J. Mater. Sci. Technol. ›› 2021, Vol. 82: 153-160.DOI: 10.1016/j.jmst.2020.12.019
• Research Article • Previous Articles Next Articles
J. Donga,b,c, J. Shena,b, Y.H. Suna,b,c, H.B. Kec, B.A. Suna,b,c,*(), W.H. Wanga,b,c, H.Y. Baia,b,c,*(
)
Received:
2020-11-27
Accepted:
2020-12-01
Published:
2021-01-23
Online:
2021-01-23
Contact:
B.A. Sun,H.Y. Bai
About author:
hybai@iphy.ac.cn (H.Y. Bai).J. Dong, J. Shen, Y.H. Sun, H.B. Ke, B.A. Sun, W.H. Wang, H.Y. Bai. Composition and size dependent torsion fracture of metallic glasses[J]. J. Mater. Sci. Technol., 2021, 82: 153-160.
Fig. 1. The X-ray and DSC spectrum of MG samples. (a) and (b) A wide single halo with no sharp peaks of crystalline phase confirming the full amorphous nature of MG samples. (c) and (d) The DSC curves giving the thermal properties of MG samples.
Fig. 2. The surface shear stress-strain curves for MGs with various compositions and sizes. (a) The Zr-based bulk MG shows a ductile torsion failure behavior with a large fracture strain of ~3.35 % and a nonlinear elongation of 0.68 % upon fracture. (b) and (c) The Pd-based and La-based bulk samples catastrophically failed without obvious nonlinear plastic strain. (d)-(f) The micro-size MG samples show obvious plastic strain that can be as large as ~1.5 % before fracture.
Fig. 3. The fracture morphologies of the Zr-based bulk MG after torsion testes. (a) The Zr-based sample failed along the plane perpendicular to the axial direction under torsion. (b) and (c) The large scale and dimple-shape vein like patterns on the whole fracture surface.
Fig. 4. The fracture morphologies of the Pd-based and La-based bulk MGs after torsion tests. (a) and (b) The spiral fracture for the Pd-based and La-based bulk MGs. (c) and (d) The smooth fracture surfaces of bulk MGs with no apparent vein patterns. (e) and (f) The enlarged view of the smooth fracture surfaces showing nano-size ravine shaped patterns.
Fig. 5. The fracture morphologies of the Pd-based MG Wires with micro-sized diameter after torsion testes. (a)-(c) The fracture angle of MG Wires under torsion load decreases with decreasing diameter. (d)-(f) Both the size and fraction of the vein pattern on the fracture surface of MG Wires increased with size reduction.
Fig. 6. The stress state for a cylindrical sample loaded in torsion. (a) The shear stress at the fracture surface is plotted on the shear Mohr cycle. (b) With the conversion, the stress at the fracture surface is plotted on the tension Mohr cycle.
Samples | θS | Θr | Τf (GPa) | σT=2τf (GPa) | σ0 (GPa) | τ0 (GPa) | α=τ0/σ0 | σT/τ0 |
---|---|---|---|---|---|---|---|---|
Pd40Ni10Cu30P20 | ∼47° | 92° | 0.85 | 1.70 | 1.70 | 1.20 | 0.707 | 1.42 |
La60Ni15Al25 | ∼49° | 94° | 0.20 | 0.40 | 0.40 | 0.28 | 0.707 | 1.42 |
Zr65Cu15Al10Ni10 | ∼0° | 45° | 0.89 | 1.78 | ∞ | 0.89 | 0.000 | 2.00 |
MG Wire d=115 μm | ∼15° | 60° | 0.93 | 1.86 | 2.10 | 1.22 | 0.577 | 1.52 |
MG Wire d=86 μm | ∼7° | 52° | 0.83 | 1.66 | 1.92 | 0.85 | 0.440 | 1.95 |
MG Wire d=51 μm | ∼0° | 45° | 0.75 | 1.5 | ∞ | 0.75 | 0.000 | 2.00 |
Table 1 Data for the torsion fracture angle θS and converted tensile fracture angle θT, the torsion strength τf, the tensile strength σT, the normal tensile fracture stress σ0 and pure shear fracture stress τ0, the ratio α=τ0/σ0 and the normalized tensile strength σT/τ0.
Samples | θS | Θr | Τf (GPa) | σT=2τf (GPa) | σ0 (GPa) | τ0 (GPa) | α=τ0/σ0 | σT/τ0 |
---|---|---|---|---|---|---|---|---|
Pd40Ni10Cu30P20 | ∼47° | 92° | 0.85 | 1.70 | 1.70 | 1.20 | 0.707 | 1.42 |
La60Ni15Al25 | ∼49° | 94° | 0.20 | 0.40 | 0.40 | 0.28 | 0.707 | 1.42 |
Zr65Cu15Al10Ni10 | ∼0° | 45° | 0.89 | 1.78 | ∞ | 0.89 | 0.000 | 2.00 |
MG Wire d=115 μm | ∼15° | 60° | 0.93 | 1.86 | 2.10 | 1.22 | 0.577 | 1.52 |
MG Wire d=86 μm | ∼7° | 52° | 0.83 | 1.66 | 1.92 | 0.85 | 0.440 | 1.95 |
MG Wire d=51 μm | ∼0° | 45° | 0.75 | 1.5 | ∞ | 0.75 | 0.000 | 2.00 |
Fig. 8. The correlation between the tensile fracture angle θT and fracture toughness KIC of MGs from the present work and literatures [8,[30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41]].
[1] | A.L. Greer, Mater. Today 12 (2009) 14-22. |
[2] |
W.L. Johnson, MRS Bull. 24 (2013) 42-56.
DOI URL |
[3] |
W.H. Wang, C. Dong, C.H. Shek, Mater. Sci. Eng. R. 44 (2004) 45-89.
DOI URL |
[4] |
A. Inoue, Acta Mater. 48 (2000) 279-306.
DOI URL |
[5] |
C. Schuh, T. Hufnagel, U. Ramamurty, Acta Mater. 55 (2007) 4067-4109.
DOI URL |
[6] |
A.L. Greer, Y.Q. Chen, E. Ma, Mater. Sci. Eng. R. 74 (2013) 71-132.
DOI URL |
[7] |
F. Spaepen, Acta Metall. 25 (1977) 407-415.
DOI URL |
[8] |
J.J. Lewandowski, A.L. Greer, Nat. Mater. 5 (2005) 15-18.
DOI URL |
[9] |
B.A. Sun, S. Pauly, J. Hu, W.H. Wang, U. Kuhn, J. Eckert, Phys. Rev. Lett. 110 (2013), 225501.
PMID |
[10] |
Z.F. Zhang, J. Eckert, L. Schultz, Acta Mater. 51 (2003) 1167-1179.
DOI URL |
[11] |
Z.F. Zhang, G. He, J. Eckert, L. Schultz, Phys. Rev. Lett. 91 (4)(2003) 045505.
DOI URL |
[12] | T.H. Courtney, New York, 2000. |
[13] | J.M. Gere, Mechanics of Materials, BrooksCole, Belmont, MA, 2001. |
[14] | M.A. Mayers, K.K. Chawla, Mechanical Behavior of Materials, Prentice Hall, Upper Saddle River, NJ, 1999. |
[15] |
Z.F. Zhang, J. Eckert, Phys. Rev. Lett. 94 (2005), 094301.
DOI URL |
[16] |
H.A. Bruck, T. Christman, A.J. Rosakis, W.L. Johnson, Scr. Metall. Mater. 30 (1993) 429-434.
DOI URL |
[17] |
X.Q. Lei, Y.J. Wei, B.C. Wei, W.H. Wang, Acta Mater. 99 (2015) 206-212.
DOI URL |
[18] | Y.B. Ma, Y. Jiang, H.P. Ding, Q.D. Zhang, X.Y. Li, F.Q. Zu, Mater.Sci. Eng. A. 751 (2019) 128-132. |
[19] |
Zs. Kovács, L.S. Tóth, J. Lendvai, J. Alloys. Compd. 542 (2012) 85-89.
DOI URL |
[20] |
Z.Q. Song, E. Ma, J. Xu, Intermetallics 86 (2017) 25-32.
DOI URL |
[21] |
D. Raut, R.L. Narayan, Y. Yokoyama, P. Tandaiya, U. Ramamurty, Acta Mater. 168 (2019) 309-320.
DOI URL |
[22] |
C.A. Schuh, A.C. Lund, Nat. Mater. 2 (2003) 449-452.
DOI URL |
[23] |
J. Yi, X.X. Xia, D.Q. Zhao, M.X. Pan, H.Y. Bai, W.H. Wang, Adv. Eng. Mater. 12 (2010) 1117-1122.
DOI URL |
[24] |
Y.J. Dai, Y. Huan, M. Gao, J. Dong, W. Liu, M.X. Pan, W.H. Wang, Z.L. Bi, Meas. Sci. Technol. 26 (2015), 025902.
DOI URL |
[25] |
Y. Huan, Y.J. Dai, Y.Q. Shao, G.J. Peng, Y.H. Feng, T.H. Zhang, Rev. Sci. Instrum. 85 (2014), 095106.
DOI URL |
[26] | J.A. Bailey, J.Y. Sheikh-Ahmad, Fundamental Aspects of Torsional Loading, ASM Handbook, Materials Park, ASM International, 2000. |
[27] |
J. Dong, Y.H. Feng, Y. Huan, J. Yi, W.H. Wang, H.Y. Bai, B.A. Sun, Chin. Phys. Lett. 37 (2020) 017103.
DOI URL |
[28] |
G. Kumar, S. Prades-Rodel, A. Blatter, J. Schroers, Scripta Mater 65 (2011) 585-587.
DOI URL |
[29] |
G. Ravichandran, A. Molinari, Acta Mater. 53 (2005) 4087-4095.
DOI URL |
[30] |
Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, Science 315 (2007) 1385-1388.
DOI URL |
[31] |
B.A. Sun, W.H. Wang, Prog. Mater. Sci. 74 (2015) 211-307.
DOI URL |
[32] |
J.J. Lewandowski, P. Lowhaphandu, Philos. Mag. 82 (2002) 3427-3441.
DOI URL |
[33] |
J. Saida, A. Inoue, Scripta Mater 50 (2004) 1297-1301.
DOI URL |
[34] |
A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, Acta Mater. 49 (2001) 2645-2652.
DOI URL |
[35] | S. Takayama, Scr. Metall. Mater. 13 (1979) 463-467. |
[36] |
M.L. Lee, Y. Li, C.A. Schuh, Acta Mater. 52 (2004) 4121-4131.
DOI URL |
[37] |
L.A. Davis, J. Mater. Sci. 10 (1975) 1557-1564.
DOI URL |
[38] |
L.A. Davis, Y.T. Yeow, J. Mater. Sci. 15 (1980) 230-236.
DOI URL |
[39] |
J. Pan, Y.X. Wang, Y. Li, Acta Mater. 136 (2017) 126-133.
DOI URL |
[40] |
J. Ketkaew, W. Chen, H. Wang, A. Datye, M. Fan, G. Pereira, U.D. Schwarz, Z. Liu, R. Yamada, W. Dmowski, M.D. Shattuck, C.S. O’Hern, T. Egami, E. Bouchbinder, J. Schroers, Nat. Commun. 9 (2018) 3271.
DOI URL |
[41] |
C. Chen, M. Gao, C. Wang, W.H. Wang, T.C. Wang, Sci. Rep. 6 (2016) 39522.
DOI PMID |
[42] |
X.K. Xi, D.Q. Zhao, M.X. Pan, W.H. Wang, Y. Wu, J.J. Lewandowski, Phys. Rev. Lett. 94 (2005), 125510.
PMID |
[43] |
B. Gludovatz, S.E. Naleway, R.O. Ritchie, J.J. Kruzic, Acta Mater. 70 (2014) 198-207.
DOI URL |
[1] | M.C. Ri, D.W. Ding, Y.H. Sun, W.H. Wang. Microstructure change in Fe-based metallic glass and nanocrystalline alloy induced by liquid nitrogen treatment [J]. J. Mater. Sci. Technol., 2021, 69(0): 1-6. |
[2] | L. Jiang, Z.Q. Chen, H.B. Lu, H.B. Ke, Y. Yuan, Y.M. Dong, X.K. Meng. Corrosion protection of NiNb metallic glass coatings for 316SS by magnetron sputtering [J]. J. Mater. Sci. Technol., 2021, 79(0): 88-98. |
[3] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
[4] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[5] | Zhuwei Lv, Chenchen Yuan, Haibo Ke, Baolong Shen. Defects activation in CoFe-based metallic glasses during creep deformation [J]. J. Mater. Sci. Technol., 2021, 69(0): 42-47. |
[6] | Weiming Yang, Xinfa Sun, Haishun Liu, Changfeng Yu, Wenyu Li, Akihisa Inoue, Daniel Şopu, Jürgen Eckert, Chunguang Tang. Structural homology of the strength for metallic glasses [J]. J. Mater. Sci. Technol., 2021, 81(0): 123-130. |
[7] | Zenan Ma, Jiawei Li, Jijun Zhang, Aina He, Yaqiang Dong, Guoguo Tan, Mingqiang Ning, Qikui Man, Xincai Liu. Ultrathin, flexible, and high-strength Ni/Cu/metallic glass/Cu/Ni composite with alternate magneto-electric structures for electromagnetic shielding [J]. J. Mater. Sci. Technol., 2021, 81(0): 43-50. |
[8] | Yuan-Yun Zhao, Feng Qian, Wenfeng Shen, Chengliang Zhao, Jianguo Wang, Chunxiao Xie, Fengling Zhou, Chuntao Chang, Yanjun Li. Facile synthesis of metal and alloy nanoparticles by ultrasound-assisted dealloying of metallic glasses [J]. J. Mater. Sci. Technol., 2021, 82(0): 144-152. |
[9] | Yuan-Yun Zhao, Feng Qian, Chengliang Zhao, Chunxiao Xie, Jianguo Wang, Chuntao Chang, Yanjun Li, Lai-Chang Zhang. Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses [J]. J. Mater. Sci. Technol., 2021, 70(0): 205-213. |
[10] | Jing Wang, Li You, Zhibin Li, Xiongjun Liu, Rui Li, Qing Du, Xianzhen Wang, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 145-150. |
[11] | Bowen Zhao, Zhengwang Zhu, Xin Dong Qin, Zhengkun Li, Haifeng Zhang. Highly efficient and stable CuZr-based metallic glassy catalysts for azo dye degradation [J]. J. Mater. Sci. Technol., 2020, 46(0): 88-97. |
[12] | Chunjuan Cui, Cong Wang, Pei Wang, Wei Liu, Yuanyuan Lai, Li Deng, Haijun Su. Microstructure and fracture toughness of the Bridgman directionally solidified Fe-Al-Ta eutectic at different solidification rates [J]. J. Mater. Sci. Technol., 2020, 42(0): 63-74. |
[13] | L. Huang, Z.Q. Chen, P. Huang, X.K. Meng, F. Wang. Irradiation-induced homogeneous plasticity in amorphous/amorphous nanolaminates [J]. J. Mater. Sci. Technol., 2020, 57(0): 70-77. |
[14] | Yanhui Li, Siwen Wang, Xuewei Wang, Meiling Yin, Wei Zhang. New FeNiCrMo(P, C, B) high-entropy bulk metallic glasses with unusual thermal stability and corrosion resistance [J]. J. Mater. Sci. Technol., 2020, 43(0): 32-39. |
[15] | Kim Jeong Tae, Hong Sung Hwan, Park Jin Man, Jürgen Eckert, Kim Ki Buem. New para-magnetic (CoFeNi)50(CrMo)50-x(CB)x (x = 20, 25, 30) non-equiatomic high entropy metallic glasses with wide supercooled liquid region and excellent mechanical properties [J]. J. Mater. Sci. Technol., 2020, 43(0): 135-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||