J. Mater. Sci. Technol. ›› 2021, Vol. 75: 21-26.DOI: 10.1016/j.jmst.2020.08.067
• Research Article • Previous Articles Next Articles
Peng Penga,b,*(), Anqiao Zhanga,b, Jinmian Yuea,b, Xudong Zhanga,b, Yuanli Xua,b
Received:
2020-07-06
Revised:
2020-08-11
Accepted:
2020-08-25
Published:
2020-10-21
Online:
2020-10-21
Contact:
Peng Peng
About author:
*Institute of Materials Science and Engineering, Lanzhou University, Lanzhou, 730000, China. E-mail address: pengp@lzu.edu.cn (P. Peng).Peng Peng, Anqiao Zhang, Jinmian Yue, Xudong Zhang, Yuanli Xu. Macrosegregation and thermosolutal convection-induced freckle formation in dendritic mushy zone of directionally solidified Sn-Ni peritectic alloy[J]. J. Mater. Sci. Technol., 2021, 75: 21-26.
Fig. 1. Typical microstructures of the freckle formation in dendritic mushy zone of directionally solidified Sn-36 at.%Ni peritectic alloys: (a) the macrostructure at 5 μm/s, (b) macrostructure at 10 μm/s, (c) macrostructure at 20 μm/s, (d) macrostructure at 40 μm/s. (a1)-(d1) shows the freckle formation in the region I from TL to TP and (a2)-(d2) shows the freckle formation in the region II below peritectic temperature TP.
Fig. 2. Macrosegregation in the mushy zone of directionally solidified Sn-36 at.%Ni peritectic alloys at different growth velocities: (a) illustration of the melt concentration as a function of fraction of solid phase; (b) the log(CL/C0) vs log(1?fS) plot showing the macrosegretion; (c) illustration of the dependences of the mushy zone Rayleigh number Ram, RaY and RaM which are proposed in previous works on fraction of solid phase in the mushy zone at the growth velocity of 5 μm/s.
Fig. 3. Illustration of the comparison between the TGZM and G-T effects on their influences on remelting/resolidification process during directional solidification of peritectic alloy: (a) stage I, (b) stage II, (c) stage III, (d) stage IV.
Fig. 4. The dependences of the mushy zone Rayleigh number RaP proposed in this work on fraction of solid phase fS in the mushy zone: (a) 5 μm/s, (b) 10 μm/s, (c) 20 μm/s and (d) 40 μm/s.
[1] | G.B. Shan, Y.Z. Chen, M.M. Gong, H. Dong, F. Liu, J. Mater. Sci. Technol. Res. 34 (2018) 613-619. |
[2] |
H. Dong, Y.Z. Chen, K. Wang, G.B. Shan, Z.R. Zhang, K. Huang, F. Liu, Scr. Mater. 177 (2020) 123-127.
DOI URL |
[3] |
H.T. Zheng, R.R. Chen, G. Qin, X.Z. Li, Y.Q. Su, H.S. Ding, J.J. Guo, H.Z. Fu, J. Mater. Sci. Technol. 38 (2020) 19-27.
DOI URL |
[4] |
S.N. Tewari, R. Shah, Metall. Mater. Trans. A 27 (1996) 1353-1362.
DOI URL |
[5] |
L. Yuan, P.D. Lee, Acta Mater. 60 (2012) 4917-4926.
DOI URL |
[6] |
S. Karagadde, L. Yuan, N. Shevchenko, S. Eckert, P.D. Lee, Acta Mater. 79 (2014) 168-180.
DOI URL |
[7] |
J. Madison, J.E. Spowart, D.J. Rowenhorst, L.K. Aagesen, K. Thornton, T.M. Pollock, Metall. Mater. Trans. A 43 (2012) 369-380.
DOI URL |
[8] |
H. Chen, Z.F. Zhao, H.M. Xiang, F.Z. Dai, J. Zhang, S.G. Wang, J.C. Liu, Y.C. Zhou, J. Mater. Sci. Technol. 38 (2020) 80-85.
DOI URL |
[9] |
S.P. Marsh, M.E. Glicksman, Metall. Mater. Trans. A 27 (1996) 557-567.
DOI URL |
[10] | J.C. Coughlin, T.Z. Kattamis, M.C. Flemings, Trans. AIME 239 (1967) 1504-1511. |
[11] |
D. Ma, W. Xu, S.C. Ng, Y. Li, Mater. Sci. Eng. A 390 (2005) 52-62.
DOI URL |
[12] |
P. Auburtin, T. Wang, S.L. Cockcroft, A. Mitchell, Metall. Mater. Trans. B 31 (2000) 801-811.
DOI URL |
[13] |
P.W. Emms, J. Eng. Math. 33 (1998) 175-200.
DOI URL |
[14] |
W.H. Yang, W. Chen, K.M. Chang, S. Mannan, J. de Barbadillo, Metall. Mater. Trans. A 32 (2001) 397-406.
DOI URL |
[15] |
S.N. Tewari, R. Tiwari, G. Mgadi, Metall. Mater. Trans. A 35 (2004) 2927-2933.
DOI URL |
[16] |
C. Beckermann, J.P. Gu, W.J. Boettinger, Metall. Mater. Trans. A 31 (2000) 2545-2557.
DOI URL |
[17] | D.K. Sun, H. Xing, X.L. Dong, Y.S. Han, Int. J. Heat Mass Transf.- Theory Appl. 133 (2019) 1240-1250. |
[18] |
E. Khajeh, D.M. Maijer, Acta Mater. 59 (2011) 4511-4524.
DOI URL |
[19] |
M. Rettenmayr, Int. Mater. Rev. 54 (2009) 1-17.
DOI URL |
[20] | W.G. Pfann, Trans. AIME 203 (1955) 961-964. |
[21] |
D.M. Liu, X.Z. Li, Y.Q. Su, P. Peng, L.S. Luo, J.J. Guo, H.Z. Fu, Acta Mater. 60 (2012) 2679-2688.
DOI URL |
[22] |
A.B. Phillion, M. Založnik, I. Spindler, N. Pinter, C.A. Aledo, G. Salloum-Abou-Jaoude, H. Nguyen, Acta Mater. 141 (2017) 206-216.
DOI URL |
[23] |
S.Y. Pan, Q.Y. Zhang, M.F. Zhu, M. Rettenmayr, Acta Mater. 86 (2015) 229-239.
DOI URL |
[24] |
H.W. Kerr, W. Kurz, Int. Mater. Rev. 41 (1996) 129-164.
DOI URL |
[25] | P. Peng, X.Z. Li, Y.Q. Su, J.J. Guo, H.Z. Fu, Int. J. Heat Mass Transf.- Theory Appl. 94 (2016) 488-497. |
[26] | P. Peng, X.Z. Li, Y.Q. Su, J.J. Guo, H.Z. Fu, Int. J. Heat Mass Transf.- Theory Appl. 131 (2019) 1129-1137. |
[27] |
L. Zheng, G.Q. Zhang, C.B. Xiao, T.L. Lee, B. Han, Z. Li, D. Daisenbergerc, J. Mi, Scr. Mater. 74 (2014) 84-87.
DOI URL |
[28] |
C. Gu, C.D. Ridgeway, E. Cinkilic, Y. Lu, A.A. Luo, J. Mater. Sci. Technol. 49 (2020) 91-105.
DOI URL |
[29] |
P.D. Lee, J.D. Hunt, Acta Mater. 45 (1997) 4155-4169.
DOI URL |
[1] | Lei Luo, Liangshun Luo, Yanqing Su, Lin Su, Liang Wang, Jingjie Guo, Hengzhi Fu. Optimizing microstructure, shrinkage defects and mechanical performance of ZL205A alloys via coupling travelling magnetic fields with unidirectional solidification [J]. J. Mater. Sci. Technol., 2021, 74(0): 246-258. |
[2] | Haijun Su, Yuan Liu, Qun Ren, Zhonglin Shen, Haifang Liu, Di Zhao, Guangrao Fan, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Distribution control and formation mechanism of gas inclusions in directionally solidified Al2O3-Er3Al5O12-ZrO2 ternary eutectic ceramic by laser floating zone melting [J]. J. Mater. Sci. Technol., 2021, 66(0): 21-27. |
[3] | Ying Niu, Yue Wang, Long Hou, Lansong Ba, Yanchao Dai, Yves Fautrelle, Zongbin Li, Zhongming Ren, Xi Li. Effect of γ phase on mechanical behavior and detwinning evolution of directionally solidified Ni-Mn-Ga alloys under uniaxial compression [J]. J. Mater. Sci. Technol., 2021, 66(0): 91-96. |
[4] | Xiaotan Yuan, Tao Zhou, Weili Ren, Jianchao Peng, Tianxiang Zheng, Long Hou, Jianbo Yu, Zhongming Ren, Peter K. Liaw, Yunbo Zhong. Nondestructive effect of the cusp magnetic field on the dendritic microstructure during the directional solidification of Nickel-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 52-59. |
[5] | Weidan Ma, Jun Zhang, Haijun Su, Guangrao Fan, Min Guo, Lin Liu, Hengzhi Fu. Phase growth patterns for Al2O3/GdAlO3 eutectics over wide ranges of compositions and solidification rates [J]. J. Mater. Sci. Technol., 2021, 65(0): 89-98. |
[6] | Luyan Yang, Shuangming Li, Kai Fan, Yang Li, Yanhui Chen, Wei Li, Deli Kong, Pengfei Cao, Haibo Long, Ang Li. Twin crystal structured Al-10 wt.% Mg alloy over broad velocity conditions achieved by high thermal gradient directional solidification [J]. J. Mater. Sci. Technol., 2021, 71(0): 152-162. |
[7] | Peng Peng, Jinmian Yue, Anqiao Zhang, Xudong Zhang, Yuanli Xu. Analysis on fluid permeability of dendritic mushy zone during peritectic solidification in a temperature gradient [J]. J. Mater. Sci. Technol., 2021, 71(0): 169-176. |
[8] | Shaodong Hu, Long Hou, Kang Wang, Zhongmiao Liao, Wen Zhu, Aihua Yi, Wenfang Li, Yves Fautrelle, Xi Li. Effect of transverse static magnetic field on radial microstructure of hypereutectic aluminum alloy during directional solidification [J]. J. Mater. Sci. Technol., 2021, 76(0): 207-214. |
[9] | Yubao Xiao, Tie Liu, Yuxin Tong, Meng Dong, Jinshan Li, Jun Wang, Qiang Wang. Microstructure evolution of peritectic Al-18 at.% Ni alloy directionally solidified in high magnetic fields [J]. J. Mater. Sci. Technol., 2021, 76(0): 51-59. |
[10] | Yuanhao Dong, Sansan Shuai, Tianxiang Zheng, Jiawei Cao, Chaoyue Chen, Jiang Wang, Zhongming Ren. In-situ observation of solid-liquid interface transition during directional solidification of Al-Zn alloy via X-ray imaging [J]. J. Mater. Sci. Technol., 2020, 39(0): 113-123. |
[11] | Huiting Zheng, Ruirun Chen, Gang Qin, Xinzhong Li, Yanqing Su, Hongsheng Ding, Jingjie Guo, Hengzhi Fu. Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification [J]. J. Mater. Sci. Technol., 2020, 38(0): 19-27. |
[12] | Chunjuan Cui, Cong Wang, Pei Wang, Wei Liu, Yuanyuan Lai, Li Deng, Haijun Su. Microstructure and fracture toughness of the Bridgman directionally solidified Fe-Al-Ta eutectic at different solidification rates [J]. J. Mater. Sci. Technol., 2020, 42(0): 63-74. |
[13] | Wonjoo Lee, Yuhyeong Jeong, Jae-Wook Lee, Howon Lee, Seong-hoon Kang, Young-Min Kim, Jonghun Yoon. Numerical simulation for dendrite growth in directional solidification using LBM-CA (cellular automata) coupled method [J]. J. Mater. Sci. Technol., 2020, 49(0): 15-24. |
[14] | Xuchen Yin, Jianrong Liu, Qingjiang Wang, Lei Wang. Investigation of beta fleck formation in Ti-17 alloy by directional solidification method [J]. J. Mater. Sci. Technol., 2020, 48(0): 36-43. |
[15] | Kuiliang Zhang, Yingju Li, Yuansheng Yang. Influence of the low voltage pulsed magnetic field on the columnar-to-equiaxed transition during directional solidification of superalloy K4169 [J]. J. Mater. Sci. Technol., 2020, 48(0): 9-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||