J. Mater. Sci. Technol. ›› 2021, Vol. 86: 204-209.DOI: 10.1016/j.jmst.2021.01.040
• Research Article • Previous Articles Next Articles
Ximeng Donga,b,1, Wenlin Cuia,1, Wei-Di Liuc,d,1, Shuqi Zhenga,*(), Lei Gaob,*(
), Luo Yuee, Yue Wua, Boyi Wanga, Zipei Zhanga, Liqiang Chena,f, Zhi-Gang Chenc,*(
)
Received:
2020-12-09
Accepted:
2021-01-02
Published:
2021-09-30
Online:
2021-09-24
Contact:
Shuqi Zheng,Lei Gao,Zhi-Gang Chen
About author:
zhigang.chen@usq.edu.au (Z.-G. Chen).Ximeng Dong, Wenlin Cui, Wei-Di Liu, Shuqi Zheng, Lei Gao, Luo Yue, Yue Wu, Boyi Wang, Zipei Zhang, Liqiang Chen, Zhi-Gang Chen. Synergistic band convergence and defect engineering boost thermoelectric performance of SnTe[J]. J. Mater. Sci. Technol., 2021, 86: 204-209.
Fig. 1. (a) Powder XRD patterns of the as-sintered (SnTe)1-x(AgCl)x (x = 0, 0.03, 0.05 and 0.07) samples at room temperature and (b) the enlarged (220) peak. (c) SEM-EDS maps of (SnTe)0.93(AgCl)0.07.
Fig. 2. Temperature (T)-dependent (a) σ, (b) S, (c) S2σ, (d) room-temperature S (as a function of nH), (e) κtotal, (f) κe, (g) κl, (h) ZT and (i) ZTave (between 300 K and 773 K) of the as-sintered (SnTe)1-x(AgCl)x (x = 0, 0.03, 0.05 and 0.07) samples.
Fig. 3. Electronic band structures of (a) Sn27Te27, (b) Sn26Te26Ag1Cl1 and (c) Sn25Te25Ag2Cl2. (d) Schematic change of electronic band structures with increasing AgCl content.
Fig. 5. Temperature (T)-dependent (a) σ, (b) S, (c) S2σ, (d) nH, (e) κtotal, (f) κe, (g) κl, (h) ZT and (i) ZTave (between 300 K and 773 K) of the as-sintered (Sn1-ySbyTe)0.93(AgCl)0.07 (y = 0, 0.17, 0.19, 0.21) samples.
[1] | J. He, T.M. Tritt, Science 357 (2017), eaak9997. |
[2] |
G. Tan, L.D. Zhao, M.G. Kanatzidis, Chem. Rev. 116(2016) 12123-12149.
DOI URL |
[3] |
Z.-G. Chen, X. Shi, L.-D. Zhao, J. Zou, Prog. Mater. Sci. 97(2018) 283-346.
DOI URL |
[4] |
S. Perumal, S. Roychowdhury, D.S. Negi, R. Datta, K. Biswas, Chem. Mater. 27(2015) 7171-7178.
DOI URL |
[5] |
L. Cheng, Z.-G. Chen, L. Yang, G. Han, H.-Y. Xu, G.J. Snyder, G.-Q. Lu, J. Zou, J. Phys. Chem. C 117 (2013) 12458-12464.
DOI URL |
[6] |
Y. Wang, H.J. Fan, J. Phys. Chem. C 114 (2010) 13947-13953.
DOI URL |
[7] |
G.J. Snyder, E.S. Toberer, Nat. Mater. 7(2008) 105-114.
DOI URL |
[8] | X.-L. Shi, W.-Y. Chen, T. Zhang, J. Zou, Z.-G. Chen. Energy Environ. Sci (2021). |
[9] |
Y. Pei, A.F. May, G.J. Snyder, Adv. Energy Mater. 1(2011) 291-296.
DOI URL |
[10] |
Y. Pei, Z.M. Gibbs, A. Gloskovskii, B. Balke, W.G. Zeier, G.J. Snyder, Adv. Energy Mater. 4(2014), 1400486.
DOI URL |
[11] |
W.-D. Liu, D.-Z. Wang, Q. Liu, W. Zhou, Z. Shao, Z.-G. Chen, Adv. Energy Mater. 10(2020), 2000367.
DOI URL |
[12] |
M. Hong, C. Zhi Gang, L. Yang, Z. Yi Chao, M.S. Dargusch, H. Wang, J. Zou, Adv. Mater. 30(2018), 1705942.
DOI URL |
[13] |
G. Tan, F. Shi, S. Hao, H. Chi, K. M. G, J. Am. Chem 137(2015) 5100-5112.
DOI URL |
[14] |
J. He, X. Tan, J. Xu, G.-Q. Liu, H. Shao, Y. Fu, X. Wang, Z. Liu, J. Xu, H. Jiang, J. Jiang, J. Mater. Chem. A 3 (2015) 19974-19979.
DOI URL |
[15] |
A. Banik, U.S. Shenoy, S. Anand, U.V. Waghmare, K. Biswas, Chem. Mater. 27(2015) 581-587.
DOI URL |
[16] |
G. Tan, L.D. Zhao, F. Shi, J.W. Doak, S.H. Lo, H. Sun, C. Wolverton, V.P. Dravid, C. Uher, M.G. Kanatzidis, J. Am. Chem 136(2014) 7006-7017.
DOI URL |
[17] |
Z. Chen, X. Guo, J. Tang, F. Xiong, W. Li, Y. Chen, R. Ang, ACS Appl. Mater. Interfaces 11 (2019) 26093-26099.
DOI URL |
[18] |
W. Li, S. Lin, X. Zhang, Z. Chen, X. Xu, Y. Pei, Chem. Mater. 28(2016) 6227-6232.
DOI URL |
[19] |
L. Zheng, W. Li, S. Lin, J. Li, Z. Chen, Y. Pei, ACS Energy Lett. 2(2017) 563-568.
DOI URL |
[20] |
Z. Chen, X. Guo, F. Zhang, Q. Shi, M. Tang, R. Ang, J. Mater. Chem. A 8 (2020) 16790-16813.
DOI URL |
[21] |
Z. Chen, B. Ge, W. Li, S. Lin, J. Shen, Y. Chang, R. Hanus, G.J. Snyder, Y. Pei, Nat. Commun. 8(2017) 13828.
DOI URL |
[22] | Z. Chen, X. Zhang, Y. Pei, Adv. Mater. 30(2018), e1705617. |
[23] |
L.D. Zhao, H.J. Wu, S.Q. Hao, C.I. Wu, X.Y. Zhou, K. Biswas, J.Q. He, T.P. Hogan, C. Uher, C. Wolverton, Energy Environ. Sci. 6(2013) 3346-3355.
DOI URL |
[24] |
R.Al R, Al Orabi, N.A. Mecholsky, J. Hwang, W. Kim, J.-S. Rhyee, D. Wee, M. Fornari, Chem. Mater. 28(2015) 376-384.
DOI URL |
[25] |
Y. Pei, G. Tan, D. Feng, L. Zheng, Q. Tan, X. Xie, S. Gong, Y. Chen, J.-F. Li, J. He, M.G. Kanatzidis, L.-D. Zhao, Adv. Energy Mater. 7(2017), 1601450.
DOI URL |
[26] |
X. Su, P. Wei, H. Li, W. Liu, Y. Yan, P. Li, C. Su, C. Xie, W. Zhao, P. Zhai, Q. Zhang, X. Tang, C. Uher, Adv. Mater. 29(2017) 1602013.
DOI URL |
[27] |
G. Tang, W. Wei, J. Zhang, Y. Li, X. Wang, G. Xu, C. Chang, Z. Wang, Y. Du, L.D. Zhao, J. Am. Chem 138(2016) 13647-13654.
DOI URL |
[28] |
X.-L. Shi, J. Zou, Z.-G. Chen, Chem. Rev. 120(2020) 7399-7515.
DOI URL |
[29] |
Y. Pei, H. Wang, Z.M. Gibbs, A.D. LaLonde, G.J. Snyder, NPG Asia Mater. 4(2012) e28.
DOI URL |
[30] |
Y. Pei, A.D. Lalonde, H. Wang, G.J. Snyder, Energy Environ. Sci. 5(2012) 7963-7969.
DOI URL |
[31] |
Q. Zhang, B. Liao, Y. Lan, K. Lukas, W. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen, Z. Ren, Proc. Natl. Acad. Sci. U. S. A. 110(2013) 13261-13266.
DOI PMID |
[32] |
D. Wang, X. Zhang, Y. Yu, L. Xie, J. Wang, G. Wang, J. He, Y. Zhou, Q. Pang, J. Shao, L.D. Zhao, J. Alloys Compd. 773(2019) 571-584.
DOI URL |
[33] | R.F. Brebrick, A.J. Strauss, Phys. Rev. 132(1963), 2800-2800. |
[34] |
L.D. Zhao, X. Zhang, H. Wu, G. Tan, Y. Pei, Y. Xiao, C. Chang, D. Wu, H. Chi, L. Zheng, S. Gong, C. Uher, J. He, M.G. Kanatzidis, J. Am. Chem 138(2016) 2366-2373.
DOI URL |
[35] |
A. Banik, S. Roychowdhury, K. Biswas, Chem. Commun. 54(2018) 6573-6590.
DOI URL |
[36] |
L.M. Rogers. J. Phys. D: Appl. Phys. 1(1968) 845-852.
DOI URL |
[37] |
J. Tang, B. Gao, S. Lin, X. Wang, X. Zhang, F. Xiong, W. Li, Y. Chen, Y. Pei, ACS Energy Lett. 3(2018) 1969-1974.
DOI URL |
[38] |
T. Wang, H. Wang, W. Su, J. Zhai, G. Yakovleva, X. Wang, T. Chen, A. Romanenko, C. Wang, J. Mater. Chem. C 8 (2020) 7393-7400.
DOI URL |
[39] |
Z. Ma, C. Wang, J. Lei, D. Zhang, Y. Chen, J. Wang, Z. Cheng, Y. Wang, ACS Appl. Energy Mater. 2(2019) 7354-7363.
DOI URL |
[40] |
M. Zhou, Z.M. Gibbs, H. Wang, Y. Han, C. Xin, L. Li, G.J. Snyder, Phys. Chem. Chem. Phys. 16(2014) 20741-20748.
DOI PMID |
[41] |
U.S. Shenoy, D.K. Bhat, J. Mater. Chem. C 8 (2020) 2036-2042.
DOI URL |
[42] |
W. Lu, T. He, S. Li, X. Zuo, Y. Zheng, X. Lou, J. Zhang, D. Li, J. Liu, G. Tang, Nanoscale 12 (2020) 5857-5865.
DOI URL |
[43] |
R. Moshwan, W.-D. Liu, X.-L. Shi, Y.-P. Wang, J. Zou, Z.-G. Chen, Nano Energy 65 (2019), 104056.
DOI URL |
[44] |
Y. Pei, L. Zheng, W. Li, S. Lin, Z. Chen, Y. Wang, X. Xu, H. Yu, Y. Chen, B. Ge, Adv. Electron. Mater. 2(2016), 1600019.
DOI URL |
[45] |
J.W. Zhang, Z.W. Wu, B. Xiang, N.N. Zhou, J.L. Shi, J.X. Zhang, ACS Appl. Mater. Interfaces 12 (2020) 21863-21870.
DOI URL |
[46] |
Q. Jiang, H. Hu, J. Yang, J. Xin, S. Li, G. Viola, H. Yan, ACS Appl. Mater. Interfaces 12 (2020) 23102-23109.
DOI URL |
[47] |
L. Zhang, J. Wang, Z. Cheng, Q. Sun, Z. Li, S. Dou, J. Mater. Chem. A 4 (2016) 7936-7942.
DOI URL |
[48] |
W. Li, L. Zheng, B. Ge, S. Lin, X. Zhang, Z. Chen, Y. Chang, Y. Pei, Adv. Mater. 29(2017), 1605887.
DOI URL |
[49] |
L. Wang, S. Chang, S. Zheng, T. Fang, W. Cui, P.-p. Bai, L. Yue, Z.-G. Chen, ACS Appl. Mater. Interfaces 9 (2017) 22612-22619.
DOI URL |
[50] |
D.K. Bhat, S.U. Sandhya, J. Phys. Chem. C 121 (2017) 7123-7130.
DOI URL |
[51] |
Z. Zhou, J. Yang, Q. Jiang, Y. Luo, D. Zhang, Y. Ren, X. He, J. Xin, J. Mater. Chem. A 4 (2016) 13171-13175.
DOI URL |
[52] |
D. Sarkar, T. Ghosh, A. Banik, S. Roychowdhury, D. Sanyal, K. Biswas, Angew. Chem. Int. Ed. 59(2020) 11115-11122.
DOI URL |
[53] |
M. Zhou, Z.M. Gibbs, H. Wang, Y. Han, C. Xin, L. Li, G.J. Snyder, Phys. Chem. Chem. Phys. 16(2014) 20741-20748.
DOI PMID |
[54] |
A. Banik, K. Biswas, J. Mater. Chem. A 2 (2014) 9620-9625.
DOI URL |
[55] |
G. Tan, W.G. Zeier, F. Shi, P. Wang, G.J. Snyder, V.P. Dravid, M.G. Kanatzidis, Chem. Mater. 27(2015) 7801-7811.
DOI URL |
[56] |
A. Banik, K. Biswas, J. Solid State Chem. 242(2016) 43-49.
DOI URL |
[57] |
S. Li, J. Yang, J. Xin, Q. Jiang, Z. Zhou, H. Hu, B. Sun, A. Basit, X. Li, ACS Appl. Energy Mater. 2(2019) 1997-2003.
DOI URL |
[58] |
M.H. Lee, D.-G. Byeon, J.-S. Rhyee, B. Ryu, J. Mater. Chem. A 5 (2017) 2235-2242.
DOI URL |
[59] |
Z. Zhou, J. Yang, Q. Jiang, X. Lin, J. Xin, A. Basit, J. Hou, B. Sun, Nano Energy 47 (2018) 81-88.
DOI URL |
[60] |
A. Banik, B. Vishal, S. Perumal, R. Datta, K. Biswas, Energy Environ. Sci. 9(2016) 2011-2019.
DOI URL |
[61] |
Z. Yao, W. Li, J. Tang, Z. Chen, Y. Pei, InfoMat 1 (2019) 571-581.
DOI URL |
[62] |
Y. Pei, A. LaLonde, H. Wang, G.J. Snyder, Energy Environ. Sci. 5(2012) 7963-7969.
DOI URL |
[63] |
M. Hong, Y. Wang, T. Feng, Q. Sun, S. Xu, S. Matsumura, S.T. Pantelides, J. Zou, Z.G. Chen, J. Am. Chem 141(2018) 1742-1748.
DOI URL |
[64] |
M. Hong, Y. Wang, S. Xu, X. Shi, L. Chen, J. Zou, Z.G. Chen, Nano Energy 60 (2019) 1-7.
DOI |
[65] |
V.P. Vedeneev, S.P. Krivoruchko, E.P. Sabo, Semiconductors 32 (1998) 241-244.
DOI URL |
[66] |
G. Tan, F. Shi, J.W. Doak, H. Sun, L.-D. Zhao, P. Wang, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Energy Environ. Sci. 8(2015) 267-277.
DOI URL |
[67] |
H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, APL Mater. 3(2015), 041506.
DOI URL |
[68] | L. Wang, M. Hong, Y. Kawami, Q. Sun, V.T. Nguyen, Y. Wang, L. Yue, S. Zheng, Z. Zhu, J. Zou, Z.G. Chen, Sustainable Mater. Technol. 25(2020), e00183. |
[69] | D.G. Cahill, S.K. Watson, R.O. Pohl, Phys. Rev. B: Condens.Matter. 46(1992) 6131. |
[1] | Yao Chen, Jie Chen, Bin Zhang, Meiling Yang, Xiaofang Liu, Hengyang Wang, Lei Yang, Guoyu Wang, Guang Han, Xiaoyuan Zhou. Realizing enhanced thermoelectric properties in Cu2S-alloyed SnSe based composites produced via solution synthesis and sintering [J]. J. Mater. Sci. Technol., 2021, 78(0): 121-130. |
[2] | Yue Zhou, William G. Fahrenholtz, Joseph Graham, Gregory E. Hilmas. From thermal conductive to thermal insulating: Effect of carbon vacancy content on lattice thermal conductivity of ZrCx [J]. J. Mater. Sci. Technol., 2021, 82(0): 105-113. |
[3] | Sining Wang, Lizhong Su, Yuting Qiu, Yu Xiao, Li-Dong Zhao. Enhanced thermoelectric performance in Cl-doped BiSbSe3 with optimal carrier concentration and effective mass [J]. J. Mater. Sci. Technol., 2021, 70(0): 67-72. |
[4] | Yuyu Wei, Ping Lu, Chenxi Zhu, Kunpeng Zhao, Xun Shi, Lidong Chen, Fangfang Xu. Nano-scale compositional oscillation and phase intergrowth in Cu2S0.5Se0.5 and their role in thermal transport [J]. J. Mater. Sci. Technol., 2021, 79(0): 222-229. |
[5] | Samuel Kimani Kihoi, Joseph Ngugi Kahiu, Hyunji Kim, U. Sandhya Shenoy, D. Krishna Bhat, Seonghoon Yi, Ho Seong Lee. Optimized Mn and Bi co-doping in SnTe based thermoelectric material: A case of band engineering and density of states tuning [J]. J. Mater. Sci. Technol., 2021, 85(0): 76-86. |
[6] | Yuriy G. Denisenko, Victor V. Atuchin, Maxim S. Molokeev, Naizheng Wang, Xingxing Jiang, Aleksandr S. Aleksandrovsky, Alexander S. Krylov, Aleksandr S. Oreshonkov, Alexander E. Sedykh, Svetlana S. Volkova, Zheshuai Lin, Oleg V. Andreev, Klaus Müller-Buschbaum. Negative thermal expansion in one-dimension of a new double sulfate AgHo(SO4)2 with isolated SO4 tetrahedra [J]. J. Mater. Sci. Technol., 2021, 76(0): 111-121. |
[7] | Jie Wang, Sijia Sun, Run Zhou, Yangzi Li, Zetian He, Hao Ding, Daimei Chen, Weihua Ao. A review: Synthesis, modification and photocatalytic applications of ZnIn2S4 [J]. J. Mater. Sci. Technol., 2021, 78(0): 1-19. |
[8] | Ying Li, Jixiang Qiao, Yang Zhao, Qing Lan, Pengyan Mao, Jianhang Qiu, Kaiping Tai, Chang Liu, Huiming Cheng. A flexible thermoelectric device based on a Bi2Te3-carbon nanotube hybrid [J]. J. Mater. Sci. Technol., 2020, 58(0): 80-85. |
[9] | Jing Wang, Muchun Guo, Jianbo Zhu, Dandan Qin, Fengkai Guo, Qian Zhang, Wei Cai, Jiehe Sui. Enhanced thermoelectric properties of Zintl phase YbMg2Bi1.98 through Bi site substitution with Sb [J]. J. Mater. Sci. Technol., 2020, 59(0): 189-194. |
[10] | C.H. Yan, F. Wei, Y. Bai, F. Wang, A.Q. Zhang, S. Ma, W. Liu, Z.D. Zhang. Structure and topological transport in Pb-doping topological crystalline insulator SnTe (001) film [J]. J. Mater. Sci. Technol., 2020, 44(0): 223-228. |
[11] | Chi Ma, Xue Bai, Qiang Ren, Hongquan Liu, Yijie Gu, Hongzhi Cui. From microstructure evolution to thermoelectric and mechanical properties enhancement of SnSe [J]. J. Mater. Sci. Technol., 2020, 58(0): 10-15. |
[12] | Zhijie Huang, Li Yin, Chaoliang Hu, Jiajun Shen, Tiejun Zhu, Qian Zhang, Kaiyang Xia, Jiazhan Xin, Xinbing Zhao. Low contact resistivity and long-term thermal stability of Nb0.8Ti0.2FeSb/Ti thermoelectric junction [J]. J. Mater. Sci. Technol., 2020, 40(0): 113-118. |
[13] | E. Burzo, P. Vlaic, D.P. Kozlenko, N.O. Golosova, S.E. Kichanov, B.N. Savenko, A. Ostlin, L. Chioncel. Structure and magnetic properties of YCo5 compound at high pressures [J]. J. Mater. Sci. Technol., 2020, 42(0): 106-112. |
[14] | J.S. Cha, D.H. Kim, H.Y. Hong, K. Park. Enhanced thermoelectric performance of spark plasma sintered p-type Ca3-xYxCo4O9+δ systems [J]. J. Mater. Sci. Technol., 2020, 55(0): 212-222. |
[15] | Daquan Liu, Yanxia Wang, Xue Jiang, Huijun Kang, Xiong Yang, Xiaoying Zhang, Tongmin Wang. Ultrahigh electrical conductivities and low lattice thermal conductivities of La, Dy, and Nb Co-doped SrTiO3 thermoelectric materials with complex structures [J]. J. Mater. Sci. Technol., 2020, 52(0): 172-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||