J. Mater. Sci. Technol. ›› 2021, Vol. 82: 144-152.DOI: 10.1016/j.jmst.2021.01.016
• Research Article • Previous Articles Next Articles
Yuan-Yun Zhaoa,b,e, Feng Qianb,d, Wenfeng Shenc, Chengliang Zhaoa,e, Jianguo Wanga,e, Chunxiao Xiea,e, Fengling Zhoua, Chuntao Changa,e,*(), Yanjun Lib,**(
)
Received:
2020-10-27
Revised:
2021-01-03
Accepted:
2021-01-04
Published:
2021-01-27
Online:
2021-01-27
Contact:
Chuntao Chang,Yanjun Li
About author:
∗∗ E-mail addresses: yanjun.li@ntnu.no (Y. Li).Yuan-Yun Zhao, Feng Qian, Wenfeng Shen, Chengliang Zhao, Jianguo Wang, Chunxiao Xie, Fengling Zhou, Chuntao Chang, Yanjun Li. Facile synthesis of metal and alloy nanoparticles by ultrasound-assisted dealloying of metallic glasses[J]. J. Mater. Sci. Technol., 2021, 82: 144-152.
Fig. 1. Synthesis of metal and alloy nanoparticles by ultrasound-assisted dealloying of Mg-Cu/Ni (Ag, Au, Pt, Pd)-Gd metallic glass ribbons. (a) Typical synthetic procedure to prepare metal and alloy nanoparticles by ultrasound-assisted dealloying metallic glass ribbons. (b-f) Photographs of as-prepared colloidal Cu (after standing for 5 h), Ag (after standing for 2 h), Cu-Pt (after standing for 24 h), Cu-Au (after standing for 24 h), and Cu-Au-Pt-Pd (after standing for 24 h) nanoparticles, respectively. (g-h) Photographs of colloidal Au (after standing for 10 days) and Au-Pt-Pd-Cu (after standing for 10 days) nanoparticles prepared by further dealloying of colloidal Cu-Au and Cu-Au-Pt-Pd nanoparticles, respectively.
Fig. 2. TEM images and size distributions of metal nanoparticles. (a1-g1, a2-g2) Representative low-magnification TEM images and high-magnification TEM images of Cu (a1, a2), Ag (b1, b2), Cu-Pt (c1, c2), Cu-Au (d1, d2), Cu-Au-Pt-Pd (e1, e2), Au (f1, f2), and Au-Pt-Pd-Cu (g1, g2) nanoparticles. (a3-g3) Size distribution histograms of Cu (a3), Ag (b3), Cu-Pt (c3), Cu-Au (d3), Cu-Au-Pt-Pd (e3), Au (f3), and Au-Pt-Pd-Cu (g3) nanoparticles.
Fig. 3. XRD spectra and elemental maps. (a) XRD spectra of the as-synthesized Cu, Ag, Au, Cu-Pt, Cu-Au, Cu-Au-Pt-Pd, and Au-Pt-Pd-Cu nanoparticles. The blue, brown, pink, and red vertical lines represent the reference peaks of pure Au, Pt, Ag, and Cu, respectively. (b-c) TEM and scanning TEM (STEM) images of typical Au-Pt-Pd-Cu nanoparticles, respectively. (d-g) STEM-EDS elemental maps of the Au (d), Pt (e), Pd (f), and Cu (g) in typical Au-Pt-Pd-Cu nanoparticles.
Fig. 4. Evolution of the intermediate products by ultrasound-assisted dealloying Mg61Cu28Gd11 metallic glass precursor ribbons. (a, b) SEM images of the outer surface (a) and cross section (b) of a metallic glass ribbon after dealloying for 2 min. (c-f) SEM images of the intermediate products after dealloying for 2 min (c, d) and 5 min (e, f). (g, h) TEM images of the intermediate products after dealloying for 20 min (g) and 45 min (h). (i) Differential scanning calorimetry (DSC) curves of the Mg-Cu/Ni (Ag, Au, Pt, Pd)-Gd metallic glasses. (j) XRD spectra of the intermediate products after dealloying for 2 min, 5 min, 20 min, 45 min, and 90 min. Due to the atmospheric oxidation during the preparation and test processes, a small amount of Cu2O can be detected in the samples. (k) Mean diameter of metal and alloy nanoparticles vs. corresponding mean diameter of ligaments in nanoporous metals by dealloying Mg-Cu/Ni(Ag, Au, Pt, Pd)-Gd metallic glasses without UT. The inserts show SEM images of the corresponding nanoporous Cu and Cu-Au.
Fig. 5. Schematic illustration of the formation mechanism of Cu nanoparticles. (a) Metallic glass precursor ribbons. (b) Remaining metallic glass precursor ribbon and partly dealloyed intermediate fragments that were peeled off from the outer layers of the corresponding remaining metallic glass ribbons. The red regions represent the supercooled liquid regions (Tg < T < Tx) induced by the local glass transition. (c) Dealloying and breakage of intermediate fragments into small nanoporous Cu-rich particles. (d) Dealloying and breakage of small nanoporous Cu-rich particles into Cu-rich ligament debris. (e) Dealloying and breakage of Cu-rich ligament debris into short Cu nanorods and Cu nanoparticles. (f) Spheroidization of Cu nanoparticles.
[1] |
M.B. Gawande, A. Goswami, F.X. Felpin, T. Asefa, X.X. Huang, R. Silva, X.X. Zou, R. Zboril, R.S. Varma, Chem. Rev. 116 (2016) 3722-3811.
DOI PMID |
[2] |
F. Yan, L. Liu, T.R. Walsh, Y. Gong, P.Z. El-Khoury, Y. Zhang, Z. Zhu, J.J. De Yoreo, M.H. Engelhard, X. Zhang, C.L. Chen, Nat. Commun. 9 (2018) 2327.
DOI URL |
[3] |
N.L. Rosi, C.A. Mirkin, Chem. Rev. 105 (2005) 1547-1562.
DOI URL |
[4] |
K.D. Gilroy, A. Ruditskiy, H.C. Peng, D. Qin, Y. Xia, Chem. Rev. 116 (2016) 10414-10472.
DOI PMID |
[5] |
Y. Sun, Y. Xia, Science 298 (2002) 2176-2179.
DOI URL |
[6] |
J. Yang, E.H. Sargent, S.O. Kelley, J.Y. Ying, Nat. Mater. 8 (2009) 683-689.
DOI PMID |
[7] |
X. Pang, L. Zhao, W. Han, X. Xin, Z. Lin, Nat. Nanotechnol. 8 (2013) 426-431.
DOI URL |
[8] |
X. Wang, J. Zhuang, Q. Peng, Y. Li, Nature 437 (2005) 121-124.
DOI URL |
[9] | J. Singh, T. Dutta, K.H. Kim, M. Rawat, P. Samddar, P. Kumar, J. Nanobiotechnol. 16 (2018) 84. |
[10] |
J. Virkutyte, R.S. Varma, Chem. Sci. 2 (2011) 837-846.
DOI URL |
[11] |
S. Iravani, Green Chem. 13 (2011) 2638-2650.
DOI URL |
[12] |
Q. Zhang, J. Lee, J. Yang, C. Boothroyd, J. Zhang, Nanotechnology 18 (2007), 245605.
DOI URL |
[13] |
G. Sharma, D. Kumar, A. Kumar, A.H. Al-Muhtaseb, D. Pathania, M. Naushad, G.T. Mola, Mater. Sci. Eng. C Mater. Biol. Appl. 71 (2017) 1216-1230.
DOI URL |
[14] |
C. Tan, Y. Sun, J. Zheng, D. Wang, Z. Li, H. Zeng, J. Guo, L. Jing, L. Jiang, Sci. Rep. 7 (2017) 6347.
DOI URL |
[15] |
J.X. Kang, T.W. Chen, D.F. Zhang, L. Guo, Nano Energy 23 (2006) 145-152.
DOI URL |
[16] |
D. Wang, Y. Li, Adv. Mater. 23 (2011) 1044-1060.
DOI URL |
[17] |
R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108 (2008) 845-910.
DOI URL |
[18] |
Y. Yao, Z. Huang, P. Xie, S.D. Lacey, R.J. Jacob, H. Xie, F. Chen, A. Nie, T. Pu, M. Rehwoldt, D. Yu, M.R. Zachariah, C. Wang, R. Shahbazian-Yassar, J. Li, L. Hu, Science 359 (2018) 1489-1494.
DOI URL |
[19] |
T. Tsukamoto, T. Kambe, A. Nakao, T. Imaoka, K. Yamamoto, Nat. Commun. 9 (2018) 3873.
DOI PMID |
[20] |
S. Gao, S. Hao, Z. Huang, Y. Yuan, J. Lu, Nat. Commun. 11 (2020) 2016.
DOI URL |
[21] |
J. Feng, D. Chen, P.V. Pikhitsa, Y. Jung, J. Yang, M. Choi, Matter 3 (2020) 1-18.
DOI URL |
[22] |
J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature 410 (2001) 450-453.
DOI URL |
[23] |
J. Zhang, C.M. Li, Chem. Soc. Rev. 41 (2012) 7016-7031.
DOI URL |
[24] |
Q. Chen, Y. Ding, M.W. Chen, MRS Bull. 43 (2018) 43-48.
DOI URL |
[25] |
Z. Lu, C. Li, J. Han, F. Zhang, M. Chen, Nat. Commun. 9 (2018) 276.
DOI URL |
[26] |
Z. Zhang, Y. Wang, Z. Qi, W. Zhang, J. Qin, J. Frenzel, J. Phys. Chem. C 113 (2009) 12629-12636.
DOI URL |
[27] |
Y.-Y. Zhao, D. Estévez, C. Chang, H. Men, X. Wang, R.W. Li, Mater. Lett. 144 (2015) 138-141.
DOI URL |
[28] |
J. Wang, X. Liu, R. Li, Z. Li, X. Wang, H. Wang, Y. Wu, S. Jiang, Z. Lu, Inorg. Chem. Front. 7 (2020) 1127-1139.
DOI URL |
[29] |
Z. Deng, C. Zhang, L. Liu, Intermetallics 52 (2014) 9-14.
DOI URL |
[30] |
X. Luo, R. Li, Z. Liu, L. Huang, M. Shi, T. Xu, T. Zhang, Mater. Lett. 76 (2012) 96-99.
DOI URL |
[31] |
D. Ma, Y. Wang, Y. Li, R.Y. Umetsu, S. Ou, K. Yubuta, W. Zhang, J. Mater. Sci. Technol. 36 (2020) 128-133.
DOI URL |
[32] |
J. Yu, Y. Ding, C. Xu, A. Inoue, T. Sakurai, M. Chen, Chem. Mater. 20 (2008) 4548-4550.
DOI URL |
[33] |
Y.-Y. Zhao, F. Qian, C. Zhao, C. Xie, J. Wang, C. Chang, Y. Li, L.-C. Zhang, J. Mater. Sci. Technol. 70 (2021) 205-213.
DOI URL |
[34] |
Q. Zheng, J. Xu, E. Ma, J. Appl. Phys. 102 (2007), 113519.
DOI URL |
[35] |
Y. Li, H.Y. Liu, H. Jones, J. Mat. Sci. 31 (1996) 1857-1863.
DOI URL |
[36] |
Y. Jia, J. Su, Z. Chen, K. Tan, Q. Chen, Z. Cao, Y. Jiang, Z. Xie, L. Zheng, RSC Adv. 5 (2015) 18153.
DOI URL |
[37] |
A.R. Denton, N.W. Ashcroft, Phys. Rev. A 43 (1991) 3161-3164.
DOI URL |
[38] | B.D. Cullity, Elements of X-ray Diffraction, 2nd edition, Addison-Wesley, Reading, Mass, USA, 1978. |
[39] |
R. Busch, J. Schroers, W.H. Wang, MRS Bull. 32 (2011) 620-623.
DOI URL |
[40] |
K.S. Suslick, Science 247 (1990) 1439-1445.
PMID |
[41] |
S.J. Doktycz, K.S. Suslick, Science 247 (1990) 1067-1069.
PMID |
[42] |
Y. Ichida, R. Sato, Y. Morimoto, K. Kobayashi, Wear 258 (2005) 107-114.
DOI URL |
[43] |
K.S. Suslick, G.J. Price, Ann. Rev. Mater. Sci. 29 (1999) 295-326.
DOI URL |
[44] |
S.G. Thoma, M. Ciftcioglu, D.M. Smith, Powder Technol. 68 (1991) 53-61.
DOI URL |
[45] |
K.S. Suslick, D.J. Casadonte, M.L.H. Green, M.E. Thompson, Ultrasonics 25 (1987) 56-59.
PMID |
[46] | N. Wang, Y. Pan, S. Wu, J. Mat. Sci. Technol. 34 (2018) 1162-1171. |
[47] |
L. Zeng, Z. Li, X. Wang, J. Chem. Eng. Data 61 (2016) 797-805.
DOI URL |
[48] |
A. Merbach, M.N. Pitteloud, P. Jaccard, Helv. Chim. Acta 55 (1972) 44-52.
DOI URL |
[49] |
S. Verma, R. Gokhale, D.J. Burgess, Int. J. Pharm. 380 (2009) 216-222.
DOI URL |
[1] | Yuan-Yun Zhao, Feng Qian, Chengliang Zhao, Chunxiao Xie, Jianguo Wang, Chuntao Chang, Yanjun Li, Lai-Chang Zhang. Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses [J]. J. Mater. Sci. Technol., 2021, 70(0): 205-213. |
[2] | Wang Yang, Bo Jiang, Zhihui Liu, Rui Li, Liqiang Hou, Zhengxuan Li, Yongli Duan, Xingru Yan, Fan Yang, Yongfeng Li. Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 70(0): 214-223. |
[3] | Jing Wang, Li You, Zhibin Li, Xiongjun Liu, Rui Li, Qing Du, Xianzhen Wang, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 145-150. |
[4] | Dong Zhao, Xiaoyang Wang, Ling Chang, Wenli Pei, Chun Wu, Fei Wang, Luran Zhang, Jianjun Wang, Qiang Wang. Synthesis of super-fine L10-FePt nanoparticles with high ordering degree by two-step sintering under high magnetic field [J]. J. Mater. Sci. Technol., 2021, 73(0): 178-185. |
[5] | Mi Wu, Wen Liu, Jinrong Yao, Zhengzhong Shao, Xin Chen. Silk microfibrous mats with long-lasting antimicrobial function [J]. J. Mater. Sci. Technol., 2021, 63(0): 203-209. |
[6] | Jie Liu, Li Li, Run Zhang, Zhi Ping Xu. Development of CaP nanocomposites as photothermal actuators for doxorubicin delivery to enhance breast cancer treatment [J]. J. Mater. Sci. Technol., 2021, 63(0): 73-80. |
[7] | Qian Wu, Xiangmei Liu, Bo Li, Lei Tan, Yong Han, Zhaoyang Li, Yanqin Liang, Zhenduo Cui, Shengli Zhu, Shuilin Wu, Yufeng Zheng. Eco-friendly and degradable red phosphorus nanoparticles for rapid microbial sterilization under visible light [J]. J. Mater. Sci. Technol., 2021, 67(0): 70-79. |
[8] | Zhuwei Lv, Chenchen Yuan, Haibo Ke, Baolong Shen. Defects activation in CoFe-based metallic glasses during creep deformation [J]. J. Mater. Sci. Technol., 2021, 69(0): 42-47. |
[9] | Wenjuan Wang, Yan Zhao, Yongguang Zhang, Ning Liu, Zhumabay Bakenov. Nickel embedded porous macrocellular carbon derived from popcorn as sulfur host for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 69-77. |
[10] | Weiming Yang, Xinfa Sun, Haishun Liu, Changfeng Yu, Wenyu Li, Akihisa Inoue, Daniel Şopu, Jürgen Eckert, Chunguang Tang. Structural homology of the strength for metallic glasses [J]. J. Mater. Sci. Technol., 2021, 81(0): 123-130. |
[11] | Mengting Cao, Fengli Yang, Quan Zhang, Juhua Zhang, Lu Zhang, Lingfeng Li, Xiaohao Wang, Wei-Lin Dai. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2021, 76(0): 189-199. |
[12] | Tianyan Zhong, Huangxin Li, Tianming Zhao, Hongye Guan, Lili Xing, Xinyu Xue. Self-powered/self-cleaned atmosphere monitoring system from combining hydrovoltaic, gas sensing and photocatalytic effects of TiO2 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 76(0): 33-40. |
[13] | Le Thai Duy, Ji-Ye Baek, Ye-Ji Mun, Hyungtak Seo. Patternable production of SrTiO3 nanoparticles using 1-W laser directly on flexible humidity sensor platform based on ITO/SrTiO3/CNT [J]. J. Mater. Sci. Technol., 2021, 71(0): 186-194. |
[14] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
[15] | M.C. Ri, D.W. Ding, Y.H. Sun, W.H. Wang. Microstructure change in Fe-based metallic glass and nanocrystalline alloy induced by liquid nitrogen treatment [J]. J. Mater. Sci. Technol., 2021, 69(0): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||