J. Mater. Sci. Technol. ›› 2021, Vol. 66: 112-120.DOI: 10.1016/j.jmst.2020.06.027
• Research Article • Previous Articles Next Articles
Hanyu Zhaoa,b, Yupeng Suna,b, Lu Yina,b, Zhao Yuana,b, Yiliang Lanb, Dake Xuc, Chunguang Yangb,*(), Ke Yangb
Received:
2020-03-30
Revised:
2020-05-31
Accepted:
2020-06-03
Published:
2021-03-10
Online:
2021-04-01
Contact:
Chunguang Yang
About author:
* E-mail address: cgyang@imr.ac.cn (C. Yang).Hanyu Zhao, Yupeng Sun, Lu Yin, Zhao Yuan, Yiliang Lan, Dake Xu, Chunguang Yang, Ke Yang. Improved corrosion resistance and biofilm inhibition ability of copper-bearing 304 stainless steel against oral microaerobic Streptococcus mutans[J]. J. Mater. Sci. Technol., 2021, 66: 112-120.
Sample | Cr | Ni | Cu | Mn | Si | C | Fe |
---|---|---|---|---|---|---|---|
304 SS | 17.92 | 7.81 | 0.00 | 1.12 | 0.44 | 0.01 | Bal. |
304-Cu SS | 17.01 | 7.85 | 4.08 | 0.99 | 0.40 | 0.01 | Bal. |
Table 1 Elemental composition of 304 SS and 304-Cu SS (wt.%).
Sample | Cr | Ni | Cu | Mn | Si | C | Fe |
---|---|---|---|---|---|---|---|
304 SS | 17.92 | 7.81 | 0.00 | 1.12 | 0.44 | 0.01 | Bal. |
304-Cu SS | 17.01 | 7.85 | 4.08 | 0.99 | 0.40 | 0.01 | Bal. |
Fig. 1. CLSM images of bio?lms of S. mutans on the surfaces of 304 SS (a) and 304-Cu SS (b) after 7 days, 304 SS (c) and 304-Cu SS (d) after 14 days of immersion. SEM images of sessile S. mutans on the surfaces of 304 SS (e) and 304-Cu SS (f) after 7 days, 304 SS (g) and 304-Cu SS (h) after 14 days of immersion.
Fig. 2. CLSM images of cells (blue), polysaccharides (green) and proteins (red) of bio?lm of S. mutans on the surfaces of 304 SS and 304-Cu SS after 7 and 14 days of immersion.
Fig. 3. Maximum (red block with number) pit depths on the surfaces of 304 SS (a, c) and 304-Cu SS (b, d) after immersed in artificial saliva (a, b) and in artificial saliva (c, d) with S. mutans for 14 days and (e) the average pit depths.
Fig. 4. Variations of EOCP (a) and Rp (b) with immersion time for 304 SS and 304-Cu SS samples after immersed in artificial saliva with and without S. mutans. (c) Potentiodynamic curves of 304 SS and 304-Cu SS samples exposed to artificial saliva with and without S. mutans after 14 days incubation.
Sample | icorr (μA cm-2) | Epit (mV vs. SCE) |
---|---|---|
304 SS in the artificial saliva | 0.022 ± 0.008 | 750 ± 58 |
304-Cu SS in the artificial saliva | 0.024 ± 0.007 | 284 ± 11 |
304 SS in the presence of S. mutans | 0.178 ± 0.023 | 477 ± 37 |
304-Cu SS in the presence of S. mutans | 0.032 ± 0.010 | 263 ± 26 |
Table 2 Parameters derived from polarization curves of 304 SS and 304-Cu SS samples exposing in artificial saliva with and without S. mutans after 14 days incubation.
Sample | icorr (μA cm-2) | Epit (mV vs. SCE) |
---|---|---|
304 SS in the artificial saliva | 0.022 ± 0.008 | 750 ± 58 |
304-Cu SS in the artificial saliva | 0.024 ± 0.007 | 284 ± 11 |
304 SS in the presence of S. mutans | 0.178 ± 0.023 | 477 ± 37 |
304-Cu SS in the presence of S. mutans | 0.032 ± 0.010 | 263 ± 26 |
Fig. 5. Bode and Nyquist plots of 304 SS (a, a’) and 304-Cu SS (b, b’) in artificial saliva for 304 SS (c, c’) and 304-Cu SS (d, d’) in artificial saliva with S. mutans. Equivalent physical and corresponding circuit models applied for fitting EIS data of 304 SS and 304-Cu SS in artificial saliva (e) and artificial saliva with S. mutans (e’). Variations of Rct (f) derived from EIS data for 304 SS and 304-Cu SS in artificial saliva with and without S. mutans.
Duration (d) | RS (Ω cm2) | Cb (μF cm-2) | Rf (kΩ cm2) | Cdl (μF cm-2) | Rct (kΩ cm2) | ∑χ×10-3 |
---|---|---|---|---|---|---|
304 SS in the artificial saliva | ||||||
0 | 94 ± 40 | - | - | 51.4 ± 17.1 | 748 ± 129 | 0.87 |
1 | 91 ± 21 | - | - | 35.8 ± 6.7 | 1310 ± 270 | 1.28 |
4 | 90 ± 36 | - | - | 29.5 ± 0.9 | 2317 ± 773 | 1.92 |
7 | 114 ± 23 | - | - | 27.8 ± 9.1 | 2662 ± 845 | 2.29 |
10 | 109 ± 9 | - | - | 27.8 ± 4.5 | 2971 ± 630 | 2.58 |
14 | 109 ± 15 | - | - | 27.2 ± 3.6 | 3157 ± 647 | 3.00 |
304-Cu SS in the artificial saliva | ||||||
0 | 119 ± 43 | - | - | 50.1 ± 2.2 | 629 ± 128 | 1.31 |
1 | 119 ± 46 | - | - | 42.0 ± 2.8 | 1568 ± 220 | 1.39 |
4 | 123 ± 12 | - | - | 38.1 ± 5.7 | 1735 ± 279 | 1.67 |
7 | 120 ± 26 | - | - | 36.3 ± 3.4 | 2350 ± 306 | 1.91 |
10 | 120 ± 17 | - | - | 37.3 ± 7.3 | 2456 ± 285 | 2.10 |
14 | 132 ± 28 | - | - | 36.1 ± 4.9 | 2862 ± 509 | 2.28 |
304 SS in the presence of S. mutans | ||||||
0 | 69 ± 38 | 68.0 ± 10.8 | 265.4 ± 7.1 | 2679.0 ± 98.6 | 1177 ± 379 | 1.08 |
1 | 58 ± 22 | 60.3 ± 7.6 | 104.0 ± 26.8 | 573.3 ± 55.9 | 61 ± 29 | 1.31 |
4 | 598 ± 10 | 56.0 ± 1.7 | 83.7 ± 8.2 | 498.3 ± 36.2 | 55 ± 15 | 1.25 |
7 | 56 ± 14 | 55.2 ± 2.1 | 53.1 ± 9.8 | 658.0 ± 12.7 | 45 ± 10 | 1.55 |
10 | 55 ± 19 | 53.8 ± 3.7 | 42.4 ± 4.5 | 861.3 ± 34.0 | 43 ± 17 | 2.36 |
14 | 51 ± 8 | 45.2 ± 1.0 | 0.1 ± 3.4 | 9.2 ± 13.5 | 44 ± 6 | 2.13 |
304-Cu SS in the presence of S. mutans | ||||||
0 | 76 ± 21 | 46.1 ± 19.7 | 408.5 ± 46.3 | 3688.0 ± 73.9 | 0.1 ± 0.14 | 1.20 |
1 | 63 ± 4 | 40.0 ± 3.6 | 150.5 ± 8.2 | 235.0 ± 29.0 | 146 ± 28 | 1.31 |
4 | 65 ± 3 | 44.3 ± 5.9 | 17.0 ± 2.4 | 459.3 ± 37.8 | 67 ± 11 | 0.99 |
7 | 62 ± 10 | 7.8 ± 6.6 | 0.4 ± 0.6 | 36.7 ± 11.5 | 203 ± 30 | 1.64 |
10 | 67 ± 14 | 23.1 ± 3.4 | 0.1 ± 0.3 | 21.0 ± 4.9 | 539 ± 65 | 0.33 |
14 | 62 ± 9 | 22.5 ± 1.6 | 0.1 ± 0.3 | 21.4 ± 8.9 | 1140 ± 217 | 0.39 |
Table 3 Parameters derived from EIS data of 304 SS and 304-Cu SS samples after immersed in artificial saliva with and without S. mutans.
Duration (d) | RS (Ω cm2) | Cb (μF cm-2) | Rf (kΩ cm2) | Cdl (μF cm-2) | Rct (kΩ cm2) | ∑χ×10-3 |
---|---|---|---|---|---|---|
304 SS in the artificial saliva | ||||||
0 | 94 ± 40 | - | - | 51.4 ± 17.1 | 748 ± 129 | 0.87 |
1 | 91 ± 21 | - | - | 35.8 ± 6.7 | 1310 ± 270 | 1.28 |
4 | 90 ± 36 | - | - | 29.5 ± 0.9 | 2317 ± 773 | 1.92 |
7 | 114 ± 23 | - | - | 27.8 ± 9.1 | 2662 ± 845 | 2.29 |
10 | 109 ± 9 | - | - | 27.8 ± 4.5 | 2971 ± 630 | 2.58 |
14 | 109 ± 15 | - | - | 27.2 ± 3.6 | 3157 ± 647 | 3.00 |
304-Cu SS in the artificial saliva | ||||||
0 | 119 ± 43 | - | - | 50.1 ± 2.2 | 629 ± 128 | 1.31 |
1 | 119 ± 46 | - | - | 42.0 ± 2.8 | 1568 ± 220 | 1.39 |
4 | 123 ± 12 | - | - | 38.1 ± 5.7 | 1735 ± 279 | 1.67 |
7 | 120 ± 26 | - | - | 36.3 ± 3.4 | 2350 ± 306 | 1.91 |
10 | 120 ± 17 | - | - | 37.3 ± 7.3 | 2456 ± 285 | 2.10 |
14 | 132 ± 28 | - | - | 36.1 ± 4.9 | 2862 ± 509 | 2.28 |
304 SS in the presence of S. mutans | ||||||
0 | 69 ± 38 | 68.0 ± 10.8 | 265.4 ± 7.1 | 2679.0 ± 98.6 | 1177 ± 379 | 1.08 |
1 | 58 ± 22 | 60.3 ± 7.6 | 104.0 ± 26.8 | 573.3 ± 55.9 | 61 ± 29 | 1.31 |
4 | 598 ± 10 | 56.0 ± 1.7 | 83.7 ± 8.2 | 498.3 ± 36.2 | 55 ± 15 | 1.25 |
7 | 56 ± 14 | 55.2 ± 2.1 | 53.1 ± 9.8 | 658.0 ± 12.7 | 45 ± 10 | 1.55 |
10 | 55 ± 19 | 53.8 ± 3.7 | 42.4 ± 4.5 | 861.3 ± 34.0 | 43 ± 17 | 2.36 |
14 | 51 ± 8 | 45.2 ± 1.0 | 0.1 ± 3.4 | 9.2 ± 13.5 | 44 ± 6 | 2.13 |
304-Cu SS in the presence of S. mutans | ||||||
0 | 76 ± 21 | 46.1 ± 19.7 | 408.5 ± 46.3 | 3688.0 ± 73.9 | 0.1 ± 0.14 | 1.20 |
1 | 63 ± 4 | 40.0 ± 3.6 | 150.5 ± 8.2 | 235.0 ± 29.0 | 146 ± 28 | 1.31 |
4 | 65 ± 3 | 44.3 ± 5.9 | 17.0 ± 2.4 | 459.3 ± 37.8 | 67 ± 11 | 0.99 |
7 | 62 ± 10 | 7.8 ± 6.6 | 0.4 ± 0.6 | 36.7 ± 11.5 | 203 ± 30 | 1.64 |
10 | 67 ± 14 | 23.1 ± 3.4 | 0.1 ± 0.3 | 21.0 ± 4.9 | 539 ± 65 | 0.33 |
14 | 62 ± 9 | 22.5 ± 1.6 | 0.1 ± 0.3 | 21.4 ± 8.9 | 1140 ± 217 | 0.39 |
Fig. 6. XPS detailed spectra of Cu 2p before immersions of 304 SS (a) and 304-Cu SS (b), and after 14 days of immersions of 304 SS (c) and 304-Cu SS (d) in the presence of S. mutans. XPS detailed spectra of Cr 2p before immersions of 304 SS (e) and 304-Cu SS (f), and after 14 days of immersions of 304 SS (g) and 304-Cu SS (h) in the presence of S. mutans. XPS detailed spectra of Ni 2p before immersions of 304 SS (i) and 304-Cu SS (j), and after 14 days of immersions of 304 SS (k) and 304-Cu SS (l) in the presence of S. mutans.
Fig. 7. Variations of pH (a) for 304 SS and 304-Cu SS samples exposed to artificial saliva with and without S. mutans at the 14th day of incubation. (b) Schematic illustration of MIC resistance mechanism of 304-Cu SS in the presence of S. mutans.
[1] | K.T. Oh, S.U. Choo, K.M. Kim, K.N. Kim, Eur. J. Orthodontics 27 (2005) 237-244. |
[2] | F.L. Nie, S.G. Wang, Y.B. Wang, S.C. Wei, Y.F. Zheng, Dental Mater. 27 (2011) 677-683. |
[3] |
I.B. Beech, J. Sunner, Curr. Opin. Biotechnol. 15 (2004) 181-186.
URL PMID |
[4] | R. Javaherdashti, R.K.S. Raman, C. Panter, E.V. Pereloma, Int. Biodeter. Biodeg. 58 (2006) 27-35. |
[5] | D. Xu, Y. Li, F. Song, T. Gu, Corros. Sci. 77 (2013) 385-390. |
[6] | R. Jia, J.L. Tan, P. Jin, D.J. Blackwood, D. Xu, T. Gu, Corros. Sci. 130 (2018) 1-11. |
[7] | R. Jia, D. Yang, J. Xu, D. Xu, T. Gu, Corros. Sci. 127 (2017) 1-9. |
[8] |
T. Eliades, A.E. Athanasiou, Angle Orthod. 72 (2002) 222-237.
DOI URL PMID |
[9] | R.C. Thurow, Am. J. Orthodontics 67 (1975) 694. |
[10] |
Y. Oshida, R.C. Sachdeva, S. Miyazaki, Biomed. Mater. Eng. 2 (1992) 51-69.
URL PMID |
[11] | L. Nan, D. Xu, T. Gu, X. Song, K. Yang, Mater. Sci. Eng. C 48 (2015) 228-234. |
[12] | H.H. Huang, J. Biomed. Mater. Res. Part A 66 (2003) 829-839. |
[13] | E.Z. Zhou, H.B. Li, C.T. Yang, J.J. Wang, D.K. Xu, D.W. Zhang, T.Y. Gu, Int. Biodeter. Biodegrad. 127 (2018) 1-9. |
[14] |
L. Nan, Y. Liu, M. Lü, K. Yang, J. Mater. Sci. Mater. Med. 19 (2008) 3057-3062.
DOI URL PMID |
[15] |
L. Nan, K. Yang, J. Mater. Sci. Technol. 26 (2010) 941-944.
DOI URL |
[16] |
X. Zhang, X. Huang, Y. Ma, N. Lin, A. Fan, B. Tang, Appl. Surf. Sci. 258 (2012) 10058-10063.
DOI URL |
[17] |
T. Fusayama, T. Katayori, S. Nomoto, J. Dental Res. 42 (1963) 1183-1197.
DOI URL |
[18] |
J. Yuan, A.M.F. Choong, S.O. Pehkonen, Corros. Sci. 49 (2007) 4352-4385.
DOI URL |
[19] |
D.K. Xu, J. Xia, E.Z. Zhou, D.W. Zhang, H.B. Li, C.G. Yang, Q. Li, H. Lin, X.G. Li, K. Yang, Bioelectrochemistry 113 (2017) 1-8.
DOI URL PMID |
[20] |
A.K. Manohar, O. Bretschger, K.H. Nealson, F. Mansfeld, Bioelectrochemistry 72 (2008) 149-154.
DOI URL PMID |
[21] | ISO-10993-12, Biological Evaluation of Medical Devices — Part 12: Sample Preparation and Reference Materials, ANSI/AAMI, Arlington, VA, 2008. |
[22] |
Y. Huang, E. Zhou, C. Jiang, R. Jia, S. Liu, D. Xu, T. Gu, F. Wang, Electrochem. Commun. 94 (2018) 9-13.
DOI URL |
[23] |
N.O. San, H. Nazır, G. Dönmez, Corros. Sci. 79 (2014) 177-183.
DOI URL |
[24] |
S. Fajardo, D.M. Bastidas, M. Criado, J.M. Bastidas, Electrochim. Acta 129 (2014) 160-170.
DOI URL |
[25] |
D.A. Shirley, Phys. Rev. B 5 (1972) 4709-4714.
DOI URL |
[26] |
J. Li, D. Zhai, F. Lv, Q. Yu, H. Ma, J. Yin, Z. Yi, M. Liu, J. Chang, C. Wu, Acta Biomater. 36 (2016) 254-266.
DOI URL PMID |
[27] | M. Li, Z. Ma, Y. Zhu, H. Xia, M. Yao, X. Chu, X. Wang, K. Yang, M. Yang, Y. Zhang, C. Mao, Adv. Healthcare Mater. 5 (2016) 557-566. |
[28] |
I. Burghardt, F. Lüthen, C. Prinz, B. Kreikemeyer, C. Zietz, H.G. Neumann, J. Rychly, Biomaterials 44 (2015) 36-44.
DOI URL PMID |
[29] | R. Liu, Y. Tang, L. Zeng, Y. Zhao, Z. Ma, Z. Sun, L. Xiang, L. Ren, K. Yang, Dental Mater. 34 (2018) 1112-1126. |
[30] |
M.S. Khan, C. Yang, Y. Zhao, H. Pan, J. Zhao, M.B. Shahzad, S.K. Kolawole, I. Ullah, K. Yang, Colloids Surf. B Biointerfaces 189 (2020), 110858.
DOI URL PMID |
[31] | D. Xu, E. Zhou, Y. Zhao, H. Li, Z. Liu, D. Zhang, C. Yang, H. Lin, X. Li, K. Yang, J. Mater. Sci. Technol. 34 (2018) 1325-1336. |
[32] |
S.L. Warnes, S.M. Green, H.T. Michels, C.W. Keevil, Appl. Environ. Microbiol. 76 (2010) 5390-5401.
DOI URL PMID |
[33] |
O. Michos, A. Gonçalves, J. Lopez-Rios, E. Tiecke, F. Naillat, K. Beier, A. Galli, S. Vainio, R. Zeller, Development 134 (2007) 2397-2405.
DOI URL PMID |
[34] | D. Liu, R. Jia, D. Xu, H. Yang, Y. Zhao, M.S. Khan, S. Huang, J. Wen, K. Yang, T. Gu, J. Mater. Sci. Technol. 35 (2019) 2494-2502. |
[35] | H. Liu, D. Xu, K. Yang, H. Liu, Y.F. Cheng, Corros. Sci. 132 (2018) 46-55. |
[36] |
D. Xu, Y. Li, T. Gu, Bioelectrochemistry 110 (2016) 52-58.
DOI URL PMID |
[37] |
G. Grass, C. Rensing, M. Solioz, Appl. Environ. Microbiol. 77 (2011) 1541-1547.
URL PMID |
[38] |
X.R. Zhang, C.G. Yang, K. Yang, ACS Appl. Mater. Interfaces 12 (2020) 361-372.
DOI URL PMID |
[39] | H.B. Li, C.T. Yang, E.Z. Zhou, C.G. Yang, H. Feng, Z.H. Jiang, D.K. Xu, T.Y. Gu, K. Yang, J. Mater. Sci. Technol. 33 (2017) 1596-1603. |
[40] | D. Xu, W. Huang, G. Ruschau, J. Hornemann, J. Wen, T. Gu, Eng. Failure Anal. 28 (2013) 149-159. |
[41] | H.W. Liu, D.K. Xu, A.Q. Dao, G.A. Zhang, Y.L. Lv, H.F. Liu, Corros. Sci. 101 (2015) 84-93. |
[42] | A.A. Hermas, K. Ogura, S. Takagi, T. Adachi, Corrosion 51 (1995) 3-10. |
[43] | T. Sourisseau, E. Chauveau, B. Baroux, Corros. Sci. 47 (2005) 1097-1117. |
[1] | Jiashun Shi, Suchun Wang, Xin Cheng, Shiqiang Chen, Guangzhou Liu. Constructing zwitterionic nanofiber film for anti-adhesion of marine corrosive microorganisms [J]. J. Mater. Sci. Technol., 2021, 70(0): 145-155. |
[2] | Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 71(0): 177-185. |
[3] | Xiaofan Zhai, Peng Ju, Fang Guan, Jizhou Duan, Nan Wang, Yimeng Zhang, Ke Li, Baorong Hou. Biofilm inhibition mechanism of BiVO4 inserted zinc matrix in marine isolated bacteria [J]. J. Mater. Sci. Technol., 2021, 75(0): 86-95. |
[4] | Lin Lu, Qianqian Liu. Synergetic effects of photo-oxidation and biodegradation on failure behavior of polyester coating in tropical rain forest atmosphere [J]. J. Mater. Sci. Technol., 2021, 64(0): 195-202. |
[5] | Kecheng Quan, Zexin Zhang, Yijin Ren, Henk J. Busscher, Henny C. van der Mei, Brandon W. Peterson. Possibilities and impossibilities of magnetic nanoparticle use in the control of infectious biofilms [J]. J. Mater. Sci. Technol., 2021, 69(0): 69-78. |
[6] | Enze Zhou, Jianjun Wang, Masoumeh Moradi, Huabing Li, Dake Xu, Yuntian Lou, Jinheng Luo, Lifeng Li, Yulei Wang, Zhenguo Yang, Fuhui Wang, Jessica A. Smith. Methanogenic archaea and sulfate reducing bacteria induce severe corrosion of steel pipelines after hydrostatic testing [J]. J. Mater. Sci. Technol., 2020, 48(0): 72-83. |
[7] | Yuqiao Dong, Yassir Lekbach, Zhong Li, Dake Xu, Soumya El Abed, Saad Ibnsouda Koraichi, Fuhui Wang. Microbiologically influenced corrosion of 304L stainless steel caused by an alga associated bacterium Halomonas titanicae [J]. J. Mater. Sci. Technol., 2020, 37(0): 200-206. |
[8] | Di Wang, Mahmoud Ramadan, Sith Kumseranee, Suchada Punpruk, Tingyue Gu. Mitigating microbiologically influenced corrosion of an oilfield biofilm consortium on carbon steel in enriched hydrotest fluid using 2,2-dibromo-3-nitrilopropionamide (DBNPA) enhanced by a 14-mer peptide [J]. J. Mater. Sci. Technol., 2020, 57(0): 146-152. |
[9] | Enze Zhou, Dongxu Qiao, Yi Yang, Dake Xu, Yiping Lu, Jianjun Wang, Jessica A. Smith, Huabing Li, Hongliang Zhao, Peter K. Liaw, Fuhui Wang. A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms [J]. J. Mater. Sci. Technol., 2020, 46(0): 201-210. |
[10] | Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2020, 47(0): 10-19. |
[11] | Tingyue Gu, Ru Jia, Tuba Unsal, Dake Xu. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35(4): 631-636. |
[12] | Fuliang Ma, Jinlong Li, Zhixiang Zeng, Yimin Gao. Tribocorrosion behavior in artificial seawater and anti-microbiologically influenced corrosion properties of TiSiN-Cu coating on F690 steel [J]. J. Mater. Sci. Technol., 2019, 35(3): 448-459. |
[13] | Dan Liu, Ru Jia, Dake Xu, Hongying Yang, Ying Zhao, M. saleem Khan, Songtao Huang, Jiankang Wen, Ke Yang, Tingyue Gu. Biofilm inhibition and corrosion resistance of 2205-Cu duplex stainless steel against acid producing bacterium Acetobacter aceti [J]. J. Mater. Sci. Technol., 2019, 35(11): 2494-2502. |
[14] | Jin Xu, Ru Jia, Dongqing Yang, Cheng Sun, Tingyue Gu. Effects of d-Phenylalanine as a biocide enhancer of THPS against the microbiologically influenced corrosion of C1018 carbon steel [J]. J. Mater. Sci. Technol., 2019, 35(1): 109-117. |
[15] | M. Saleem Khan, Zhong Li, Ke Yang, Dake Xu, Chunguang Yang, Dan Liu, Yassir Lekbach, Enze Zhou, Phuri Kalnaowakul. Microbiologically influenced corrosion of titanium caused by aerobic marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2019, 35(1): 216-222. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||