J. Mater. Sci. Technol. ›› 2021, Vol. 86: 192-203.DOI: 10.1016/j.jmst.2021.01.031
• Research Article • Previous Articles Next Articles
Chang-Yu Hunga,*(
), Yu Baib, Nobuhiro Tsujib,c, Mitsuhiro Murayamaa,d,*(
)
Received:2020-10-11
Accepted:2021-01-02
Published:2021-09-30
Online:2021-09-24
Contact:
Chang-Yu Hung,Mitsuhiro Murayama
About author:murayama@vt.edu(M. Murayama).Chang-Yu Hung, Yu Bai, Nobuhiro Tsuji, Mitsuhiro Murayama. Grain size altering yielding mechanisms in ultrafine grained high-Mn austenitic steel: Advanced TEM investigations[J]. J. Mater. Sci. Technol., 2021, 86: 192-203.
Fig. 1. Engineering stress-strain curves of Fe-31Mn-3Al-3Si for the mean grain size 0.79 μm and 15.4 μm. The discontinuous yielding characterized by a clear yield drop is indicated by a black arrow.
Fig. 2. EBSD maps of fully recrystallized coarse-grained and UFG samples: (a, b) grain boundary map, (c, d) misorientation distribution histogram, (e, f) grain orientation distribution in the rolling direction. (a), (c), and (e) are from the coarse-grained (15.4 ± 5.2 μm) sample; (b), (d), and (f) are from the UFG (0.79 ± 0.39 μm) sample. Red lines in (a, b) represent high angle boundaries with rotation angle (θ), 15° ≤ θ < 60°, and green lines represent $\text{ }\!\!\Sigma\!\!\text{ }$ 3 boundaries. The number fraction in (c, d) is defined as the ratio of a certain grain boundary to total number of the grain boundaries such as 0.45 (out of 1.0) for $\text{ }\!\!\Sigma\!\!\text{ }$ 3 boundaries in the coarse-grained sample, 0.3 for Σ 3 boundaries in the UFG sample. The maximum texture intensity is relatively small for both samples (e, f) indicating that no strong texture is present.
| Symbol | Description |
|---|---|
| | g-vector direction |
| | Streak (in electron diffraction pattern) |
| | Dislocation gliding direction |
| | Stacking fault |
| | Twin boundary |
| | Dislocation |
Table 1 List of symbols used in TEM images.
| Symbol | Description |
|---|---|
| | g-vector direction |
| | Streak (in electron diffraction pattern) |
| | Dislocation gliding direction |
| | Stacking fault |
| | Twin boundary |
| | Dislocation |
Fig. 3. Bright field (BF) TEM images show the microstructures and defects in the coarse-grained sample deformed to engineering strain = 0.02. (a) Planar array of dislocations gliding and generating slip transfers across an annealing twin boundary, taken in a two-beam condition with the operative reflection${{\text{g}}_{\bar{1}\bar{1}1}}$. Some dislocations cross-slipped on the annealing twin boundary are indicated by black arrow. (b) Piled-up dislocations being impinged on a twin boundary, taken in a two-beam condition with the operative reflection ${{\text{g}}_{11\bar{1}}}$. (c) A selected area electron diffraction (SAED) pattern from the upper grain showing a streak contrast due to the shape factor of the planar fault. (d) A SAED pattern from the twin boundary. The diffraction spots of the matrix and twin were indexed according to [011]fcc zone axis.
Fig. 4. A series of $\text{g}\centerdot \text{b}$ analyses performed to a grain in the coarse-grained sample deformed to engineering strain = 0.02. Images were taken under five different diffraction conditions around a [011]fcc zone axis. The dark linear contrasts from the partial dislocations on the tip of stacking fault are indicated by arrows filled with dots. The piled-up dislocations are designated to be perfect dislocations with the burgers vector of ${}^{\text{a}}/{}_{2}\text{ }\!\![\!\!\text{ 0}\bar{1}\text{1 }\!\!]\!\!\text{ }$ while the burgers vector of the emitted partial dislocations is ${}^{\text{a}}/{}_{6}\left[ \bar{2}\bar{1}1 \right]$. A Thompson tetrahedron added in (c) indicates two emitted stacking faults from the grain boundary to the adjacent grain. The inclined stacking fault is found to be on plane ACD or ABD, while the edge-on stacking fault is found to be on plane BCD. The operative reflections are (a) ${{\text{g}}_{\bar{1}\bar{1}1}}$, (b) ${{\text{g}}_{0\bar{2}2}}$, (c) ${{\text{g}}_{\bar{1}1\bar{1}}}$, (d) ${{\text{g}}_{\bar{2}00}}$ and (e)${{\text{g}}_{\bar{3}\bar{1}1}}$.
| Piled-up dislocations | Partial dislocations on S.F. | |||||
|---|---|---|---|---|---|---|
| Operative reflections | $\text{ }\!\![\!\!\text{ 10}\bar{1}\text{ }\!\!]\!\!\text{ }$ | $\text{ }\!\![\!\!\text{ 0}\bar{1}1\text{ }\!\!]\!\!\text{ }$ | \[\text{ }\!\![\!\!\text{ }\bar{1}10\text{ }\!\!]\!\!\text{ }\] | [ | \[\left[ \bar{2}\bar{1}1 \right]\] | \[\left[ 1\bar{1}\bar{2} \right]\] |
| $\left( \bar{1}\bar{1}1 \right)$ | ±1 | ±1 | 0 | \[\pm {}^{1}/{}_{3}\] | \[\pm {}^{2}/{}_{3}\] | \[\pm {}^{1}/{}_{3}\] |
| $\left( 0\bar{2}2 \right)$ | ±1 | ±2 | ±1 | \[\pm {}^{1}/{}_{3}\] | \[\pm {}^{2}/{}_{3}\] | \[\pm {}^{1}/{}_{3}\] |
| $\left( \bar{1}1\bar{1} \right)$ | 0 | ±1 | ±1 | 0 | 0 | 0 |
| $\left( \bar{2}00 \right)$ | ±1 | 0 | ±1 | \[\pm {}^{1}/{}_{3}\] | \[\pm {}^{2}/{}_{3}\] | \[\pm {}^{1}/{}_{3}\] |
| $\left( \bar{3}\bar{1}1 \right)$ | ±2 | ±1 | ±1 | \[\pm {}^{2}/{}_{3}\] | \[\pm {}^{1}/{}_{3}\] | \[\pm {}^{2}/{}_{3}\] |
Table 2 The $\text{g}\centerdot \text{b}$ for perfect dislocations on $(111)$ and partials dislocation on $(\bar{1}1\bar{1})$ associated with operative reflection of Fig. 4.
| Piled-up dislocations | Partial dislocations on S.F. | |||||
|---|---|---|---|---|---|---|
| Operative reflections | $\text{ }\!\![\!\!\text{ 10}\bar{1}\text{ }\!\!]\!\!\text{ }$ | $\text{ }\!\![\!\!\text{ 0}\bar{1}1\text{ }\!\!]\!\!\text{ }$ | \[\text{ }\!\![\!\!\text{ }\bar{1}10\text{ }\!\!]\!\!\text{ }\] | [ | \[\left[ \bar{2}\bar{1}1 \right]\] | \[\left[ 1\bar{1}\bar{2} \right]\] |
| $\left( \bar{1}\bar{1}1 \right)$ | ±1 | ±1 | 0 | \[\pm {}^{1}/{}_{3}\] | \[\pm {}^{2}/{}_{3}\] | \[\pm {}^{1}/{}_{3}\] |
| $\left( 0\bar{2}2 \right)$ | ±1 | ±2 | ±1 | \[\pm {}^{1}/{}_{3}\] | \[\pm {}^{2}/{}_{3}\] | \[\pm {}^{1}/{}_{3}\] |
| $\left( \bar{1}1\bar{1} \right)$ | 0 | ±1 | ±1 | 0 | 0 | 0 |
| $\left( \bar{2}00 \right)$ | ±1 | 0 | ±1 | \[\pm {}^{1}/{}_{3}\] | \[\pm {}^{2}/{}_{3}\] | \[\pm {}^{1}/{}_{3}\] |
| $\left( \bar{3}\bar{1}1 \right)$ | ±2 | ±1 | ±1 | \[\pm {}^{2}/{}_{3}\] | \[\pm {}^{1}/{}_{3}\] | \[\pm {}^{2}/{}_{3}\] |
Fig. 5. BF TEM images showing the microstructure and defects in the UFG sample deformed to engineering strain = 0.03. (a) Piled-up dislocations observed in an over-1 μm grain. (b) Two stacking faults generated at a grain boundary (arrows filled with dots) and dislocations formed at a grain boundary (striped arrow) in an under-1 μm grain (size nearly 700 nm). (c) Overlapping stacking faults near a grain boundary and few dislocations in the grain interior in an around-1 μm grain (size nearly 1.2 μm). (d) A magnified view of (c) indicating partial dislocations slipping on fault planes. The operative reflections are (a)${{\text{g}}_{111}}$, (b)${{\text{g}}_{111}}$, (c) ${{\text{g}}_{\bar{2}00}}$ and (d)${{\text{g}}_{\bar{1}3\bar{3}}}$.
Fig. 6. BF TEM images showing the microstructure and defects in the UFG sample deformed to engineering strain = 0.046. (a) Dislocations (striped arrows) appear to be generated from grain interior Frank-read sources in an over-1 μm grain (size nearly 2 μm). (b) A nearly 1 nm thick deformation twin in an around-1 μm grain (size nearly 1.4 μm). The inset HRTEM image shows the atomic structure of the thin deformation twin. (c) Grain boundaries decorated by several deformation twins in an under-1 μm grain (size smaller than 500 nm), (d) a magnified view of a deformation twin (black arrow) in (c), and a corresponding SAED pattern taken near a ${{\text{ }\!\![\!\!\text{ 0}\bar{1}\text{1 }\!\!]\!\!\text{ }}_{\text{fcc}}}$ zone axis showing reflections from the deformation twin.
Fig. 7. The microstructures and defects in the UFG sample deformed to engineering strain = 0.062. (a) Two beam BF TEM image shows wavy and tangled dislocations on multiple slip planes in an around-1 μm grain. The operative reflection is ${{g}_{111}}$. (b) BF TEM image shows various deformation twins in another around-1 μm grain. The inset [011]fcc zone axis SAED pattern is taken from a fine twin. Deformation twins induced by the impingement (white circle) occurred between deformation twin and annealing twin were observed. (c) BF TEM image shows high density of overlapping stacking faults (arrow filled with dots) in an under-1 μm grain (size nearly 500 nm). Streak contrast (white arrows) in the corresponding SAED pattern taken from a ${{\left[ 01\bar{1} \right]}_{\text{fcc}}}$ zone axis is due to the shape factor of the overlapping stacking faults. (d) BF TEM image shows multiple stacking faults (arrow filled with dots) in an under-1 μm grain (size nearly 300 nm). The inset HRTEM image shows a two-layer thick stacking fault (thickness is 0.448 nm, i.e., 2 × {111} planes).
Fig. 8. A schematic illustration shows the precursor of deformation twin initiated at the area near grain boundary as a result of piled-up dislocations and an annealing twin boundary interaction. The Burgers vectors b and ${{\text{b}}_{\text{p}}}$ were designated to be ${}^{\text{a}}/{}_{2}{{\text{ }\!\![\!\!\text{ 0}\bar{1}\text{1 }\!\!]\!\!\text{ }}_{111}}$ and ${}^{\text{a}}/{}_{6}{{\left[ \bar{2}\bar{1}1 \right]}_{\bar{1}1\bar{1}}}$, respectively. The Fujita-Mori twinning model associated with cross-slip of partial dislocations appears to the main twinning mechanism in this coarse-grained TWIP sample.
Fig. 9. The representative initial deformed microstructure in the UFG sample shows a clear correlation between the plastic deformation mechanisms and grain size: (a) grain size > 1 μm; slip dominant, (b) grain size ~1 μm: slip and twinning mixture, and (c) grain size ≤ 1 μm: twinning dominant.
| [1] |
B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142(2018) 283-362.
DOI URL |
| [2] |
S. Vercammen, B. Blanpain, B.C.C. De Cooman, P. Wollants, Acta Mater. 52(2004) 2005-2012.
DOI URL |
| [3] | O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, Curr. Opin. Solid State Mater.Sci. 15(2011) 141-168. |
| [4] | S. Allain, J.P. Chateau, O. Bouaziz, Mater. Sci. Eng.A 387-389(2004) 143-147. |
| [5] |
L. Rémy, Metall. Trans. A 12 (1981) 387-408.
DOI URL |
| [6] |
L. Remy, A. Pineau, Mater. Sci. Eng. 28(1977) 99-107.
DOI URL |
| [7] |
T.H. Lee, E. Shin, C.S. Oh, H.Y. Ha, S.J. Kim, Acta Mater. 58(2010) 3173-3186.
DOI URL |
| [8] |
D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, C. Oskay, J.E. Wittig, Acta Mater. 68(2014) 238-253.
DOI URL |
| [9] |
D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, J.E. Wittig, Acta Mater. 100(2015) 178-190.
DOI URL |
| [10] |
S. Curtze, V.T. Kuokkala, Acta Mater. 58(2010) 5129-5141.
DOI URL |
| [11] |
S. Kang, J. Jung, M. Kang, W. Woo, Y.K. Lee, Mater. Sci. Eng. A 652 (2016) 212-220.
DOI URL |
| [12] |
T.S. Byun, N. Hashimoto, K. Farrell, Acta Mater. 52(2004) 3889-3899.
DOI URL |
| [13] |
S. Kang, Y.K. Lee, J.E. Jin, Y.S. Jung, K. Jeong, Acta Mater. 61(2013) 3399-3410.
DOI URL |
| [14] |
I. Gutierrez-Urrutia, D. Raabe, Acta Mater. 59(2011) 6449-6462.
DOI URL |
| [15] | Y.Z. Tian, L.J. Zhao, S. Chen, A. Shibata, Z.F. Zhang, N. Tsuji, Sci. Rep. 5(2015) 2-10. |
| [16] | Y. Bai, H. Kitamura, S. Gao, Y.Z. Tian, N. Park, M.H. Park, H. Adachi, A. Shibata, M. Sato, M. Murayama, N. Tsuji, Unique Transitions of Yielding Mechanism in Ultrafine Grained High-Mn Austenitic Steel, 2020, Submitted. |
| [17] | H. Kitamura, Kyoto University, 2017. |
| [18] |
R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, K. Kunishige, Scr. Mater. 59(2008) 963-966.
DOI URL |
| [19] |
G. Dini, A. Najafizadeh, R. Ueji, S.M. Monir-Vaghefi, Mater. Lett. 64(2010) 15-18.
DOI URL |
| [20] |
Y. Bai, Y. Momotani, M.C. Chen, A. Shibata, N. Tsuji, Mater. Sci. Eng. A 651 (2016) 935-944.
DOI URL |
| [21] |
S. Kang, J.G. Jung, M. Kang, W. Woo, Y.K. Lee, Mater. Sci. Eng. A 652 (2016) 212-220.
DOI URL |
| [22] |
Y.Z. Tian, Y. Bai, L.J. Zhao, S. Gao, H.K. Yang, A. Shibata, Z.F. Zhang, N. Tsuji, Mater. Charact. 126(2017) 74-80.
DOI URL |
| [23] |
I. Gutierrez-Urrutia, D. Raabe, Scr. Mater. 66(2012) 992-996.
DOI URL |
| [24] |
R. Saha, R. Ueji, N. Tsuji, Scr. Mater. 68(2013) 813-816.
DOI URL |
| [25] |
Y.Z. Tian, Y. Bai, M.C. Chen, A. Shibata, D. Terada, N. Tsuji, Metall. Mater. Trans. A 45 (2014) 5300-5304.
DOI URL |
| [26] | Y.Z. Tian, Y.P. Ren, S. Gao, R.X. Zheng, J.H. Wang, H.C. Pan, Z.F. Zhang, N. Tsuji, G.W. Qin, J. Mater. Sci 48(2020) 31-35. |
| [27] |
Y.Z. Tian, S. Gao, L.J. Zhao, S. Lu, R. Pippan, Z.F. Zhang, N. Tsuji, Scr. Mater. 142(2018) 88-91.
DOI URL |
| [28] |
C.Y. Yu, P.W. Kao, C.P. Chang, Acta Mater. 53(2005) 4019-4028.
DOI URL |
| [29] |
E. El-Danaf, S.R. Kalidindi, R.D. Doherty, Metall. Mater. Trans. A 30 (1999) 1223-1233.
DOI URL |
| [30] |
M.A. Meyers, O. Vohringer, V.A. Lubarda, Acta Mater. 49(2001) 4025-4039.
DOI URL |
| [31] |
I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, Mater. Sci. Eng. A 527 (2010) 3552-3560.
DOI URL |
| [32] |
N. Tsuji, S. Ogata, H. Inui, I. Tanaka, K. Kishida, S. Gao, W. Mao, Y. Bai, R. Zheng, J.P. Du, Scr. Mater. 181(2020) 35-42.
DOI URL |
| [33] |
H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, P.J. Jacques, Acta Mater. 58(2010) 2464-2476.
DOI URL |
| [34] |
J.B. Cohen, J. Weertman, Acta Metall. 11(1963) 996-998.
DOI URL |
| [35] |
J.B. Liu, X.H. Liu, W. Liu, Y.W. Zeng, K.Y. Shu, Philos. Mag. 91(2011) 4033-4044.
DOI URL |
| [36] |
H. Fujita, T. Mori, Scr. Metall. 9(1975) 631-636.
DOI URL |
| [37] |
L. Bracke, L. Kestens, J. Penning, Scr. Mater. 61(2009) 220-222.
DOI URL |
| [38] |
S. Mahajan, G.Y. Chin, Acta Metall. 21(1973) 1353-1363.
DOI URL |
| [39] |
B. Mahato, T. Sahu, S.K. Shee, P. Sahu, T. Sawaguchi, J. Kömi, L.P. Karjalainen, Acta Mater. 132(2017) 264-275.
DOI URL |
| [40] |
B. Mahato, S.K. Shee, T. Sahu, S.G. Chowdhury, P. Sahu, D.A. Porter, L.P. Karjalainen, Acta Mater. 86(2015) 69-79.
DOI URL |
| [41] |
H. Idrissi, K. Renard, D. Schryvers, P.J. Jacques, Philos. Mag. 93(2013) 4378-4391.
DOI URL |
| [42] |
H. Azizi-Alizamini, M. Militzer, W.J. Poole, Scr. Mater. 57(2007) 1065-1068.
DOI URL |
| [43] | T.S. Wang, F.C. Zhang, M. Zhang, B. Lv, ater.Sci. Eng. A. 485(2008) 456-460. |
| [44] |
G.J. Fan, H. Choo, P.K. Liaw, E.J. Lavernia, Acta Mater. 54(2006) 1759-1766.
DOI URL |
| [45] |
T.C. Lee, I.M. Robertson, H.K. Birnbaum, Philos. Mag. A. 62(1990) 131-153.
DOI URL |
| [46] |
W.J. Tunstall, P.J. Goodhew, Philos. Mag. 13(1966) 1259-1272.
DOI URL |
| [47] |
G. Casillas, A.A. Gazder, E.V. Pereloma, A.A. Saleh, Mater. Charact. 123(2017) 275-281.
DOI URL |
| [48] |
J.K. Kim, M.H. Kwon, B.C. De Cooman, Acta Mater. 141(2017) 444-455.
DOI URL |
| [49] |
P.J. Jacques, D. Schryvers, H. Idrissi, K. Renard, L. Ryelandt, Acta Mater. 58(2010) 2464-2476.
DOI URL |
| [50] |
J.A. Venables, Philos. Mag. 30(1974) 1165-1169.
DOI URL |
| [51] |
G. Dini, A. Najafizadeh, R. Ueji, S.M. Monir-Vaghefi, Mater. Des. 31(2010) 3395-3402.
DOI URL |
| [52] |
V. Shterner, I.B. Timokhina, A.D. Rollett, H. Beladi, Metall. Mater. Trans. A 49 (2018) 2597-2611.
DOI URL |
| [53] |
C.W. Sinclair, W.J. Poole, Y. Bréchet, Scr. Mater. 55(2006) 739-742.
DOI URL |
| [54] |
W.Z. Han, Z.F. Zhang, S.D. Wu, S.X. Li, Philos. Mag. 88(2008) 3011-3029.
DOI URL |
| [55] |
Y. Aoyagi, T. Tsuru, T. Shimokawa, Int. J. Plast. 55(2014) 43-57.
DOI URL |
| [56] | Y. Aoyagi, T. Shimokawa, K. Shizawa, Y. Kaji, Mater. Sci.Forum 706-709(2012) 1751-1756. |
| [57] |
J.P. Hirth, Metall. Trans. 3(1972) 3047-3067.
DOI URL |
| [58] |
T. Tsuru, Y. Aoyagi, Y. Kaji, T. Shimokawa, Mater. Trans. 54(2013) 1580-1586.
DOI URL |
| [59] |
Y.T. Zhu, X.Z. Liao, X.L. Wu, Prog. Mater. Sci. 57(2012) 1-62.
DOI URL |
| [60] |
T. Ohashi, M. Kawamukai, H. Zbib, Int. J. Plast. 23(2007) 897-914.
DOI URL |
| [61] | E.O. Hall, Yield Point Phenomena in Metals and Alloys, Plenum Press, New York, 1970. |
| [1] | Kewu Bai, Ming Lin. Unravelling the metal borides evolution in the transient liquid phase bonding of Ni-based alloys via high-throughput transmission electron microscopy and first-principles thermo-kinetic calculations [J]. J. Mater. Sci. Technol., 2021, 85(0): 118-128. |
| [2] | Yifan Wang, Yanli Lu, Jing Zhang, Wenchao Yang, Changlin Yang, Pan Wang, Xiaoqing Song, Zheng Chen. Investigation of the 12 orientations variants of nanoscale Al precipitates in eutectic Si of Al-7Si-0.6Mg alloy [J]. J. Mater. Sci. Technol., 2021, 67(0): 186-196. |
| [3] | Yao Chen, Jie Chen, Bin Zhang, Meiling Yang, Xiaofang Liu, Hengyang Wang, Lei Yang, Guoyu Wang, Guang Han, Xiaoyuan Zhou. Realizing enhanced thermoelectric properties in Cu2S-alloyed SnSe based composites produced via solution synthesis and sintering [J]. J. Mater. Sci. Technol., 2021, 78(0): 121-130. |
| [4] | Nan Wang, Yidi Shen, Qi An, Kolan Madhav Reddy, Mingjiang Jin, Rajamallu Karre, Xiaodong Wang. Microstructure evolution and mechanical property of Cu-15Ni-8Sn-0.2Nb alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 86(0): 227-236. |
| [5] | Xiru Hua, Qiang Yang, Dongdong Zhang, Fanzhi Meng, Chong Chen, Zihao You, Jinghuai Zhang, Shuhui Lv, Jian Meng. Microstructures and mechanical properties of a newly developed high-pressure die casting Mg-Zn-RE alloy [J]. J. Mater. Sci. Technol., 2020, 53(0): 174-184. |
| [6] | Gongcheng Yao, Chezheng Cao, Shuaihang Pan, Jie Yuan, Igor De Rosa, Xiaochun Li. Thermally stable ultrafine grained copper induced by CrB/CrB2 microparticles with surface nanofeatures via regular casting [J]. J. Mater. Sci. Technol., 2020, 58(0): 55-62. |
| [7] | Weiqiang Hu, Zhi Dong, Liming Yu, Zongqing Ma, Yongchang Liu. Synthesis of W-Y2O3 alloys by freeze-drying and subsequent low temperature sintering: Microstructure refinement and second phase particles regulation [J]. J. Mater. Sci. Technol., 2020, 36(0): 84-90. |
| [8] | Majid Jafari, Chan-Woo Bang, Jong-Chan Han, Kyeong-Min Kim, Seon-Hyeong Na, Chan-Gyung Park, Byeong-Joo Lee. Evolution of microstructure and tensile properties of cold-drawn hyper-eutectoid steel wires during post-deformation annealing [J]. J. Mater. Sci. Technol., 2020, 41(0): 1-11. |
| [9] | Meiqiong Ou, Yingche Ma, Weiwei Xing, Xianchao Hao, Bo Chen, Leilei Ding, Kui Liu. Stress rupture properties and deformation mechanisms of K4750 alloy at the range of 650 °C to 800 °C [J]. J. Mater. Sci. Technol., 2019, 35(7): 1270-1277. |
| [10] | Kai Guan, Fanzhi Meng, Pengfei Qin, Qiang Yang, Dongdong Zhang, Baishun Li, Wei Sun, Shuhui Lv, Yuanding Huang, Norbert Hort, Jian Meng. Effects of samarium content on microstructure and mechanical properties of Mg-0.5Zn-0.5Zr alloy [J]. J. Mater. Sci. Technol., 2019, 35(7): 1368-1377. |
| [11] | Le Zhou, Abhishek Mehta, Brandon McWilliams, Kyu Cho, Yongho Sohn. Microstructure, precipitates and mechanical properties of powder bed fused inconel 718 before and after heat treatment [J]. J. Mater. Sci. Technol., 2019, 35(6): 1153-1164. |
| [12] | Bo Zhou, Manling Sui. High density stacking faults of {10$\bar{1}$1} compression twin in magnesium alloys [J]. J. Mater. Sci. Technol., 2019, 35(10): 2263-2268. |
| [13] | rollingBin Fu, Liming Fu, Shichang Liu, Huan Rong Wang, Wei Wang, Aidang Shan. High strength-ductility nano-structured high manganese steel produced by cryogenic asymmetry-rolling [J]. J. Mater. Sci. Technol., 2018, 34(4): 695-699. |
| [14] | Jiangbo Lu, Lu Lu, Sheng Cheng, Ming Liu, Chunlin Jia. Microstructure and secondary phases in epitaxial LaBaCo2O5.5 + δ thin films [J]. J. Mater. Sci. Technol., 2018, 34(2): 398-402. |
| [15] | Yi Gaosong, Zeng Weizhi, D. Poplawsky Jonathan, A. Cullen David, Wang Zhifen, L. Free Michael. Characterizing and modeling the precipitation of Mg-rich phases in Al 5xxx alloys aged at low temperatures [J]. J. Mater. Sci. Technol., 2017, 33(9): 991-1003. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
