J. Mater. Sci. Technol. ›› 2021, Vol. 82: 135-143.DOI: 10.1016/j.jmst.2020.12.034
• Research Article • Previous Articles Next Articles
Bing Zhanga,b, Jiankang Heb,*(), Gaofeng Zhenga, Yuanyuan Huanga, Chaohung Wanga, Peisheng Hea, Fanping Suia, Lingchao Menga, Liwei Lina,*(
)
Received:
2020-07-27
Revised:
2020-10-30
Accepted:
2020-12-10
Published:
2021-01-27
Online:
2021-01-27
Contact:
Jiankang He,Liwei Lin
About author:
lwlin@berkeley.edu (L. Lin).Bing Zhang, Jiankang He, Gaofeng Zheng, Yuanyuan Huang, Chaohung Wang, Peisheng He, Fanping Sui, Lingchao Meng, Liwei Lin. Electrohydrodynamic 3D printing of orderly carbon/nickel composite network as supercapacitor electrodes[J]. J. Mater. Sci. Technol., 2021, 82: 135-143.
Fig. 2. Investigation of the processing parameters in EHD printing. (a) Graphical illustration of the working mechanism of EHD printing. (b) Optical image of EHD-printed fibers with different width. (c-f) Experimental results showing the EHD-printed PAN-Ni(NO3)2 fiber width with respect to (c) applied voltage, (d) nozzle-to-collector distance, (e) feeding rate, and (f) stage moving speed. The standard EHD printing process includes: applied voltage of 1400 V, nozzle-to-collector distance of 3 mm, feeding rate of 20 μL h-1 and stage moving speed of 50 mm s-1. Only one parameter was altered for each group.
Fig. 3. EHD 3D printing of the PAN-Ni(NO3)2 networks. (a) Schematic diagram of EHD-printed 3D structures with 10 to 50 layers. (b) 3D profiles of the printed structures obtained from laser confocal scanning. (c) The structural height with respect to the number of layers. (d) Optical images of the 50-layer lattice structure with a 500 μm gap spacing.
3D printing process | Materials | Resolution (μm) | Refs. |
---|---|---|---|
Fused deposition molding | Carbon fiber powder, ABS thermoplastic pellet | 200 | [ |
Direct ink writing | PLA-MWCNTs ink | 100 | [ |
Projection microstereolithography | Photosensitive resin, Chopped carbon fiber | 50 | [ |
Selective laser sintering | Phenolic resin, Carbon fiber powder | 500 | [ |
Selective laser melting | Carbon nanotube, Al-Si10Mg powder | 80 | [ |
EHD 3D printing | PAN-Ni2(NO)3 ink | 9.2 ± 2.1 | This work |
Table 1 Comparison of conventional 3D printing techniques for carbon-based materials.
3D printing process | Materials | Resolution (μm) | Refs. |
---|---|---|---|
Fused deposition molding | Carbon fiber powder, ABS thermoplastic pellet | 200 | [ |
Direct ink writing | PLA-MWCNTs ink | 100 | [ |
Projection microstereolithography | Photosensitive resin, Chopped carbon fiber | 50 | [ |
Selective laser sintering | Phenolic resin, Carbon fiber powder | 500 | [ |
Selective laser melting | Carbon nanotube, Al-Si10Mg powder | 80 | [ |
EHD 3D printing | PAN-Ni2(NO)3 ink | 9.2 ± 2.1 | This work |
Fig. 5. Materials characterization of the EHD-printed PAN-Ni(NO3)2 structure and the C-Ni electrode. (a, b) EDS spectrum of the PAN-Ni(NO3)2 structure and C-Ni electrode. (c) XRD spectrum of the C-Ni electrode. (d) Raman spectrum of the C-Ni electrode. (e) EDS elemental mapping of C, O and Ni for the C-Ni electrode.
Fig. 6. Electrochemical and structural properties of the C-Ni electrodes. (a) CV curves of the C-Ni electrodes with the printed fiber spacing of 20, 40, 60, 80, 100 and 120 μm, at the scanning rate of 10 mV s-1. (b) CV curves of the EHD-printed electrodes and spin-coated electrodes, at the scanning rate of 10 mV s-1. (c) The mass specific capacitances of the EHD-printed and spin-coated electrodes. (d) The conductivity and porosity of the EHD-printed electrodes.
Fig. 7. Electrochemical performance of the as-fabricated C-Ni electrodes. (a) CV curves of the 60 μm-spacing sample at the scanning rates of 10, 20, 50 and 100 mV s-1. (b) GCD curves of the 60 μm-spacing sample with the current density of 1, 2, 3, 4 and 5 mA cm-2. (c) Nyquist plot of the EHD-printed samples with varied fiber spacing of 20, 40, 60, 80, 100 and 120 μm. (d) The cycling stability test of the 60-μm spacing sample at the scanning rate of 100 mV s-1. Inset: CV curves at the first cycle, after 500 and 5000 cycles.
[1] |
H.R. Luckarift, S.R. Sizemore, K.E. Farrington, J. Roy, C. Lau, P.B. Atanassov, G.R. Johnson, ACS Appl. Mater. Interfaces 4 (2012) 2082-2087.
DOI URL |
[2] |
R. Lv, E. Cruz-Silva, M. Terrones, ACS Nano 8 (2014) 4061-4069.
DOI URL |
[3] |
N. Li, F. Chen, X. Chen, Z. Chen, Y. Qi, X. Li, X. Sun, J. Mater. Sci. Technol. 55 (2020) 152-158.
DOI URL |
[4] |
Y. Hong, J. Xu, J.S. Chung, W.M. Choi, J. Mater. Sci. Technol. 58 (2020) 73-79.
DOI URL |
[5] | E. MacDonald, R. Wicker, Science 353 (2016), aaf2093. |
[6] |
E. Fantino, A. Chiappone, I. Roppolo, D. Manfredi, R. Bongiovanni, C.F. Pirri, F. Calignano, Adv. Mater. 28 (2016) 3712-3717.
DOI URL |
[7] |
J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549 (2017) 365-369.
DOI URL |
[8] | S. Jambhulkar, W. Xu, R. Franklin, D. Ravichandran, Y. Zhu, K. Song, J. Mater.Chem. C Mater. Opt. Electron. Devices 8 (2020) 9495-9501. |
[9] |
L. Han, C. Wang, Z. Li, J. Mater. Sci. Technol. 35 (2019) 1323-1333.
DOI URL |
[10] |
C. Zhu, T. Liu, F. Qian, T.Y.-J. Han, E.B. Duoss, J.D. Kuntz, C.M. Spadaccini, M. A.Worsley, Y. Li, Nano Lett. 16 (2016) 3448-3456.
DOI URL |
[11] |
T. Nathan-Walleser, I.M. Lazar, M. Fabritius, F.J. Tölle, Q. Xia, B. Bruchmann, S.S. Venkataraman, M.G. Schwab, R. Mülhaupt, Adv. Funct. Mater. 24 (2014)4706-4716.
DOI URL |
[12] |
S. Baskakov, Y. Baskakova, N. Lyskov, N. Dremova, A. Irzhak, Y. Kumar, A. Michtchenok, Y. Shulga, Electrochim. Acta 260 (2018) 557-563.
DOI URL |
[13] |
A. Tanwilaisiri, Y. Xu, R. Zhang, D. Harrison, J. Fyson, M. Areir, J. Energy Storage 16 (2018) 1-7.
DOI URL |
[14] |
K. Shen, J. Ding, S. Yang, Adv. Energy Mater. 8 (2018), 1800408.
DOI URL |
[15] |
A. Azhari, E. Marzbanrad, D. Yilman, E. Toyserkani, M.A. Pope, Carbon 119 (2017) 257-266.
DOI URL |
[16] |
K. Fu, Y. Yao, J. Dai, L. Hu, Adv. Mater. 29 (2017), 1603486.
DOI URL |
[17] |
F. Ning, W. Cong, Y. Hu, H. Wang, J. Compos. Mater. 51 (2017) 451-462.
DOI URL |
[18] |
N. Li, Y. Li, S. Liu, J. Mater. Proc. Technol. 238 (2016) 218-225.
DOI URL |
[19] |
S. Peng, L. Li, Y. Hu, M. Srinivasan, F. Cheng, J. Chen, S. Ramakrishna, ACS Nano 9 (2)(2015) 1945-1954.
DOI URL |
[20] |
B. Zhang, F. Kang, J.-M. Tarascon, J.-K. Kim, Prog. Mater. Sci. 76 (2016)319-380.
DOI URL |
[21] | Z. Li, Z. Lei, Y. Wang, Y. Wu, M. Guo, Y. He, J. Chen, J. Wang, J. Mater. Chem. CMater. Opt. Electron. Devices 8 (2020) 3807-3813. |
[22] | K. Wei, K.O. Kim, K.H. Song, C.Y. Kang, J.S. Lee, M. Gopiraman, I.S. Kim, J. Mater.Sci. Technol. 33 (2017) 424-431. |
[23] |
X. Liang, Y. Yang, X. Jin, J. Cheng, J. Mater. Sci. Technol. 32 (2016) 200-206.
DOI URL |
[24] |
D. Sun, C. Chang, S. Li, L. Lin, Nano Lett. 6 (2006) 839-842.
DOI URL |
[25] |
B. Zhang, J. He, X. Li, F. Xu, D. Li, Nanoscale 8 (2016) 15376-15388.
DOI PMID |
[26] |
X. Wang, G. Zheng, G. He, J. Wei, H. Liu, Y. Lin, J. Zheng, D. Sun, Mater. Lett. 109 (2013) 58-61.
DOI URL |
[27] |
Q. Lei, J. He, B. Zhang, J. Chang, D. Li, J. Mater. Chem. C Mater. Opt. Electron. Devices 6 (2)(2018) 213-218.
DOI URL |
[28] | Q. Lei, J. He, D. Li, Nanoscale 32 (2019) 15195-15205. |
[29] |
B. Zhang, J. He, Q. Lei, D. Li, Virtual Phys. Prototyp. 15 (2019) 1-13.
DOI URL |
[30] |
Y. Jiang, P. Wang, X. Zang, Y. Yang, A. Kozinda, L. Lin, Nano Lett. 13 (2013)3524-3530.
DOI URL |
[31] |
W. Chen, Y. Liu, Y. Ma, W. Yang, J. Power Sources 273 (2015) 1127-1135.
DOI URL |
[32] |
G. Zheng, J. Jiang, X. Wang, W. Li, J. Liu, G. Fu, L. Lin, Mater. Des. 189 (2020),108504.
DOI URL |
[33] |
R.R. Salunkhe, C. Young, J. Tang, T. Takei, Y. Ide, N. Kobayashi, Y. Yamauchi, Chem. Commun. (Camb.) 52 (2016) 4764-4767.
DOI URL |
[34] | M. Liu, Z. Cong, X. Pu, W. Guo, T. Liu, M. Li, Y. Zhang, W. Hu, Z.L. Wang, Adv.Funct. Mater. 29 (2019), 1806298. |
[35] |
J.-U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair, D. kishore Mukhopadhyay, C.Y. Lee, M.S. Strano, A.G. Alleyne, J.G. Georgiadis, Nat. Mater. 6 (2007)782-789.
DOI URL |
[36] |
L. Qian, H. Lan, G. Zhang, Appl. Phys. Lett. 112 (2018), 203505.
DOI URL |
[37] | Y. Huang, Y. Duan, Y. Ding, N. Bu, Y. Pan, N. Lu, Z. Yin, Sci. Rep. 4 (2014) 1-9. |
[38] |
G. Luo, K.S. Teh, Y. Liu, X. Zang, Z. Wen, L. Lin, ACS Appl. Mater. Interfaces 7 (2015) 27765-27770.
DOI URL |
[39] |
T.M. Robinson, D.W. Hutmacher, P.D. Dalton, Adv. Funct. Mater. 29 (2019),1904664.
DOI URL |
[40] |
B. Zhang, J. He, Q. Lei, D. Li, Virtual Phys. Prototyp. 15 (2020) 62-74.
DOI URL |
[41] |
N. Bu, Y. Huang, X. Wang, Z. Yin, Mater. Manuf. Process. 27 (2012) 1318-1323.
DOI URL |
[42] | P. Galliker, J. Schneider, H. Eghlidi, S. Kress, V. Sandoghdar, D. Poulikakos, Nat.Commun. 3 (2012) 1-9. |
[43] |
J. Lu, H. Wan, T. Ju, Z. Ying, W. Zhang, B. Li, Y. Zhang, J. Alloys. Compd. 774 (2019) 593-600.
DOI URL |
[44] |
F. Ning, W. Cong, J. Qiu, J. Wei, S. Wang, Compos. Pt. B-Eng. 80 (2015) 369-378.
DOI URL |
[45] | G. Postiglione, G. Natale, G. Griffini, M. Levi, S. Turri, Compos. Pt. A-Appl.Sci.Manuf. 76 (2015) 110-114. |
[46] | Z. Xu, C.S. Ha, R. Kadam, J. Lindahl, S. Kim, H.F. Wu, V. Kunc, X. Zheng, Addit.Manuf. 32 (2020), 101106. |
[47] |
X. Yi, Z.-J. Tan, W.-J. Yu, J. Li, B.-J. Li, B.-Y. Huang, J. Liao, Carbon 96 (2016)603-607.
DOI URL |
[48] |
L. Jiang, T. Liu, C. Zhang, K. Zhang, M. Li, T. Ma, W. Liao, Mater. Sci. Eng. A 734 (2018) 171-177.
DOI URL |
[49] |
J. Li, E.-h. Liu, W. Li, X.-y. Meng, S.-t. Tan, J. Alloys. Compd. 478 (2009) 371-374.
DOI URL |
[50] |
S. Guo, S. Zhang, L. Wu, S. Sun, Angew. Chem.-Int. Edit. 51 (2012)11770-11773.
DOI URL |
[51] |
J. Huang, B. Zhang, Y.Y. Xie, W.W.K. Lye, Z.-L. Xu, S. Abouali, M.A. Garakani, J.-Q. Huang, T.-Y. Zhang, B. Huang, Carbon 100 (2016) 329-336.
DOI URL |
[52] |
C.J. Thambiliyagodage, S. Ulrich, P. Araujo, M.G. Bakker, Carbon 134 (2018)452-463.
DOI URL |
[53] |
N. Li, G. Yang, Y. Sun, H. Song, H. Cui, G. Yang, C. Wang, Nano Lett. 15 (2015)3195-3203.
DOI PMID |
[54] |
H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L.L. Zhang, A.H. MacDonald, R.S. Ruoff, Nat. Commun. 5 (2014) 3317.
DOI URL |
[55] |
M.-S. Wu, W.-H. Hsu, J. Power Sources 274 (2015) 1055-1062.
DOI URL |
[56] | F. Zhang, M. Wei, V.V. Viswanathan, B. Swart, Y. Shao, G. Wu, C. Zhou, NanoEnergy 40 (2017) 418-431. |
[57] |
W. Yu, H. Zhou, B.Q. Li, S. Ding, ACS Appl. Mater. Interfaces 9 (2017)4597-4604.
DOI URL |
[1] | Xuemin Yin, Hejun Li, Ruimei Yuan, Jinhua Lu. Metal-organic framework derived hierarchical NiCo2O4 triangle nanosheet arrays@SiC nanowires network/carbon cloth for flexible hybrid supercapacitors [J]. J. Mater. Sci. Technol., 2021, 81(0): 162-174. |
[2] | Guoxiang Pan, Feng Cao, Yujian Zhang, Xinhui Xia. N-doped carbon nanofibers arrays as advanced electrodes for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 144-151. |
[3] | Licheng Zhao, Ping Zhang, Yanan Zhang, Zhi Zhang, Lei Yang, Zhi-Gang Chen. Facile synthesis of hierarchical Ni3Se2 nanodendrite arrays for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 54(0): 69-76. |
[4] | Yiwen Hong, Jingli Xu, Jin Suk Chung, Won Mook Choi. Graphene quantum dots/Ni(OH)2 nanocomposites on carbon cloth as a binder-free electrode for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 73-79. |
[5] | Lu Liu, Xi Hu, Hong-Yan Zeng, Mo-Yu Yi, Shi-Gen Shen, Sheng Xu, Xi Cao, Jin-Ze Du. Preparation of NiCoFe-hydroxide/polyaniline composite for enhanced-performance supercapacitors [J]. J. Mater. Sci. Technol., 2019, 35(8): 1691-1699. |
[6] | Nadir Ouldhamadouche, Amine Achour, Raul Lucio-Porto, Mohammad Islam, Shahram Solaymani, Ali Arman, Azin Ahmadpourian, Hamed Achour, Laurent Le Brizoual, Mohamed Abdou Djouadi, Thierry Brousse. Electrodes based on nano-tree-like vanadium nitride and carbon nanotubes for micro-supercapacitors [J]. J. Mater. Sci. Technol., 2018, 34(6): 976-982. |
[7] | Tinghuan Wu, Lixian Sun, Fen Xu, Dan Cai. Nitrogen-doped hierarchical porous carbon materials derived from diethylenetriaminepentaacetic acid (DTPA) for supercapacitors [J]. J. Mater. Sci. Technol., 2018, 34(12): 2384-2391. |
[8] | Yuemei Chen, Guoxiong Zhang, Jingyuan Zhang, Haibo Guo, Xin Feng, Yigang Chen, . Synthesis of porous carbon spheres derived from lignin through a facile method for high performance supercapacitors [J]. J. Mater. Sci. Technol., 2018, 34(11): 2189-2196. |
[9] | Liutauras Marcinauskas, Zydrunas Kavaliauskas, Vitas Valincius. Carbon and Nickel Oxide/Carbon Composites as Electrodes for Supercapacitors [J]. J. Mater. Sci. Technol., 2012, 28(10): 931-936. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||