J. Mater. Sci. Technol. ›› 2021, Vol. 75: 39-47.DOI: 10.1016/j.jmst.2020.10.028
• Research Article • Previous Articles Next Articles
Ye Yuana,1, Zhong Jia,1, Genghua Yana,*(), Zhuowei Lia, Jinliang Lia, Min Kuangd, Bangqi Jianga, Longlong Zenge, Likun Panc,*(
), Wenjie Maia,b,*(
)
Received:
2020-06-28
Revised:
2020-08-16
Accepted:
2020-08-19
Published:
2021-06-10
Online:
2020-10-29
Contact:
Genghua Yan,Likun Pan,Wenjie Mai
About author:
wenjiemai@email.jnu.edu.cn (W. Mai).1The first two authors contributed equally to this study.
Ye Yuan, Zhong Ji, Genghua Yan, Zhuowei Li, Jinliang Li, Min Kuang, Bangqi Jiang, Longlong Zeng, Likun Pan, Wenjie Mai. TiO2 electron transport bilayer for all-inorganic perovskite photodetectors with remarkably improved UV stability toward imaging applications[J]. J. Mater. Sci. Technol., 2021, 75: 39-47.
Fig. 1. Performance comparison. (a) I-T curves of TiO2-Single PD and TiO2-Bilayer PD with illumination. (b) J-V curves of TiO2-Single PD and TiO2-Bilayer PD under dark and light illumination with 405 nm laser. UV aging (after 6 h) test results of (c) TiO2-Single PD and (d) TiO2-Bilayer PD.
Device structure | Conditions | R (AW-1) | D* (Jones) | -3 dB (kHz) | Rise/decay time (μs) | Ref. |
---|---|---|---|---|---|---|
Au/Cs2AgBiBr6/Au | 5 V, 404 nm | 7.01 | 5.66 × 1011 | N/A | 956/995 | [ |
ITO/SnO2/Cs2AgBiBr6/Au | 0 V, 435 nm | 0.11 | 2.4 × 1010 | N/A | 2 × 103 | [ |
ITO/Cs3BiBr6/ITO | 6 V, 400 nm | 2.5 × 10-5 | 8 × 108 | N/A | 5 × 104/6 × 104 | [ |
Au/Cs2AgInCl6 SC/Au | 5 V, 365 nm | 0.013 | ~1012 | 1.035 | 8 × 102/103 | [ |
FTO/Bi-TiO2/Cs2AgBiBr6/Ag | 0 V, 405 nm | 0.11 | ~1012 | 50 | 6.8/5.5 | This work |
Table 1 Comparison of photoresponse performance of double-perovskite PDs that are free of organic contact layer reported in previous literatures.
Device structure | Conditions | R (AW-1) | D* (Jones) | -3 dB (kHz) | Rise/decay time (μs) | Ref. |
---|---|---|---|---|---|---|
Au/Cs2AgBiBr6/Au | 5 V, 404 nm | 7.01 | 5.66 × 1011 | N/A | 956/995 | [ |
ITO/SnO2/Cs2AgBiBr6/Au | 0 V, 435 nm | 0.11 | 2.4 × 1010 | N/A | 2 × 103 | [ |
ITO/Cs3BiBr6/ITO | 6 V, 400 nm | 2.5 × 10-5 | 8 × 108 | N/A | 5 × 104/6 × 104 | [ |
Au/Cs2AgInCl6 SC/Au | 5 V, 365 nm | 0.013 | ~1012 | 1.035 | 8 × 102/103 | [ |
FTO/Bi-TiO2/Cs2AgBiBr6/Ag | 0 V, 405 nm | 0.11 | ~1012 | 50 | 6.8/5.5 | This work |
Fig. 2. The schematic of the photocatalytic activity for TiO2 films. With the introduction of ALD-TiO2 layer, the photocatalytic activity of TiO2 could be weakened.
Fig. 3. SEM surface morphology of (a) SS-TiO2 film and (b) Bi-TiO2 film. AFM images of (c) SS-TiO2 film and (d) Bi-TiO2 film. (e,f) The corresponding KPFM images of the two kinds of TiO2 films.
Fig. 4. SEM surface morphology of Cs2AgBiBr6 film grown on (a) SS-TiO2 coated and (b) Bi-TiO2 coated substrates. 3D AFM images of Cs2AgBiBr6 film grown on (c) SS-TiO2 coated and (d) Bi-TiO2 coated substrates and the corresponding Rq.
Fig. 6. Transmittance spectra of (a) SS-TiO2 film and (b) ALD-TiO2 film. The inset is the corresponding Tauc plot. UPS spectra of (c) SS-TiO2 film and (d) ALD-TiO2 film. The insets are the corresponding low-energy side and high-energy side.
Fig. 8. (a) Schematic of the self-built imaging system. (b) Photograph of the actual pattern. (c) Spatial distribution of light current using TiO2-Bilayer PD with illumination of 0.4 Wcm-2. Images using (d) TiO2-Bilayer PD and (e) TiO2-Single PD with illumination of 0.4 Wcm-2. Images using (f) TiO2-Bilayer PD and (g) TiO2-Single PD which have aged under UV illumination for 6 h. FL: Focus Lens, BE: Beam Expander.
[1] |
X. Gong, M. Tong, Y. Xia, W. Cai, J.S. Moon, Y. Cao, G. Yu, C.-L. Shieh, B. Nilsson, A.J. Heeger, Science 325 (2009) 1665-1667.
DOI URL |
[2] |
T. Agostinelli, M. Campoy-Quiles, J.C. Blakesley, R. Speller, D.D.C. Bradley, J. Nelson, Appl. Phys. Lett. 93 (2008), 203305.
DOI URL |
[3] |
T. Yang, Y. Zheng, Z. Du, W. Liu, Z. Yang, F. Gao, L. Wang, K.C. Chou, X. Hou, W. Yang, ACS Nano 12 (2018) 1611-1617.
DOI PMID |
[4] | C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, W. Huang, Highly Sensitive,Small 15 (2019), e1903599. |
[5] | Y. Zhao, C. Li, J. Jiang, B. Wang, L. Shen, Small 16 (2020), e2001534. |
[6] |
C. Li, H. Wang, F. Wang, T. Li, M. Xu, H. Wang, Z. Wang, X. Zhan, W. Hu, L. Shen, Light Sci. Appl. 9 (2020) 31.
DOI URL |
[7] |
H. Park, K.B. Crozier, Opt. Express 23 (2015) 7209-7216.
DOI URL |
[8] |
X. Sheng, C. Yu, V. Malyarchuk, Y.-H. Lee, S. Kim, T. Kim, L. Shen, C. Horng, J. Lutz, N.C. Giebink, J. Park, J.A. Rogers, Adv. Opt. Mater. 2 (2014) 314-319.
DOI URL |
[9] |
Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 347 (2015) 967-970.
DOI URL |
[10] |
J. De Roo, M. Ibanez, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J.C. Martins, I. Van Driessche, M.V. Kovalenko, Z. Hens, ACS Nano 10 (2016) 2071-2081.
DOI URL |
[11] |
W. Tian, H. Zhou, L. Li, Small 13 (2017), 1702107.
DOI URL |
[12] |
Y. Dong, Y. Zou, J. Song, X. Song, H. Zeng, J. Mater. Chem. C 5 (2017) 11369-11394.
DOI URL |
[13] |
Z.K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L.M. Pazos, D. Credgington, F. Hanusch, T. Bein, H.J. Snaith, R.H. Friend, Nat. Nanotechnol. 9 (2014) 687-692.
DOI URL |
[14] |
R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang, M. Wei, M.I. Saidaminov, Y. Gao, J. Xu, M. Xiao, A. Li, J. Zhu, E.H. Sargent, H. Tan, Nat. Energy 4 (2019) 864-873.
DOI URL |
[15] |
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131 (2009) 6050-6051.
DOI URL |
[16] |
L. Dou, Y.M. Yang, J. You, Z. Hong, W.H. Chang, G. Li, Y. Yang, Nat. Commun. 5 (2014) 5404.
DOI URL |
[17] |
M. Leng, Y. Yang, K. Zeng, Z. Chen, Z. Tan, S. Li, J. Li, B. Xu, D. Li, M.P. Hautzinger, Y. Fu, T. Zhai, L. Xu, G. Niu, S. Jin, J. Tang, Adv. Funct. Mater. 28 (2018), 1704446.
DOI URL |
[18] |
M. Chen, M.-G. Ju, A.D. Carl, Y. Zong, R.L. Grimm, J. Gu, X.C. Zeng, Y. Zhou, N.P. Padture, Joule 2 (2018) 558-570.
DOI URL |
[19] |
J. Luo, S. Li, H. Wu, Y. Zhou, Y. Li, J. Liu, J. Li, K. Li, F. Yi, G. Niu, J. Tang, ACS Photonics 5 (2017) 398-405.
DOI URL |
[20] |
M.-G. Ju, M. Chen, Y. Zhou, H.F. Garces, J. Dai, L. Ma, N.P. Padture, X.C. Zeng, ACS Energy Lett. 3 (2018) 297-304.
DOI URL |
[21] |
Y. Bekenstein, J.C. Dahl, J. Huang, W.T. Osowiecki, J.K. Swabeck, E.M. Chan, P. Yang, A.P. Alivisatos, Nano Lett. 18 (2018) 3502-3508.
DOI URL |
[22] |
A. Singh, K.M. Boopathi, A. Mohapatra, Y.F. Chen, G. Li, C.W. Chu, ACS Appl. Mater. Interfaces 10 (2018) 2566-2573.
DOI URL |
[23] |
M. Wang, P. Zeng, Z. Wang, M. Liu, Adv. Sci. 7 (2020), 1903662.
DOI URL |
[24] |
W.G. Li, X.D. Wang, J.F. Liao, Y. Jiang, D.B. Kuang, Adv. Funct. Mater. 30 (2020), 1909701.
DOI URL |
[25] |
M. Chen, M.G. Ju, H.F. Garces, A.D. Carl, L.K. Ono, Z. Hawash, Y. Zhang, T. Shen, Y. Qi, R.L. Grimm, D. Pacifici, X.C. Zeng, Y. Zhou, N.P. Padture, Nat. Commun. 10 (2019) 16.
DOI PMID |
[26] |
Y. Zhao, K. Zhu, J. Phys. Chem. Lett. 4 (2013) 2880-2884.
DOI URL |
[27] |
G. Xing, B. Wu, S. Chen, J. Chua, N. Yantara, S. Mhaisalkar, N. Mathews, T.C. Sum, Small 11 (2015) 3606-3613.
DOI URL |
[28] |
L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, M. Gratzel, J. Am. Chem. Soc. 134 (2012) 17396-17399.
DOI URL |
[29] |
B.C. O’Regan, P.R. Barnes, X. Li, C. Law, E. Palomares, J.M. Marin-Beloqui, J. Am. Chem. Soc. 137 (2015) 5087-5099.
DOI URL |
[30] |
J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Nature 499 (2013) 316-319.
DOI PMID |
[31] |
Z.-S. Wang, T. Yamaguchi, H. Sugihara, H. Arakawa, Langmuir 21 (2005) 4272-4276.
DOI URL |
[32] |
D. Zhong, B. Cai, X. Wang, Z. Yang, Y. Xing, S. Miao, W.-H. Zhang, C. Li, Nano Energy 11 (2015) 409-418.
DOI URL |
[33] |
H. Lu, W. Tian, B. Gu, Y. Zhu, L. Li, Small 13 (2017), 1701535.
DOI URL |
[34] |
A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110 (2010) 6595-6663.
DOI URL |
[35] |
D.H. Kim, G.S. Han, W.M. Seong, J.-W. Lee, B.J. Kim, N.-G. Park, K.S. Hong, S. Lee, H.S. Jung, ChemSusChem 8 (2015) 2392-2398.
DOI URL |
[36] |
J. Cho, J.T. DuBose, P.V. Kamat, Chem. Mater. 32 (2019) 510-517.
DOI URL |
[37] |
J.T. DuBose, P.V. Kamat, J. Am. Chem. Soc. 142 (2020) 5362-5370.
DOI URL |
[38] |
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338 (2012) 643-647.
DOI URL |
[39] |
Y. Li, J.K. Cooper, W. Liu, C.M. Sutter-Fella, M. Amani, J.W. Beeman, A. Javey, J.W. Ager, Y. Liu, F.M. Toma, I.D. Sharp, Nat. Commun. 7 (2016) 12446.
DOI URL |
[40] |
W. Li, W. Zhang, S. Van Reenen, R.J. Sutton, J. Fan, A.A. Haghighirad, M.B. Johnston, L. Wang, H.J. Snaith, Energy Environ. Sci. 9 (2016) 490-498.
DOI URL |
[41] |
H. Bai, T. Shen, J. Tian, J. Mater. Chem. C 5 (2017) 10543-10548.
DOI URL |
[42] |
W. Wang, D. Zhao, F. Zhang, L. Li, M. Du, C. Wang, Y. Yu, Q. Huang, M. Zhang, L. Li, J. Miao, Z. Lou, G. Shen, Y. Fang, Y. Yan, Adv. Funct. Mater. 27 (2017), 1703953.
DOI URL |
[43] | G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, W. Mai, Small 15 (2019), e1902135. |
[44] |
C. Ma, Y. Shi, W. Hu, M.H. Chiu, Z. Liu, A. Bera, F. Li, H. Wang, L.J. Li, T. Wu, Adv. Mater. 28 (2016) 3683-3689.
DOI URL |
[45] |
H. Tan, A. Jain, O. Voznyy, X. Lan, F. Pelayo Garcia de Arquer, J.Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L.N. Quan, Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland, E.H. Sargent, Science 355 (2017) 722-726.
DOI URL |
[46] |
D. Liu, S. Li, P. Zhang, Y. Wang, R. Zhang, H. Sarvari, F. Wang, J. Wu, Z. Wang, Z.D. Chen, Nano Energy 31 (2017) 462-468.
DOI URL |
[47] |
C. Wu, Q. Zhang, Y. Liu, W. Luo, X. Guo, Z. Huang, H. Ting, W. Sun, X. Zhong, S. Wei, S. Wang, Z. Chen, L. Xiao, Adv. Sci. 5 (2018), 1700759.
DOI URL |
[48] |
G. Yan, B. Jiang, Y. Yuan, M. Kuang, X. Liu, Z. Zeng, C. Zhao, J.H. He, W. Mai, ACS Appl. Mater. Interfaces 12 (2020) 6064-6073.
DOI URL |
[49] | Y. Zhao, C. Li, L. Shen, InfoMat 1 (2019) 164-182. |
[50] |
H. Wang, D.H. Kim, Chem. Soc. Rev. 46 (2017) 5204-5236.
DOI URL |
[51] |
G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, E.H. Sargent, Nature 442 (2006) 180-183.
PMID |
[52] |
L.-Z. Lei, Z.-F. Shi, Y. Li, Z.-Z. Ma, F. Zhang, T.-T. Xu, Y.-T. Tian, D. Wu, X.-J. Li, G.-T. Du, J. Mater. Chem. C 6 (2018) 7982-7988.
DOI URL |
[53] |
C. Wu, B. Du, W. Luo, Y. Liu, T. Li, D. Wang, X. Guo, H. Ting, Z. Fang, S. Wang, Z. Chen, Y. Chen, L. Xiao, Adv. Opt. Mater. 6 (2018), 1800811.
DOI URL |
[54] |
Y. Tang, M. Liang, B. Chang, H. Sun, K. Zheng, T. Pullerits, Q. Chi, J. Mater. Chem. C 7 (2019) 3369-3374.
DOI URL |
[55] |
H.-S. Duan, W. Yang, B. Bob, C.-J. Hsu, B. Lei, Y. Yang, Adv. Funct. Mater. 23 (2013) 1466-1471.
DOI URL |
[56] |
R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, F. Levy, J. Appl. Phys. 75 (1994) 2945.
DOI URL |
[1] | Jinming Hu, Shengyi Yang, Zhenheng Zhang, Hailong Li, Chandrasekar Perumal Veeramalai, Muhammad Sulaman, Muhammad Imran Saleem, Yi Tang, Yurong Jiang, Libin Tang, Bingsuo Zou. Solution-processed, flexible and broadband photodetector based on CsPbBr3/PbSe quantum dot heterostructures [J]. J. Mater. Sci. Technol., 2021, 68(0): 216-226. |
[2] | Kun Ye, Bochong Wang, Anmin Nie, Kun Zhai, Fusheng Wen, Congpu Mu, Zhisheng Zhao, Jianyong Xiang, Yongjun Tian, Zhongyuan Liu. Broadband photodetector of high quality Sb2S3 nanowire grown by chemical vapor deposition [J]. J. Mater. Sci. Technol., 2021, 75(0): 14-20. |
[3] | Muhammad Imran Saleem, Shangyi Yang, Attia Batool, Muhammad Sulaman, Chandrasekar Perumal Veeramalai, Yurong Jiang, Yi Tang, Yanyan Cui, Libin Tang, Bingsuo Zou. CsPbI3 nanorods as the interfacial layer for high-performance, all-solution-processed self-powered photodetectors [J]. J. Mater. Sci. Technol., 2021, 75(0): 196-204. |
[4] | Husam S. Al-Salman, M.J. Abdullah. Fabrication and Characterization of Undoped and Cobalt-doped ZnO Based UV Photodetector Prepared by RF-sputtering [J]. J. Mater. Sci. Technol., 2013, 29(12): 1139-1145. |
[5] | Deheng ZHANG, Qingpu WANG, Yunyan LIU. Effects of Mg Doping on Photoconductivity of GaN Films [J]. J Mater Sci Technol, 2003, 19(06): 575-577. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||