J. Mater. Sci. Technol. ›› 2021, Vol. 81: 1-12.DOI: 10.1016/j.jmst.2020.10.083
• Research Article • Next Articles
Weimian Guana,b, Jie Yuanc, Hao Lva,b, Tao Zhuc, Youtong Fangb, Jiabin Liua,b,*(), Hongtao Wangb,*(
), Zhihui Lic, Zhigong Tangb,c, Wei Yangb,*(
)
Received:
2020-09-21
Revised:
2020-10-17
Accepted:
2020-10-18
Published:
2021-01-08
Online:
2021-01-08
Contact:
Jiabin Liu,Hongtao Wang,Wei Yang
About author:
htw@zju.edu.cn (H. Wang),Weimian Guan, Jie Yuan, Hao Lv, Tao Zhu, Youtong Fang, Jiabin Liu, Hongtao Wang, Zhihui Li, Zhigong Tang, Wei Yang. Homogeneous arc ablation behaviors of CuCr cathodes improved by chromic oxide[J]. J. Mater. Sci. Technol., 2021, 81: 1-12.
Alloys | Electrical conductivity (%IACS) | Hardness (HB) | Density (g cm-3) |
---|---|---|---|
CuCr10 | 65.8 ± 1.3 | 76.9 ± 3.2 | 8.70 |
CuCr25 | 57.5 ± 2.4 | 86.8 ± 4.7 | 8.38 |
CuCr50 | 36.7 ± 3.0 | 117.2 ± 4.1 | 7.96 |
Table 1 Electrical and mechanical properties of CuCr alloys.
Alloys | Electrical conductivity (%IACS) | Hardness (HB) | Density (g cm-3) |
---|---|---|---|
CuCr10 | 65.8 ± 1.3 | 76.9 ± 3.2 | 8.70 |
CuCr25 | 57.5 ± 2.4 | 86.8 ± 4.7 | 8.38 |
CuCr50 | 36.7 ± 3.0 | 117.2 ± 4.1 | 7.96 |
Fig. 2. 3-D morphologies, top views, and cross-section profiles of the ablated (a, b) copper, (c, d) CuCr10, (e, f) CuCr25, (g, h) CuCr50, and (i, j) chromium cathodes.
Fig. 3. (a) Maximum ablation depths of the cathodes discharging for 240 s. (b) Curves of ablation rate and discharge time. The insets in (a) correspond to the cross-section profiles of the cathodes discharging for 240 s.
Fig. 4. Surface microstructures of the ablated areas in (a) copper, (b) CuCr10, (c) CuCr25, (d) CuCr50, and (e) chromium. The insets in (a) and (b) display the observed craters or pits. The areas circled by yellow dashed lines in (b) correspond to the scattered discharging areas.
Fig. 5. Cross-section microstructures of (a) copper, (b) CuCr10, (c) CuCr25, (d) CuCr50, and (e) chromium discharging for 240 s. The inserted Table 2 displays the compositions of the selected areas in (b), (c), and (d).
Fig. 7. Surface morphologies and microstructures of (a) CuCr10, (c) CuCr25, and (e) CuCr50 cathodes with a discharging time of 3 s. The images in (b), (d), and (f) magnified the ablation pits in the corresponding cathodes.
Fig. 8. Energy dispersive spectroscopy (EDS) mappings of the pits in (a) CuCr10 and (b) CuCr50 discharging for 1 s. Graphs (c), (d) correspond to the EDS mappings of the whole selected areas in (a) and (b), respectively.
Fig. 9. Evolutions of the crater-like structures in (a-c) CuCr10, (d-f) CuCr25, and (g-i) CuCr50 cathodes with a discharging time of 1 s to 5 s. Graphs (j) and (k) display the craters in copper and chromium discharging for 5 s. (l) Curves of the pit diameter and the arc ablation time.
Fig. 10. Captured sequential images of discharging in (a-d) CuCr10, (e-h) CuCr25, and (i-l) CuCr50 cathodes. Full details of the cathode spot motion behaviors are given in movies a-c in the Supplemental Material.
[1] |
C. Corbella, S. Portal, D.B. Zolotukhin, L. Martinez, L. Lin, M.N. Kundrapu M. Keidar, Plasma Sources Sci. Technol. 28 (2019), 045016.
DOI URL |
[2] |
K. Zhou, W.G. Chen, P. Feng, F.L. Yan, Y.Q. Fu, J. Alloys Compd. 820 (2020),153123.
DOI URL |
[3] | P. Wu, Y.B. Wang, Y. Li, B.J. Wang, K.Y. Zhang, H.B. Tang, J.B. Cao, PlasmaSources Sci. Technol. 22 (2020), 094008. |
[4] |
G.A. Mesyats, IEEE. Trans. Plasma Sci. 41 (2013) 676-694.
DOI URL |
[5] |
E.J. Felderman, W.N. MacDermott, C.J. Fisher, J. Propul. Power 12 (1996)1084-1092.
DOI URL |
[6] |
A.E. Guile, A.H. Hitchcock, K. Dimoff, A.K. Vijh, J. Phys. D: Appl. Phys. 15 (1982)2341-2355.
DOI URL |
[7] |
L. Rao, R.J. Munz, J. Phys. D: Appl. Phys. 41 (2008), 165201.
DOI URL |
[8] |
L. Rao, R.J. Munz, J. Phys. D: Appl. Phys. 40 (2007) 7753-7760.
DOI URL |
[9] | J.M. Sheeley, J.A. Reed, C. Rudolf, M. Turri, 53rd AIAA Aerospace SciencesMeeting, Kissimmee, FL, 2015. |
[10] |
A.M. Essiptchouk, A. Marotta, L.I. Sharakhovsky, Phys. Plasmas 11 (2004)1214-1219.
DOI URL |
[11] | J. Yuan, Y.S. Long, T. Zhu, Y. Liu, D.D. Yin, B. Yang, J. Thermophys, Heat Transfer 33 (2019) 1055-1064. |
[12] |
W.M. Guan, J. Yuan, Y.F. Wang, H.Y. Zhang, H. Lv, H. Yang, T. Zhu, Y.T. Fang, J.B. Liu, H.T. Wang, W. Yang, Sci. China Technol. Sci. 63 (2020) 2384-2394.
DOI URL |
[13] |
W.M. Guan, J. Yuan, H. Lv, T. Zhu, Y.T. Fang, J.B. Liu, H.T. Wang, Z.G. Tang, W. Yang, J. Phys. D: Appl. Phys. 54 (2021), 025304.
DOI URL |
[14] |
P.G. Slade, IEEE Trans. Compon. Packag. Manuf. Technol. Part A 17 (1994)96-106.
DOI URL |
[15] | W.C. Cao, S.H. Liang, X. Zhang, X.H. Wang, X.H. Yang, Int. J. Refract. Met.Hard Mater. 29 (2011) 237-243. |
[16] | W.F. Rieder, M. Schussek, W. Glatzle, E. Kny, IEEE Trans. Compon. Packag. Manuf. Technol. Part A 12 (1989) 273-283. |
[17] |
C.Y. Zhang, Z.M. Yang, Y.P. Wang, B.J. Ding, Adv. Eng. Mater. 7 (2005)1114-1117.
DOI URL |
[18] |
W.C. Cao, S.H. Liang, X. Zhang, X.H. Wang, X.H. Yang, Vacuum 85 (2011)943-948.
DOI URL |
[19] |
X. Wei, D.M. Yu, Z.B. Sun, Z.M. Yang, X.P. Song, B.J. Ding, Vacuum 109 (2014)162-165.
DOI URL |
[20] |
B.J. Ding, Z.M. Yang, X.T. Wang, IEEE Trans. Compon. Packag. Manuf. Technol. Part A 19 (1996) 76-81.
DOI URL |
[21] |
M.T. Greiner, L. Chai, M.G. Helander, W.M. Tang, Z.H. Lu, Adv. Funct. Mater. 22 (2012) 4557-4568.
DOI URL |
[22] |
J. Li, G. Vizkelethy, P. Revesz, J. Mayer, K.N. Tu, J. Appl. Phys. 69 (1991)1020-1029.
DOI URL |
[23] |
F. Yi, J.B. DeLisio, N. Nguyen, M.R. Zachariah, D.A. LaVan, Chem. Phys. Lett. 689 (2017) 26-29.
DOI URL |
[24] |
L.J. Wang, X. Zhang, Y. Wang, Z. Yang, S.L. Jia, Phys. Plasmas 25 (2018), 043511.
DOI URL |
[25] |
J. Rager, A. Flaig, G. Schneider, T. Kaiser, F. Soldera, F. Mücklich, Adv. Eng. Mater. 7 (2005) 633-640.
DOI URL |
[26] |
J. Yuan, Y. Liu, T. Zhu, S.H. Zhao, Vacuum 173 (2020), 109163.
DOI URL |
[27] |
Y.C. Choi, J.T. Kang, S. Park, E. Go, H. Jeon, J.W. Kim, J.W. Jeong, K.H. Park, Y.H. Song, Phys. E 86 (2017) 52-57.
DOI URL |
[28] |
B. Jüttner, J. Phys. D: Appl. Phys. 34 (2001) R103-R123.
DOI URL |
[29] | I.G. Kesaev, Cathode Processes in Electric Arcs, Nauka Publishers, Moscow, 1968. |
[30] |
Z.M. Zhou, Y.P. Wang, J. Gao, M. Kolbe, Mater. Sci. Eng. A 398 (2005) 318-322.
DOI URL |
[31] |
X. Wei, J.P. Wang, Z.M. Yang, Z.B. Sun, D.M. Yu, X.P. Song, B.J. Ding, S. Yang, J. Alloys Compd. 509 (2011) 7116-7120.
DOI URL |
[32] |
V. Nemchinsky, IEEE Trans. Plasma Sci. 42 (2013) 199-215.
DOI URL |
[33] |
Y. Yang, K.Z. Li, G.X. Liu, Z.G. Zhao, J. Mater. Sci. Technol. 33 (2017) 1195-1202.
DOI URL |
[34] |
K.Z. Li, J. Xie, H.J. Li, Q.G. Fu, J. Mater. Sci. Technol. 31 (2015) 77-82.
DOI URL |
[35] |
F. Rotundo, C. Martini, C. Chiavari, L. Ceschini, A. Concetti, E. Ghedini, V. Colombo, S. Dallavalle, Mater. Chem. Phys. 134 (2012) 858-866.
DOI URL |
[36] |
N. Li, S. Huang, G.D. Zhang, R.Y. Qin, W. Liu, H.P. Xiong, G.Q. Shi, J. Blackburn, J. Mater. Sci. Technol. 35 (2019) 242-269.
DOI URL |
[37] |
L.Y. Lou, Y. Zhang, Y.J. Jia, Y. Li, H.F. Tian, Y.J. Cai, C.X. Li, Surf. Coat. Technol. 392 (2020), 125697.
DOI URL |
[38] |
F.M. Shen, W. Tao, L.Q. Li, Y.D. Zhou, W. Wang, S.L. Wang, Appl. Surf. Sci. 517 (2020), 146085.
DOI URL |
[39] |
G.B. Shan, Y.Z. Chen, Y.J. Li, C.Y. Zhang, H. Dong, Y.B. Cong, W.X. Zhang, L.K. Huang, T. Suo, F. Liu, Scr. Mater. 179 (2020) 1-5.
DOI URL |
[1] | Jing Chen, Liang Wu, Xingxing Ding, Qiang Liu, Xu Dai, Jiangfeng Song, Bin Jiang, Andrej Atrens, Fusheng Pan. Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2021, 64(0): 10-20. |
[2] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
[3] | Xuewei Yan, Qingyan Xu, Guoqiang Tian, Quanwei Liu, Junxing Hou, Baicheng Liu. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting [J]. J. Mater. Sci. Technol., 2021, 67(0): 36-49. |
[4] | Yuting Wu, Chong Li, Xingchuan Xia, Hongyan Liang, Qiqi Qi, Yongchang Liu. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'-strengthened superalloys [J]. J. Mater. Sci. Technol., 2021, 67(0): 95-104. |
[5] | Yinbao Tian, Junqi Shen, Shengsun Hu, Jian Gou, Yan Cui. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys [J]. J. Mater. Sci. Technol., 2021, 74(0): 35-45. |
[6] | Enkang Hao, Yulong An, Jie Chen, Xiaoqin Zhao, Guoliang Hou, Jianmin Chen, Meizhen Gao, Fengyuan Yan. In-situ formation of layer-like Ag2MoO4 induced by high-temperature oxidation and its effect on the self-lubricating properties of NiCoCrAlYTa/Ag/Mo coatings [J]. J. Mater. Sci. Technol., 2021, 75(0): 164-173. |
[7] | Jiang Yang, Honggang Dong, Yueqing Xia, Peng Li, Xiaohu Hao, Yaqiang Wang, Wei Wu, Baosen Wang. Carbide precipitates and mechanical properties of medium Mn steel joint with metal inert gas welding [J]. J. Mater. Sci. Technol., 2021, 75(0): 48-58. |
[8] | Peng Peng, Anqiao Zhang, Jinmian Yue, Xudong Zhang, Yuanli Xu. Macrosegregation and thermosolutal convection-induced freckle formation in dendritic mushy zone of directionally solidified Sn-Ni peritectic alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 21-26. |
[9] | Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 27-38. |
[10] | Zhong-Zheng Jin, Min Zha, Hai-Long Jia, Pin-Kui Ma, Si-Qing Wang, Jia-Wei Liang, Hui-Yuan Wang. Balancing the strength and ductility of Mg-6Zn-0.2Ca alloy via sub-rapid solidification combined with hard-plate rolling [J]. J. Mater. Sci. Technol., 2021, 81(0): 219-228. |
[11] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[12] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Ze Tian, Nannan Lu, Xikun Qin, Jingwei Liang. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 69(0): 200-211. |
[13] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
[14] | Baoru Bian, Li Jin, Qiang Zheng, Fang Wang, Xiaohong Xu, Juan Du. Exchange-coupled nanocomposites with novel microstructure and enhanced remanence by a new approach [J]. J. Mater. Sci. Technol., 2021, 79(0): 118-122. |
[15] | Shaodong Hu, Long Hou, Kang Wang, Zhongmiao Liao, Wen Zhu, Aihua Yi, Wenfang Li, Yves Fautrelle, Xi Li. Effect of transverse static magnetic field on radial microstructure of hypereutectic aluminum alloy during directional solidification [J]. J. Mater. Sci. Technol., 2021, 76(0): 207-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||