludlow, M. Hannaway, P.J. Heard, J.A. Smith, K.N. Rosser, Diamond Relat. Mater. 17(2008) 105-117.
DOI URL |
[24] |
M.R. Baldan, A.F. Azevedo, A.B. Couto, N.G. Ferreira, J. Phys. Chem. Solids 74 (2013) 1830-1835.
DOI URL |
[25] | X. Jia, N. Huang, Y. Guo, L. Liu, P. Li, Z. Zhai, B. Yang, Z. Yuan, D. Shi, X. Jiang. J. Mater. Sci. Technol 34(2018) 2394-2406. |
[26] |
I. Yagi, H. Notsu, T. Kondo, D.A. Tryk, A. Fujishima. J. Electroanal. Chem. 473(1999) 173-178.
DOI URL |
[27] |
H. Notsu, I. Yagi, T. Tatsuma, D.A. Tryk, A. Fujishima. J. Electroanal. Chem. 492(2000) 31-37.
DOI URL |
[28] |
P.E. Pehrsson, T.W. Mercer, Surf. Sci. 460(2000) 49-66.
DOI URL |
[29] |
S. Szunerits, Y. Coffinier, E. Galopin, J. Brenner, R. Boukherroub, Electrochem. Commun. 12(2010) 438-441.
DOI URL |
[30] |
T. Kondo, S. Aoshima, K. Honda, Y. Einaga, A. Fujishima, T. Kawai, J. Phys. Chem. C 111 (2007) 12650-12657.
DOI URL |
[31] |
S. Kasahara, K. Natsui, T. Watanabe, Y. Yokota, Y. Kim, S. Iizuka, Y. Tateyama, Y. Einaga, Anal. Chem. 89(2017) 11341-11347.
DOI PMID |
[32] |
J. Xu, Y. Yokota, R.A. Wong, Y. Kim, Y. Einaga, J. Am. Chem 142(2020) 2310-2316.
DOI URL |
[33] |
L.A. Hutton, J.G. Iacobini, E. Bitziou, R.B. Channon, M.E. Newton, J.V. Macpherson, Anal. Chem. 85(2013) 7230-7240.
DOI PMID |
[34] |
H. Viswanathan, M.A. Rooke, P.M.A. Sherwood, Surf. Interface Anal. 25(1997) 409-417.
DOI URL |
[35] |
M.C. Granger, J. Xu, J.W. Strojek, G.M. Swain, Anal. Chim. Acta 397 (1999) 145-161.
DOI URL |
[36] |
M.C. Granger, M. Witek, J. Xu, J. Wang, M. Hupert, A. Hanks, M.D. Koppang, J.E. Butler, G. Lucazeau, M. Mermoux, J.W. Strojek, G.M. Swain, Anal. Chem. 72(2000) 3793-3804.
PMID |
[37] |
M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett 8 (2008) 3498-3502.
DOI PMID |
[38] |
Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, J. Phys. Chem. C 113 (2019) 13103-13107.
DOI URL |
[39] |
M. Beidaghi, C. Wang, Adv. Funct. Mater. 22(2012) 4501-4510.
DOI URL |
[40] |
T. Purkait, G. Singh, D. Kumar, M. Singh, R.S. Dey, Sci. Rep. 8(2018) 640-653.
DOI PMID |
[41] |
M. Biswal, A. Banerjee, M. Deo, S. Ogale, Energy Environ. Sci. 6(2013) 1249-1260.
DOI URL |
[42] |
H. Kawarada, Surf. Sci. Rep. 26(1996) 205-206.
DOI URL |
[43] | J. Ristein, Appl. Phys. A Mater.Sci. Process. 82(2005) 377-384. |
[44] |
X. Li, H. Li, M. Li, C. Li, D. Sun, Y. Lei, B. Yang, Carbon 129 (2018) 543-551.
DOI URL |
[45] |
H. Zhuang, N. Yang, L. Zhang, R. Fuchs, X. Jiang, ACS Appl. Mater. Interfaces 7 (2015) 10886-10895.
DOI URL |
[46] |
J. Ristein, Diamond Relat. Mater. 9(2000) 1129-1137.
DOI URL |
[48] |
N. Wachter, C. Munson, R. Jarosova, I. Berkun, T. Hogan, R.C. Rocha-Filho, G.M. Swain, ACS Appl. Mater. Interfaces 8 (2016) 28325-28337.
DOI URL |
[49] |
J. Zhang, X. Yu, Z.Y. Zhao, Z.Q. Zhang, J.X. Pei, Z. Zhang, G.Y. Cui, Appl. Surf. Sci. 491(2019) 814-822.
DOI |
[1] | Xu Bao, Wei-Bin Zhang, Qiang Zhang, Lun Zhang, Xue-Jing Ma, Jianping Long. Interlayer material technology of manganese phosphate toward and beyond electrochemical pseudocapacitance over energy storage application [J]. J. Mater. Sci. Technol., 2021, 71(0): 109-128. |
[2] | Xian-Zong Wang, Hong-Qiang Fan, Triratna Muneshwar, Ken Cadien, Jing-Li Luo. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 75-84. |
[3] | Tao Hu, Jingjing Sun, Yifu Zhang, Yanyan Liu, Hanmei Jiang, Xueying Dong, Jiqi Zheng, Changgong Meng, Chi Huang. PVA-assisted hydrated vanadium pentoxide/reduced graphene oxide films for excellent Li+ and Zn2+ storage properties [J]. J. Mater. Sci. Technol., 2021, 83(0): 7-17. |
[4] | Poulami Hota, Milon Miah, Saptasree Bose, Diptiman Dinda, Uttam K. Ghorai, Yan-Kuin Su, Shyamal K. Saha. Ultra-small amorphous MoS2 decorated reduced graphene oxide for supercapacitor application [J]. J. Mater. Sci. Technol., 2020, 40(0): 196-203. |
[5] | Licheng Zhao, Ping Zhang, Yanan Zhang, Zhi Zhang, Lei Yang, Zhi-Gang Chen. Facile synthesis of hierarchical Ni3Se2 nanodendrite arrays for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 54(0): 69-76. |
[6] | Fang Hu, Wenhai Li, Ji Zhang, Wei Meng. Effect of Graphene Oxide as a Dopant on the Electrochemical Performance of Graphene Oxide/Polyaniline Composite [J]. J. Mater. Sci. Technol., 2014, 30(4): 321-327. |
[7] | Liutauras Marcinauskas, Zydrunas Kavaliauskas, Vitas Valincius. Carbon and Nickel Oxide/Carbon Composites as Electrodes for Supercapacitors [J]. J. Mater. Sci. Technol., 2012, 28(10): 931-936. |
[8] | Suh Cem Pang, Wai Hwa Khoh, Suk Fun Chin. Synthesis and Characterization of Magnetite/Carbon Nanocomposite Thin Films for Electrochemical Applications [J]. J Mater Sci Technol, 2011, 27(10): 873-878. |
[9] | Yinghua WEI, Lixin ZHANG, Wei KE. Determination of Water Sorption in Freestanding EpoxyFilm by Capacitance Method Using EIS [J]. J Mater Sci Technol, 2006, 22(01): 108-112. |
[10] | Kui LIANG, Kayhyeok AN, Younghee LEE. Nickel Oxide/Carbon Nanotubes Nanocomposite for Electrochemical Capacitance [J]. J Mater Sci Technol, 2005, 21(03): 292-296. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||