J. Mater. Sci. Technol. ›› 2021, Vol. 72: 81-92.DOI: 10.1016/j.jmst.2020.09.034
• Research Article • Previous Articles Next Articles
Kui Chena, Huabing Lia,b,*(), Zhouhua Jianga,b,*(
), Fubin Liua, Congpeng Kanga, Xiaodong Mac, Baojun Zhaoc
Received:
2020-07-04
Revised:
2020-08-26
Accepted:
2020-08-28
Published:
2021-05-10
Online:
2021-05-10
Contact:
Huabing Li,Zhouhua Jiang
About author:
* School of Metallurgy, Northeastern University,Shenyang 110819, China. E-mail addresses: lihb@smm.neu.edu.cn, huabing_li@163.com (H. Li),Kui Chen, Huabing Li, Zhouhua Jiang, Fubin Liu, Congpeng Kang, Xiaodong Ma, Baojun Zhao. Multiphase miacrostructure formation and its effect on fracture behavior of medium carbon high silicon high strength steel[J]. J. Mater. Sci. Technol., 2021, 72: 81-92.
C | Si | Mn | Cr | V | Nb | P | S | O | N | Al | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
0.56 | 1.48 | 0.70 | 0.71 | 0.148 | 0.011 | 0.0035 | 0.0014 | 0.00085 | 0.0015 | 0.011 | Bal. |
Table 1 Chemical composition of the experimental steel (wt.%).
C | Si | Mn | Cr | V | Nb | P | S | O | N | Al | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
0.56 | 1.48 | 0.70 | 0.71 | 0.148 | 0.011 | 0.0035 | 0.0014 | 0.00085 | 0.0015 | 0.011 | Bal. |
Fig. 1. Dilatometric curves of the samples during austempering heat treatments at 240℃, 360℃ and 400℃: (a) Dilatation-temperature curves, (b) The magnification of the dilatation-temperature curves during the isothermal process, (c) Dilatation-time curves, (d) The magnification of the dilatation-time curves during the isothermal process and (e) Dilatation-time rate curves.
Fig. 2. EPMA map scanning of C distribution and the corresponding SEM images: (a1), (b1) and (c1) are secondary electron microstructures; (a2), (b2) and (c2) are backscattered electron microstructures; (a3), (b3) and (c3) are map scanning of C distribution (PAGB: prior austenite grain boundary; MA: martensite-austenite island; M: martensite; BF: bainite ferrite lath; RAf: filmy retained austenite; RAb: blocky retained austenite; F: ferrite; GB: granular bainite).
Fig. 3. EPMA line scanning showing C concentration evolution between laths and RA or MA (PAGB: prior austenite grain austenite; RAf: filmy retained austenite; B: bainite; MA: martensite-austenite island).
Fig. 4. Results of EBSD: (a), (b) and (c) EBSD inverse pole figure (IPF) maps of 240, 360 and 400 ℃; (d), (e) and (f) Misorientation angle distribution maps of 240, 360 and 400 ℃ (red line: 2°<θ<15°, black line: 15°<θ<65°); (g) Statistics of effective grain size; (h) Statistics of misorientation angle.
Fig. 5. Results of EBSD analysis: (a1), (b1), and (c1) EBSD band contrast (BC) maps, (a2), (b2), and (c2) Gaussian graphs of BCC phase in accordance with band contrast data and (a3), (b3), and (c3) Phase fraction map with EBSD data.
Martensite (vol.%) | Bainite(vol.%) | Retained austenite (vol.%) | |
---|---|---|---|
AT-240 | 40.8 | 45.5 | 13.7 |
AT-360 | 43.6 | 37.2 | 19.2 |
AT-400 | 33.8 | 51.8 | 14.4 |
Table 2 Quantitative analysis of martensite, bainite and retained austenite via EBSD and XRD methods.
Martensite (vol.%) | Bainite(vol.%) | Retained austenite (vol.%) | |
---|---|---|---|
AT-240 | 40.8 | 45.5 | 13.7 |
AT-360 | 43.6 | 37.2 | 19.2 |
AT-400 | 33.8 | 51.8 | 14.4 |
Fig. 7. Geometrically necessary dislocation (GND) densities, calculated from KAM values, of (a) AT-240, (b) AT-360 and (c) AT-400, and (d) the GND density values.
Fig. 10. SEM fractographs of (a1), (b1) and (c1) crack extension zones, (a2), (b2) and (c2) crack sources and (a3), (b3) and (c3) high magnification of crack sources: (a1), (a2) and (a3) AT-240; (b1), (b2) and (b3) AT360; (c1), (c2) and (c2) AT-400.
Fig. 12. The SEM morphology of primary cracks and secondary cracks: (a1) and (a2) AT-240, (b1) and (b2) AT-360 and (c1) and (c2) AT-400 (B1 and B2 represent carbide-free bainite; LB is the lath of bainite; PAGB is prior austenite grain boundary; RAf is filmy retained austenite; RAb is blocky retained austenite; MA is the island of martensite/austenite; GB is granular bainite).
Fig. 13. EBSD results around the microcracks under the impact fracture surface: BC maps combined with IPF maps of (a1) AT-240, (b1) AT0360 and (c1) AT-400; Phase distribution maps of (a2) AT-240, (b2) AT-360 and (c2) AT-400.
Fig. 14. Schematic illustration of the (a) prior austenite grain and the mechanical evolutions of multiphase microstructure and cracks for the three samples: (b1) and (b2) AT-240, (c1) and (c2) AT-360 and (d1) and (d2) AT-400.
[1] |
V.I. Zurnadzhy, V.G. Efremenko, K.M. Wu, A.Y. Azarkhov, Y.G. Chabak, V.L. Greshta, O.B. Isayev, M.V. Pomazkov, Mater. Sci. Eng. A 745 (2019) 307-318.
DOI URL |
[2] |
S. Lyu, X.D. Ma, Z.Z. Huang, Z. Yao, H.G. Lee, Z.H. Jiang, G. Wang, J. Zou, B.J. Zhao, Metall. Mater. Trans. B 50 (2019) 732-747.
DOI URL |
[3] | S.A. Choi, Optimization of Microstructure and Properties of High Strength Spring Steel. Ph.D. Thesis, Delft University of Technology, 2011. |
[4] |
B. Podgornik, F. Tehovnik, J. Burja, B. Senčič, Metall. Mater. Trans. A 49 (2018) 3283-3292.
DOI URL |
[5] |
L.J. Zhao, L.H. Qian, Q. Zhou, D.D. Li, T.L. Wang, Z.G. Jia, F.C. Zhang, J.Y. Meng, Mater. Des. 183 (2019), 108123.
DOI URL |
[6] |
J.B. Seol, D. Raabe, P.P. Choi, Y.R. Im, C.G. Park, Acta Mater. 60 (2012) 6183-6199.
DOI URL |
[7] |
Y.M. Pan, B.X. Wang, G.C. Barber, Metall. Mater. Trans. A 51 (2020) 1593-1601.
DOI URL |
[8] |
M. Dojcinovic, O. Eric, D. Rajnovic, L. Sidjanin, S. Balos, Mater. Charact. 82 (2013) 66-72.
DOI URL |
[9] |
Z.N. Yang, F.C. Zhang, Y.L. Ji, Y.H. Wang, B. Lv, M.L. Wang, Mater. Sci. Eng. A 673 (2016) 524-529.
DOI URL |
[10] |
L.J. Zhao, L.H. Qian, J.Y. Meng, Q. Zhou, F.C. Zhang, Scr. Mater. 112 (2016) 96-100.
DOI URL |
[11] |
D.D. Castro, R. Rementeria, J. Vivasa, T. Sourmail, J.D. Poplawsky, E.U. Garrote, J.A. Jimenez, C. Capdevila, F.G. Caballero, Mater. Charact. 160 (2020), 110127.
DOI URL |
[12] |
Y. You, X.M. Wang, C.J. Shang, Acta Metall. Sin. 48 (2012) 1290-1298.
DOI URL |
[13] |
S. Kim, S. Lee, B.S. Lee, Mater. Sci. Eng. A 359 (2003) 198-209.
DOI URL |
[14] |
C.L. Davis, J.E. King, Metall. Mater. Trans. A 25 (1994) 563-573.
DOI URL |
[15] |
Y. Tomita, K. Morioka, Mater. Charact. 38 (1997) 243-250.
DOI URL |
[16] |
X.F. Huang, W.L. Liu, Y.Y. Huang, H. Chen, W.G. Huang, J. Mater. Process. Technol. 222 (2015) 181-187.
DOI URL |
[17] | W.G. Huang, R. Xu, H.S. Fang, Y.K. Zheng, J. Iron Steel Res. Int. 9 (1997) 31-34. |
[18] |
J.W. Zhao, Z.Y. Jiang, Prog. Mater. Sci. 94 (2018) 174-242.
DOI URL |
[19] |
J. Chakraborty, P.P. Chattopadhyay, D. Bhattacharjee, I. Manna, Metall. Mater. Trans. A 41 (2010) 2871-2879.
DOI URL |
[20] | M.H. Cai, H. Ding, S.J. Zhang, L. Li, Z.Y. Tang, Chin. J. Mater. Res. 23 (2009) 83-88. |
[21] |
K. Chen, Z.H. Jiang, F.B. Liu, C.P. Kang, W.C. Zhang, A. Wang, Metall. Mater. Trans. A 51 (2020) 3565-3575.
DOI URL |
[22] |
H. Kong, Q. Chao, M.H. Cai, E.J. Pavlina, B. Rolfe, P.D. Hodgson, H. Beladi, Metall. Mater. Trans. A 49 (2018) 1509-1519.
DOI URL |
[23] |
D.P. Koistinen, R.E. Marburger, Acta Metall. 7 (1959) 59-60.
DOI URL |
[24] |
F.G. Caballero, M.K. Miller, S.S. Babu, C. Garcia-Mateo, Acta Mater. 55 (2007) 381-390.
DOI URL |
[25] |
L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, L.X. Du, Mater. Sci. Eng. A 529 (2011) 192-200.
DOI URL |
[26] |
K.K. Wang, K.X. Gu, J.H. Miao, Z.J. Weng, J.J. Wang, Z.L. Tan, B.Z. Bai, Mater. Sci. Eng. A 743 (2019) 259-264.
DOI URL |
[27] |
J. Wu, P.J. Wray, C.I. Garcia, M. Hua, A.J. DeArdo, ISIJ Int. 45 (2005) 254-262.
DOI URL |
[28] |
M.J. Santofimia, R.H. Petrov, L. Zhao, J. Sietsma, Mater. Charact. 92 (2014) 91-95.
DOI URL |
[29] |
M.S. Baek, K.S. Kim, T.W. Park, J. Ham, K.A. Lee, Mater. Sci. Eng. A 785 (2020), 139375.
DOI URL |
[30] |
A.A. Zisman, S.N. Petrov, A.V. Ptashnik, Metallurgist 58 (2015) 1019-1024.
DOI URL |
[31] |
N. Zhong, X.D. Wang, L. Wang, Y.H. Rong, Mater. Sci. Eng. A 506 (2009) 111-116.
DOI URL |
[32] |
A. Ramazani, S. Bruehl, T. Gerber, W. Bleck, U. Prahl, Mater. Des. 57 (2014) 479-486.
DOI URL |
[33] |
H. Feng, H.B. Li, W.C. Jiao, Z.H. Jiang, M.H. Cai, H.C. Zhu, Z.G. Chen, Metall. Mater. Trans. A 50 (2019) 4987-4999.
DOI URL |
[34] |
L.P. Kubin, A. Mortensen, Scr. Mater. 48 (2003) 119-125.
DOI URL |
[35] |
K.I. Sugimoto, Mater. Sci. Technol. 25 (2009) 1108-1117.
DOI URL |
[36] |
W. Yan, Y.Y. Shan, K. Yang, Metall. Mater. Trans. A 38 (2007) 1211-1222.
DOI URL |
[37] |
D.S. Liu, M. Luo, B.G. Cheng, R. Cao, J.H. Chen, Metall. Mater. Trans. A 49 (2018) 4918-4936.
DOI URL |
[38] |
Y.S. Ahn, H.D. Kim, T.S. Byun, Y.J. Oh, G.M. Kim, J.H. Hong, Nucl. Eng. Des. 194 (1999) 161-177.
DOI URL |
[39] |
K. Kocatepe, M. Cerah, M. Erdogan, Mater. Des. 28 (2007) 172-181.
DOI URL |
[40] |
J.A. Cruz Jr., T.F.M. Rodrigues, V.D.C. Viana, H. Abreu, D.B. Santos, Steel Res. Int. 83 (2012) 22-31.
DOI URL |
[41] |
Y.J. Li, D. Liu, D. Chen, J. Kang, X.H. Wang, G. Yuan, R.D.K. Misra, G.D. Wang, Mater. Sci. Eng. A 753 (2019) 197-207.
DOI URL |
[42] |
J. Han, A.K. da Silva, D. Ponge, D. Raabe, S.M. Lee, Y.K. Lee, S.I. Lee, B. Hwang, Acta Mater. 122 (2017) 199-206.
DOI URL |
[1] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
[2] | Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 27-38. |
[3] | Haidong Sun, Yuhui Wang, Zuohua Wang, Ning Liu, Yan Peng, Xiujuan Zhao, Ruiming Ren, Hongwang Zhang. Twinned substructure in lath martensite of water quenched Fe-0.2 %C and Fe-0.8 %C steels [J]. J. Mater. Sci. Technol., 2020, 49(0): 126-132. |
[4] | Shuiyuan Yang, Lipeng Guo, Xinyu Qing, Shen Hong, Jixun Zhang, Mingpei Li, Cuiping Wang, Xingjun Liu. Excellent shape recovery characteristics of Cu-Al-Mn-Fe shape memory single crystal [J]. J. Mater. Sci. Technol., 2020, 57(0): 43-50. |
[5] | Zhonghua Jiang, Pei Wang, Dianzhong Li, Yiyi Li. Effects of rare earth on microstructure and impact toughness of low alloy Cr-Mo-V steels for hydrogenation reactor vessels [J]. J. Mater. Sci. Technol., 2020, 45(0): 1-14. |
[6] | Jixin Yang, Yiqiang Chen, Yongjiang Huang, Zhiliang Ning, Baokun Liu, Chao Guo, Jianfei Sun. Hierarchical microstructure of a titanium alloy fabricated by electron beam selective melting [J]. J. Mater. Sci. Technol., 2020, 42(0): 1-9. |
[7] | Ruoxian Wang, Gaowu Qin, Erlin Zhang. Effect of Cu on Martensite Transformation of CoCrMo alloy for biomedical application [J]. J. Mater. Sci. Technol., 2020, 52(0): 127-135. |
[8] | Haiwen Luo, Xiaohui Wang, Zhenbao Liu, Zhiyong Yang. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel [J]. J. Mater. Sci. Technol., 2020, 51(0): 130-136. |
[9] | Wenyin Xue, Jinhua Zhou, Yongfeng Shen, Weina Zhang, Zhenyu Liu. Micromechanical behavior of a fine-grained China low activation martensitic (CLAM) steel [J]. J. Mater. Sci. Technol., 2019, 35(9): 1869-1876. |
[10] | K. Zhang, Z.B. Wang. Strain-induced formation of a gradient nanostructured surface layer on an ultrahigh strength bearing steel [J]. J. Mater. Sci. Technol., 2018, 34(9): 1676-1684. |
[11] | Q. Xue, Y.J. Ma, J.F. Lei, R. Yang, C. Wang. Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34(12): 2325-2330. |
[12] | Cui Junjun, Chen Liqing. Microstructure and abrasive wear resistance of an alloyed ductile iron subjected to deep cryogenic and austempering treatments [J]. J. Mater. Sci. Technol., 2017, 33(12): 1549-1554. |
[13] | Zhang Wei, Wang Xiaowei, Gong Jianming, Jiang Yong, Huang Xin. Experimental and simulated characterization of creep behavior of P92 steel with prior cyclic loading damage [J]. J. Mater. Sci. Technol., 2017, 33(12): 1540-1548. |
[14] | Hu Bin, Luo Haiwen, Yang Feng, Dong Han. Recent progress in medium-Mn steels made with new designing strategies, a review [J]. J. Mater. Sci. Technol., 2017, 33(12): 1457-1464. |
[15] | Zhu Kangying, Mager Coralie, Huang Mingxin. Effect of substitution of Si by Al on the microstructure and mechanical properties of bainitic transformation-induced plasticity steels [J]. J. Mater. Sci. Technol., 2017, 33(12): 1475-1486. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||