J. Mater. Sci. Technol. ›› 2021, Vol. 75: 27-38.DOI: 10.1016/j.jmst.2020.10.034
• Research Article • Previous Articles Next Articles
Xinkai Maa,*(), Zhuo Chena, Dongling Zhonga, S.N. Luoa, Lei Xiaob, Wenjie Lub, Shanglin Zhangc
Received:
2020-07-07
Revised:
2020-08-18
Accepted:
2020-08-20
Published:
2020-10-21
Online:
2020-10-21
Contact:
Xinkai Ma
About author:
*E-mail address: sdutmakai@swjtu.edu.cn (X. Ma).Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy[J]. J. Mater. Sci. Technol., 2021, 75: 27-38.
Main components | Impurities | |||||
---|---|---|---|---|---|---|
V | Al | Fe | Ti | O | N | C |
10.69 | 3.04 | 1.81 | Bal. | 0.11 | 0.01 | 0.007 |
Table 1 Chemical composition of the as-received Ti-10V-2Fe-3Al alloy (wt %).
Main components | Impurities | |||||
---|---|---|---|---|---|---|
V | Al | Fe | Ti | O | N | C |
10.69 | 3.04 | 1.81 | Bal. | 0.11 | 0.01 | 0.007 |
Fig. 1. Microstructure characterization of coarse-grained Ti-10V-2Fe-3Al after heat treatment (referred to as CG). (a) Inverse pole figure map along the Y axis. The Y axis is parallel to the axis of the bar. (b) Selected area electron diffraction pattern along the $ [\bar{1}11] $ β zone axis.
Fig. 2. Metallographic microscopes of the CG samples after different RASP processing, showing a gradient deformation structure from the surface to the interior. (a)-(c) refer to RASP1, RASP3 and RASP5, respectively.
Fig. 4. Representative EBSD maps obtained from the surface of RASP1. (a) BC map. (b) IPF map of α″ martensite and β phase superimposed with BC map. (c) IPF map of β phase superimposed with BC map. (d) KAM map showing the strain gradient.
Fig. 5. Representative EBSD maps obtained from the center of the RASP1 sample. (a) IPF map of α″ martensite superimposed on the BC map. (b) IPF map of β phase superimposed on the BC map. (c) KAM map. (d) Enlarged view of the region marked with the white rectangle region in (a). (e) Stereographic projections of α1'' and α2'', in the region marked with the blue oval in (d).
Fig. 7. TEM characterization of a representative microstructure at the depth of ~300 μm in RASP1, corresponding to a transition zone. (a) Blocks of β phase and α″ martensite. (b) SAED pattern. (c) Dark field image of α″ martensite. (d) Dark field image of β phase.
Fig. 8. TEM characterization of a representative microstructure at a depths of ~300 μm in RASP5, corresponding to a transition zone. (a) Blocks of β phase and α″ martensite. (b) SAED pattern of the white-circle region in (a). (c) SAED pattern of the red-circled region in (a). (d) Dark field image of αT''.
Fig. 10. Strengthening of Ti-10V-2Fe-3Al alloy by RASP. (a) Engineering stress-strain curves for the CG and RASPed samples. (b) Work hardening rate as a function of true strain for the CG and RASPed samples. The inset in (b) shows the true stress-strain curves.
Fig. 11. Fractography of Ti-10V-2Fe-3Al alloy after tensile deformation (a) CG. (b) RASP1. (c) RASP3. (d) RASP5. (e, f) High magnification of the center zone of CG and RASP5, respectively.
Fig. 12. Representative EBSD maps obtained from the center of RASP1 after the tensile deformation (a) BC map. (b) IPF map of α″ martensite superimposed on the BC map. (c) KAM map. (d) Enlarged view of the region marked with the white rectangle in (b). (e)-(g) Stereographic projections of αV1'', αV2'' and αV3'', respectively, indicated in (d).
Fig. 13. TEM characterization of a representative microstructure at a depths of 300 μm in RASP1 after tensile deformation. (a) Hierarchical twin structure of α″ martensite. (b) SAED pattern.
[1] |
Y. Yang, P. Castany, Y. Hao, T. Gloriant, Acta Mater. 194 (2020) 27-39.
DOI URL |
[2] |
N. Chen, J.M. Molina-Aldareguia, H. Kou, F. Qiang, Z. Wu, J. Li, Mater. Lett. 272 (2020), 127883.
DOI URL |
[3] |
L. Lilensten, Y. Danard, C. Brozek, S. Mantri, P. Castany, T. Gloriant, P. Vermaut, F. Sun, R. Banerjee, F. Prima, Acta Mater. 162 (2019) 268-276.
DOI |
[4] |
Y. Yang, P. Castany, E. Bertrand, M. Cornen, J. Lin, T. Gloriant, Acta Mater. 149 (2018) 97-107.
DOI URL |
[5] |
A. Zafari, K. Xia, Mater. Sci. Eng. A 724 (2018) 75-79.
DOI URL |
[6] |
L. Qi, X. Qiao, L. Huang, X. Huang, W. Xiao, X. Zhao, Mater. Charact. 155 (2019), 109789.
DOI URL |
[7] |
P. Barriobero-Vila, G. Requena, F. Warchomicka, A. Stark, N. Schell, T. Buslaps, J. Mater. Sci. 50 (2015) 1412-1426.
DOI URL |
[8] |
L. Qi, X. Qiao, L. Huang, X. Huang, X. Zhao, Mater. Sci. Eng. A 756 (2019) 381-388.
DOI URL |
[9] |
X. Ma, F. Li, J. Cao, J. Li, Z. Sun, G. Zhu, S. Zhou, Mater. Sci. Eng. A 710 (2018) 1-9.
DOI URL |
[10] | Q. Luo, C. Zhai, D. Sun, W. Chen, Q. Li, J. Mater. Sci. Technol. 35 (2019) 2115-2120. |
[11] |
C. Liu, Y. Zhu, Q. Luo, B. Liu, Q. Gu, Q. Li, J. Mater. Sci. Technol. 34 (2018) 2235-2239.
DOI URL |
[12] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI URL |
[13] |
M. Marteleur, F. Sun, T. Gloriant, P. Vermaut, P.J. Jacques, F. Prima, Scr. Mater. 66 (10) (2012) 749-752.
DOI URL |
[14] | T. Grosdidier, C. Roubaud, M.J. Philippe, Y. Combres, Scr. Mater. 36 (1) (1997). |
[15] |
Y. Tan, W. Liu, S. Xiang, F. Zhao, Y. Liang, Metall. Mater. Trans. A 49 (2018) 6040-6045.
DOI URL |
[16] |
A. Zafari, X. Wei, W. Xu, K. Xia, Acta Mater. 97 (2015) 146-155.
DOI URL |
[17] |
W. Xu, X. Wu, M. Calin, M. Stoica, J. Eckert, K. Xia, Scr. Mater. 60 (2009) 1012-1015.
DOI URL |
[18] |
W. Xu, X. Wu, R.B. Figueiredo, M. Stoica, M. Calin, J. Eckert, T.G. Langdon, K. Xia, Int. J. Mater. Res. 100 (2009) 1662-1667.
DOI URL |
[19] |
W. Chen, Q. Sun, L. Xiao, J. Sun, Metall. Mater. Trans. A 43 (2012) 316-326.
DOI URL |
[20] |
T. Fang, W. Li, N. Tao, K. Lu, Science 331 (2011) 1587-1590.
DOI URL |
[21] |
X. Wang, Y. Li, Q. Zhang, Y. Zhao, Y. Zhu, J. Mater. Sci. Technol. 33 (2017) 758-761.
DOI URL |
[22] |
Y. Wang, C. Huang, Y. Li, F. Guo, Q. He, M. Wang, X. Wu, R.O. Scattergood, Y. Zhu, Int. J. Plasticity 124 (2020) 186-198.
DOI URL |
[23] |
J. Ding, Q. Li, J. Li, S. Xue, Z. Fan, H. Wang, X. Zhang, Acta Mater. 149 (2018) 57-67.
DOI URL |
[24] |
Z. Cheng, H. Zhou, Q. Lu, H. Gao, L. Lu, Science 362 (2018), eaau1925.
DOI URL |
[25] |
X. Lu, X. Zhang, M. Shi, F. Roters, G. Kang, D. Raabe, Int. J. Plasticity 113 (2019) 52-73.
DOI URL |
[26] |
M. Jobba, R. Mishra, M. Niewczas, Int. J. Plasticity 65 (2015) 43-60.
DOI URL |
[27] | Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y. Wu, Z. Mi, J. Liu, H. Wang, Nat. Commun. 5 (2014) 1-8. |
[28] |
L. Zhu, H. Ruan, A. Chen, X. Guo, J. Lu, Acta Mater. 128 (2017) 375-390.
DOI URL |
[29] |
J. Fan, L. Zhu, J. Lu, T. Fu, A. Chen, Scr. Mater. 184 (2020) 41-45.
DOI URL |
[30] |
X. Wu, M. Yang, F. Yuan, L. Chen, Y. Zhu, Acta Mater. 112 (2016) 337-346.
DOI URL |
[31] |
X. Wu, Y. Zhu, Mater. Res. Lett. 5 (2017) 527-532.
DOI URL |
[32] |
X. Ma, F. Li, Z. Sun, J. Hou, X. Fang, Y. Zhu, C.C. Koch, Metall. Mater. Trans. A 50 (2019) 2126-2138.
DOI URL |
[33] |
X. Ma, F. Li, X. Fang, Z. Li, Z. Sun, J. Hou, J. Cao, J. Alloys. Compds. 784 (2019) 111-116.
DOI URL |
[34] |
K. Darling, M. Tschopp, A. Roberts, J. Ligda, L. Kecskes, Scr. Mater. 69 (2013) 461-464.
DOI URL |
[35] |
H. Zheng, S. Guo, Q. Luo, X. Shu, G. Li, J. Iron Steel Res. Int. 26 (2019) 52-58.
DOI URL |
[36] |
Y. Liu, H. Li, M. Li, Mater. Des. 65 (2015) 120-126.
DOI URL |
[37] |
Y. Samih, B. Beausir, B. Bolle, T. Grosdidier, Mater. Charact. 83 (2013) 129-138.
DOI URL |
[38] |
M. Hasan, Y. Liu, X. An, J. Gu, M. Song, Y. Cao, Y. Li, Y. Zhu, X. Liao, Int. J. Plasticity 123 (2019) 178-195.
DOI URL |
[39] |
Z. Liao, B. Luan, X. Zhang, R. Liu, K.L. Murty, Q. Liu, J. Alloys. Compd. 816 (2020), 152642.
DOI URL |
[40] |
Y. Chai, H. Kim, H. Hosoda, S. Miyazaki, Acta Mater. 57 (2009) 4054-4064.
DOI URL |
[41] | T. Inamura, J. Kim, H. Kim, H. Hosoda, K. Wakashima, S. Miyazaki, Philos. Mag. Abingdon (Abingdon) 87 (2007) 3325-3350. |
[42] | C. Wei, Y. Shanshan, L. Ruolei, S. Qiaoyan, X. Lin, S. Jun, Rare Met, Mater. Eng. 44 (2015) 1601-1606. |
[43] |
Y. Liu, Y. Cao, H. Zhou, X. Chen, Y. Liu, L. Xiao, X. Huan, Y. Zhao, Y. Zhu, Adv. Eng. Mater. 22 (2020), 1900478.
DOI URL |
[44] |
X. Yang, X. Ma, J. Moering, H. Zhou, W. Wang, Y. Gong, J. Tao, Y. Zhu, X. Zhu, Mater. Sci. Eng. A 645 (2015) 280-285.
DOI URL |
[45] |
W. Chen, Z. Song, L. Xiao, Q. Sun, J. Sun, P. Ge, J. Mater. Res. 24 (2009) 2899-2908.
DOI URL |
[46] |
J. Su, D. Raabe, Z. Li, Acta Mater. 163 (2019) 40-54.
DOI URL |
[47] |
W. Guo, J. Su, W. Lu, C.H. Liebscher, C. Kirchlechner, Y. Ikeda, F. Körmann, X. Liu, Y. Xue, G. Dehm, Acta Mater. 185 (2020) 45-54.
DOI URL |
[48] |
P. Gao, J. Fan, F. Sun, J. Cheng, L. Li, B. Tang, H. Kou, J. Li, J. Alloys. Compd. 809 (2019) 151762.
DOI URL |
[49] |
X. Ji, I. Gutierrez-Urrutia, S. Emura, T. Liu, T. Hara, X. Min, D. Ping, K. Tsuchiya, Sci. Technol. Adv. Mater. 20 (2019) 401-411.
DOI URL |
[50] |
E. Bertrand, P. Castany, Y. Yang, E. Menou, T. Gloriant, Acta Mater. 105 (2016) 94-103.
DOI URL |
[51] |
X. Zhang, W. Wang, J. Sun, Mater. Charact. 145 (2018) 724-729.
DOI URL |
[52] |
P. Castany, Y. Yang, E. Bertrand, T. Gloriant, Phys. Rev. Lett. 117 (2016), 245501.
DOI URL |
[53] |
Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, Y.T. Zhu, Adv. Mater. 18 (2006) 2280-2283.
DOI URL |
[54] |
M. Bönisch, Y. Wu, H. Sehitoglu, Acta Mater. 153 (2018) 391-403.
DOI URL |
[55] |
S. Alkan, A. Ojha, H. Sehitoglu, Acta Mater. 147 (2018) 149-164.
DOI URL |
[56] |
X. Wu, P. Jiang, L. Chen, J. Zhang, F. Yuan, Y. Zhu, Mater. Res. Lett. 2 (2014) 185-191.
DOI URL |
[1] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
[2] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[3] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[4] | Baoxian Su, Binbin Wang, Liangshun Luo, Liang Wang, Yanqing Su, Fuxin Wang, Yanjin Xu, Baoshuai Han, Haiguang Huang, Jingjie Guo, Hengzhi Fu. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74(0): 143-154. |
[5] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[6] | Baoxian Su, Liangshun Luo, Binbin Wang, Yanqing Su, Liang Wang, Robert O. Ritchie, Enyu Guo, Ting Li, Huimin Yang, Haiguang Huang, Jingjie Guo, Hengzhi Fu. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 234-248. |
[7] | Binbin Wang, Liangshun Luo, Fuyu Dong, Liang Wang, Hongying Wang, Fuxin Wang, Lei Luo, Baoxian Su, Yanqing Su, Jingjie Guo, Hengzhi Fu. Impact of hydrogen microalloying on the mechanical behavior of Zr-bearing metallic glasses: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2020, 45(0): 198-206. |
[8] | Bassem Barkia, Pascal Aubry, Paul Haghi-Ashtiani, Thierry Auger, Lionel Gosmain, Frédéric Schuster, Hicham Maskrot. On the origin of the high tensile strength and ductility of additively manufactured 316L stainless steel: Multiscale investigation [J]. J. Mater. Sci. Technol., 2020, 41(0): 209-218. |
[9] | Jixin Yang, Yiqiang Chen, Yongjiang Huang, Zhiliang Ning, Baokun Liu, Chao Guo, Jianfei Sun. Hierarchical microstructure of a titanium alloy fabricated by electron beam selective melting [J]. J. Mater. Sci. Technol., 2020, 42(0): 1-9. |
[10] | Xiankun Ji, Baoqi Guo, Fulin Jiang, Hong Yu, Dingfa Fu, Jie Teng, Hui Zhang, John J.Jonas. Accelerated flow softening and dynamic transformation of Ti-6Al-4V alloy in two-phase region during hot deformation via coarsening α grain [J]. J. Mater. Sci. Technol., 2020, 36(0): 160-166. |
[11] | Ke Yue, Jianrong Liu, Haijun Zhang, Hui Yu, Yuanyuan Song, Qingmiao Hu, Qingjiang Wang, Rui Yang. Precipitates and alloying elements distribution in near α titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2020, 36(0): 91-96. |
[12] | Hao Wu, Yunlei Xu, Zhihao Wang, Zhenhua Liu, Qinggang Li, Jinkai Li, Junyan Wu. The influence of solute atom ordering on the deformation behavior of hexagonal close packed Ti-Al alloys [J]. J. Mater. Sci. Technol., 2020, 52(0): 235-242. |
[13] | Zhihong Wu, Hongchao Kou, Nana Chen, Mengqi Zhang, Ke Hua, Jiangkun Fan, Bin Tang, Jinshan Li. Duality of the fatigue behavior and failure mechanism in notched specimens of Ti-7Mo-3Nb-3Cr-3Al alloy [J]. J. Mater. Sci. Technol., 2020, 50(0): 204-214. |
[14] | Shahzad Fateh Ali, Jitang Fan. Elastic-viscoplastic constitutive model for capturing the mechanical response of polymer composite at various strain rates [J]. J. Mater. Sci. Technol., 2020, 57(0): 12-17. |
[15] | Pengfei Gao, Mingwang Fu, Mei Zhan, Zhenni Lei, Yanxi Li. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review [J]. J. Mater. Sci. Technol., 2020, 39(0): 56-73. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||