J. Mater. Sci. Technol. ›› 2021, Vol. 72: 69-80.DOI: 10.1016/j.jmst.2020.07.043
• Research Article • Previous Articles Next Articles
Meng Suna,b, Anatoly Balagurovc,d, Ivan Bobrikovc, Xianping Wanga,*(), Wen Wene, Igor S. Golovinf, Qianfeng Fanga,*(
)
Received:
2020-05-21
Revised:
2020-07-22
Accepted:
2020-07-13
Published:
2021-05-10
Online:
2021-05-10
Contact:
Xianping Wang,Qianfeng Fang
About author:
qffang@issp.ac.cn (Q. Fang).Meng Sun, Anatoly Balagurov, Ivan Bobrikov, Xianping Wang, Wen Wen, Igor S. Golovin, Qianfeng Fang. High damping in Fe-Ga-La alloys: Phenomenological model for magneto-mechanical hysteresis damping and experiment[J]. J. Mater. Sci. Technol., 2021, 72: 69-80.
Fig. 1. Damping properties of Fe-Ga-La samples. (a) Plots of damping vs train amplitude; (b) Plots of damping vs temperature at different frequencies of 0.2, 0.5, 1, 3, and 5 Hz for Fe-21Ga-0.47La alloy; (c) The magnetostriction behaviors for Fe-Ga-La alloys; (d) The variations of damping and magnetostriction with La content.
Fig. 2. Microstructures of Fe-Ga-La samples. (a-d) Inverse pole figure-Z direction (IPF-Z) EBSD maps for Fe-21Ga-xLa (x = 0.12 wt.%, 0.47 wt.%, 1.18 wt.%, and 2.33 wt.%) samples. The black area corresponds to the Ga + La-rich phase; (e) BSE image of Fe-21Ga-2.33La sample; (f) EDS profiles of the Ga + La-rich phase.
Fig. 3. Magnetic domain configurations of the Fe-Ga-La alloys. Low (a) and medium (b) magnification micromagnetic domain images for Fe-21Ga-0.12La alloy, and the corresponding typical flux-closure model (c); Low (d) and medium (e) magnification micromagnetic domain images for Fe-21Ga-0.47La alloy, and the corresponding typical flux-closure model (f); Low (g) and medium (h) magnification micromagnetic domain images for Fe-21Ga-1.18La alloy, and the corresponding typical flux-closure model (i).
Fig. 4. XRD profiles of WQ Fe-21Ga samples with different La addition. (a) S-GIXRD patterns of Fe-21Ga-xLa (x = 0.12 wt.%, 0.24 wt.%, 0.47 wt.%, 1.18 wt.%, 2.33 wt.%) samples; (b) Crystal structure model of the Ga + La-rich phase (LaGa2); (c) The variation curve of average lattice parameter with La content.
Fig. 5. Geometric phase analysis (GPA) comparison of the high-resolution TEM images of the Fe-21Ga-0.12La and Fe-21Ga-0.47La samples. (a) High-resolution TEM (HRTEM) image and corresponding FFT pattern of Fe-21Ga-0.12La; (b) and (c) Distortion maps along [100] and [010] directions, respectively, and the bottom corresponds the frequency map of distortion distribution; (d) HRTEM image and corresponding FFT pattern of Fe-21Ga-0.47La; (e) and (f) Distortion maps along [100] and [010] directions, respectively, and the bottom corresponds the frequency map of distortion distribution, showing the matrix is more distorted with 0.47 wt.% La addition.
0.12 wt. % La | α (×10-4) | β (×10-4) | K | χ2 (×10-4) | Strain εave(×10-4) |
---|---|---|---|---|---|
S.B model | - | - | 0.65 | 52.8 | 2.042(Mises’ criterion) |
n = 1 (σmid = 0) | 7.49 | 0.698 | 1.60 | 8.01 | 5.30 |
n = 2 (σmid = 0) | 7.92 | 0.327 | 1.61 | 7.77 | 5.60 |
Table 1 The fitting parameters (α,β,K, and χ2) and average microstrain (εave) with different fitting conditions in the Fe-21Ga-0.12La sample.δ
0.12 wt. % La | α (×10-4) | β (×10-4) | K | χ2 (×10-4) | Strain εave(×10-4) |
---|---|---|---|---|---|
S.B model | - | - | 0.65 | 52.8 | 2.042(Mises’ criterion) |
n = 1 (σmid = 0) | 7.49 | 0.698 | 1.60 | 8.01 | 5.30 |
n = 2 (σmid = 0) | 7.92 | 0.327 | 1.61 | 7.77 | 5.60 |
Fig. 7. (a) High-resolution neutron-diffraction patterns of Fe-21Ga-0.12La, and (b) corresponding plot of comparison of the (Δd)2 over d2 dependences for Fe-21Ga-0.12La. The bottom line shows the diffractometer resolution function.
Fig. 8. (a) Comparison of average microstrains derived from modified model with n = 2 and average microstrains derived from neutron diffraction (ND) experiments for Fe-21Ga-xLa (x = 0.12 wt.%, 0.24 wt.%, 0.47 wt.%, 1.18 wt.%, and 2.33 wt.%) samples; (b) The distribution of the contribution sources of the domain wall's restoring force in the process of the DW movement.
Fig. 10. The phenomenological model with n = 2 applied to the damping behaviors of Fe-9Al alloy (a) and Fe-12Cr-1Al alloy (b). The circles represent the corrected experimental data by Cochardt’s correction, and the fitted curves were obtained from Eq. (10).
[1] |
R.P. Kennedy, C.A. Cornell, R.D. Campbell, S. Kaplan, H.F. Perla, Nucl. Eng. Des. 59 (1980) 315-338.
DOI URL |
[2] | N. Igata, Trans Tech Publications Ltd., 2006, pp. 209-216. |
[3] |
G.L. Fan, K. Otsuka, X.B. Ren, F.X. Yin, Acta Mater. 56 (2008) 632-641.
DOI URL |
[4] |
J.S. Juan, M.L. Nó, C.A. Schuh, Nat. Nanotechnol. 4 (2009) 415-419.
DOI URL |
[5] |
C. Segui, V.A. Chernenko, J. Pons, E. Cesari, V. Khovailo, T. Takagi, Acta Mater. 53 (2005) 111-120.
DOI URL |
[6] |
Y. Zhong, F. Yin, T. Sakaguchi, K. Nagai, K. Yang, Acta Mater. 55 (2007) 2747-2756.
DOI URL |
[7] |
D. Pulino-Sagradi, M. Sagradi, A. Karimi, J.L. Martin, Scr. Mater. 39 (1998) 131-138.
DOI URL |
[8] |
I.S. Golovin, Metall. Trans. A 25 (1994) 111-124.
DOI URL |
[9] |
A. Emdadi, M.A. Nartey, Y.G. Xu, I.S. Golovin, J. Alloys. Compd. 653 (2015) 460-467.
DOI URL |
[10] |
I.S. Golovin, H. Neuhäuser, A. Rivière, A. Strahl, Intermetallics 12 (2004) 125-150.
DOI URL |
[11] |
I.S. Golovin, V.V. Palacheva, V.Y. Zadorozhnyy, J. Zhu, H. Jiang, J. Cifre, T.A. Lograsso, Acta Mater. 78 (2014) 93-102.
DOI URL |
[12] |
M. Sun, X.P. Wang, L. Wang, H. Wang, W. Jiang, W. Liu, T. Hao, R. Gao, Y.X. Gao, T. Zhang, L. Wang, Q.F. Fang, C.S. Liu, J. Alloys. Compd. 750 (2018) 669-676.
DOI URL |
[13] | M.S. Blanter, I.S. Golovin, H. Neuhäuser, H.R. Sinning, Berlin Heidelberg, 2007, pp. 144-148. |
[14] |
A.S. Nowick, B.S. Berry, J.L. Katz, J. Appl. Phys. 42 (1975) 750.
DOI URL |
[15] | W.G. Zeng, J.X. Zhang, H.Q. Lin, Z.H. He, Y.F. Yao, Acta Phys. Sin. 35 (1986) 1378-1382 (In Chinese). |
[16] |
S. Kustov, J. Rosselló, M.L. Corró, V. Kaminskii, K. Sapozhnikov, A. Saren, A. Sozinov, K. Ullakko, Materials 12 (2019) 376.
DOI URL |
[17] |
G.W. Smith, J.R. Birchak, J. Appl. Phys. 39 (1968) 2311-2316.
DOI URL |
[18] |
A.E. Clark, J.B. Restor, M. Wun-Fogle, T.A. Lograsso, D.L. Schlagel, IEEE Trans. Magn. 36 (2000) 3238-3240.
DOI URL |
[19] |
T.I. Fitchorov, S. Bennett, L.P. Jiang, G.R. Zhang, Z.Q. Zhao, Y.J. Chen, V.G. Harris, Acta Mater. 73 (2014) 19-26.
DOI URL |
[20] |
C. Meng, C.B. Jiang, Scr. Mater. 114 (2016) 9-12.
DOI URL |
[21] |
G.W. Smith, J.R. Birchak, J. Appl. Phys. 40 (1969) 5174-5178.
DOI URL |
[22] |
Y.G. Xu, X.G. Chen, J. Alloys. Compd. 582 (2014) 364-368.
DOI URL |
[23] |
X.F. Hu, Y.B. Du, D.S. Yan, L.J. Rong, J. Mater. Sci. Technol. 34 (2018) 774-781.
DOI URL |
[24] | T.Y. Yang, W. Wen, G.Z. Yin, X.L. Li, M. Gao, Y.L. Gu, L. Li, Y. Liu, H. Lin, X.M. Zhang, B. Zhao, T.K. Liu, Y.G. Yang, Z. Li, X.T. Zhou, X.Y. Gao, Nucl. Sci. Tech. 26 (2015), 020101. |
[25] |
M. Gao, Y. Gu, L. Li, Z. Gong, X. Gao, W. Wen, J. Appl. Crystallogr. 49 (2016) 1182-1189.
DOI URL |
[26] |
M.J. Hÿtch, E. Snoeck, R. Kilaas, Ultramicroscopy 74 (1998) 131-146.
DOI URL |
[27] |
M.J. Hÿtch, J.L. Putaux, J.M. Pénisson, Nature 423 (2003) 270-273.
DOI URL |
[28] |
A.M. Balagurov, Neutron News 16 (2005) 8-12.
DOI URL |
[29] | A.M. Balagurov, I.A. Bobrikov, G.D. Bokuchava, V.V. Zhuravlev, V.G. Simkin, Phys. Part. Nucl. Lett. 46 (249) (2015) 249-276. |
[30] |
M. Sun, Y. Jiang, X.P. Wang, L.F. Zhang, W.B. Jiang, R. Liu, H. Wang, M.G. Kong, Y. X. Gao, T. Hao, L. Wang, Q.F. Fang, C.S. Liu, Mater. Sci. Eng. A 766 (2019), 138287.
DOI URL |
[31] |
I.S. Golovin, J. Cifre, J. Alloys. Compd. 584 (2014) 322-326.
DOI URL |
[32] | R.D. Batist, Internal Friction of Structural Defects in Crystalline Solids, North-Holland Publ. Amsterdam, The Netherlands, 1972, pp. 430-438. |
[33] | Y.K. He, J.M.D. Coey, R. Schaefer, C.B. Jiang, Phys. Rev. B Condens. Matter Mater. Phys. 2 (2018), 014412. |
[34] |
M. Sun, Y.X. Wu, W.B. Jiang, W. Liu, X.P. Wang, Y.X. Gao, R. Liu, T. Hao, W. Wen, Q.F. Fang, Intermetallics 111 (2019), 106496.
DOI URL |
[35] |
H.D. Chopra, M. Wuttig, Nature 521 (2015) 340-351.
DOI PMID |
[36] |
Y.K. He, C.B. Jiang, W. Wu, B. Wang, H.P. Duan, H. Wang, T.L. Zhang, J.M. Wang, J.H. Liu, Z.L. Zhang, P. Stamenov, J.M.D. Coey, H.B. Xu, Acta Mater. 109 (2016) 177-186.
DOI URL |
[37] |
T. Jin, W. Wu, C. Jiang, Scr. Mater. 74 (2014) 100-103.
DOI URL |
[38] |
R. Barua, P. Taheri, Y. Chen, A. Koblischka-Veneva, M. Koblischka, L. Jiang, V. Harris, Materials 11 (2018) 1039.
DOI URL |
[39] |
R.Q. Wu, J. Appl. Phys. 91 (2002) 7358.
DOI URL |
[40] |
T.Y. Jin, H. Wang, I.S. Golovin, C.B. Jiang, Intermetallics 115 (2019), 106628.
DOI URL |
[41] | T.A. Lograsso, A.R. Ross, D.L. Schlagel, A.E. Clark, M. Wun-Fogle, J. Alloys. Compd. 350 (2003) 0-101. |
[42] |
J.R. Birchak, G.W. Smith, J. Appl. Phys. 43 (1972) 1238.
DOI URL |
[43] |
J.I. Langford, R. Delhez, T.H. de Keijser, E.J. Mittemeijer, Aust. J. Phys. 41 (1988) 173-188.
DOI URL |
[44] |
J.W. Otto, J. Appl. Crystallogr. 30 (1997) 1008-1015.
DOI URL |
[45] | A.V. Granato, K. Lucke, J. Appl. Phys. 27 (1956) 583-593. |
[46] |
J.C. Swartz, J. Appl. Phys. 32 (1961) 1860-1865.
DOI URL |
[47] | W.G. Zeng, J.X. Zhang, Acta Phys. Sin. 36 (1987) 37-46 (In Chinese). |
[48] |
D.N. Beshers, G.B. Vunni, Mater. Sci. Eng. A 442 (2006) 191-194.
DOI URL |
[49] | A.W. Cochardt, J. Appl. Phys. 25 (1954) 91-95. |
[50] |
A.W. Cochardt, JOM 8 (1956) 1295-1298.
DOI URL |
[51] |
Q.F. Fang, X.P. Wang, Z. Zhuang, Mater. Res. 21 (2018) 1-4.
DOI URL |
[52] |
G.K. Williamson, W.H. Hall, Acta Metall. 1 (1953) 22-31.
DOI URL |
[53] | J.M.D. Coey, Magnetism and Magnetic Materials, Cambridge University Press, 2010, pp. 244-260. |
[54] |
Y.K. He, C.B. Jiang, W. Wu, B. Wang, H.P. Duan, H. Wang, T.L. Zhang, J.M. Wang, J.H. Liu, Z.L. Zhang, P. Stamenov, J.M.D. Coey, H.B. Xu, Acta Mater. 109 (2016) 177-186.
DOI URL |
[55] |
Y.K. He, X.Q. Ke, C.B. Jiang, N.H. Miao, H. Wang, J.M.D. Coey, Y.Z. Wang, H.B. Xu, Adv. Funct. Mater. 28 (2018), 1800858.
DOI URL |
[56] | Y.K. He, J.M.D. Coey, R. Schaefer, C.B. Jiang, Phys. Rev. B Condens. Matter Mater. Phys. 2 (2018), 014412. |
[57] |
N. Brown, K.F. Lukens Jr, Acta Metall. 9 (1961) 106-111.
DOI URL |
[58] |
S.J.B. Kurz, S.R. Meka, N. Schell, W. Ecker, J. Keckes, E.J. Mittemeijer, Acta Mater. 87 (2015) 100-110.
DOI URL |
[59] |
J.W. Otto, J. Appl. Crystallogr. 30 (1997) 1008-1015.
DOI URL |
[60] |
V.V. Palacheva, A. Emdadi, F. Emeis, I.A. Bobrikov, A.M. Balagurov, S.V. Divinski, G. Wilde, I.S. Golovin, Acta Mater. 130 (2017) 229-239.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||