J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (1): 109-117.DOI: 10.1016/j.jmst.2018.09.011
• Orginal Article • Previous Articles Next Articles
Jin Xuab*(), Ru Jiaa, Dongqing Yanga, Cheng Sunb, Tingyue Gua*(
)
Received:
2018-01-10
Revised:
2018-05-11
Accepted:
2018-06-14
Online:
2019-01-04
Published:
2019-01-15
Contact:
Xu Jin,Gu Tingyue
Jin Xu, Ru Jia, Dongqing Yang, Cheng Sun, Tingyue Gu. Effects of d-Phenylalanine as a biocide enhancer of THPS against the microbiologically influenced corrosion of C1018 carbon steel[J]. J. Mater. Sci. Technol., 2019, 35(1): 109-117.
Parameter | Condition |
---|---|
SRB strain | D. vulgaris (ATCC 7757) |
Temperature | 37?°C |
Culture medium | ATCC 1249 |
Biocide | 80?ppm THPS |
Biocide enhancer | 500?ppm d-Phenylalanine |
Incubation time | 7 days |
Coupon | C1018 carbon steel |
Table 1 Experimental conditions.
Parameter | Condition |
---|---|
SRB strain | D. vulgaris (ATCC 7757) |
Temperature | 37?°C |
Culture medium | ATCC 1249 |
Biocide | 80?ppm THPS |
Biocide enhancer | 500?ppm d-Phenylalanine |
Incubation time | 7 days |
Coupon | C1018 carbon steel |
Condition | Planktonic cell count (cells?ml-1) | Sessile cell count (cells?cm-2) |
---|---|---|
Control (i.e., not treatment) | 3.3?×?107-3.3?×?108 | 3.3?×?107-3.3?×?108 |
80?ppm THPS | 3.3?×?107-3.3?×?108 | 3.3?×?106-3.3?×?107 |
80?ppm THPS?+?500?ppm d-Phe | 3.3?×?107-3.3?×?108 | 3.3?×?104-3.3?×?105 |
Table 2 Planktonic cell counts and sessile cell counts on coupon surfaces during 7-day incubation.
Condition | Planktonic cell count (cells?ml-1) | Sessile cell count (cells?cm-2) |
---|---|---|
Control (i.e., not treatment) | 3.3?×?107-3.3?×?108 | 3.3?×?107-3.3?×?108 |
80?ppm THPS | 3.3?×?107-3.3?×?108 | 3.3?×?106-3.3?×?107 |
80?ppm THPS?+?500?ppm d-Phe | 3.3?×?107-3.3?×?108 | 3.3?×?104-3.3?×?105 |
Time days | Condition | EOCP* mV | Ecorr mV | icorr μA?cm-2 | βa mV | βc mV |
---|---|---|---|---|---|---|
0.5 | Control | -604 | -705 | 60.4 | 390 | -** |
THPS | -653 | -679 | 1.57 | 76.3 | 105 | |
THPS?+?d-Phe | -636 | -664 | 1.13 | 73.5 | 93.7 | |
2 | Control | -526 | -647 | 19.1 | 180 | -** |
THPS | -663 | -696 | 1.53 | 79.1 | 99.2 | |
THPS?+?d-Phe | -646 | -671 | 0.93 | 61.1 | 86.5 | |
4 | Control | -528 | -625 | 2.95 | 154 | -** |
THPS | -461 | -551 | 1.26 | 162 | -** | |
THPS?+?d-Phe | -650 | -678 | 1.84 | 254 | 184 | |
7 | Control | -524 | -711 | 5.47 | 332 | -** |
THPS | -459 | -611 | 0.74 | 294 | -** | |
THPS?+?d-Phe | -656 | -673 | 2.65 | 287 | 123 |
Table 3 Fitting results of Tafel curves.
Time days | Condition | EOCP* mV | Ecorr mV | icorr μA?cm-2 | βa mV | βc mV |
---|---|---|---|---|---|---|
0.5 | Control | -604 | -705 | 60.4 | 390 | -** |
THPS | -653 | -679 | 1.57 | 76.3 | 105 | |
THPS?+?d-Phe | -636 | -664 | 1.13 | 73.5 | 93.7 | |
2 | Control | -526 | -647 | 19.1 | 180 | -** |
THPS | -663 | -696 | 1.53 | 79.1 | 99.2 | |
THPS?+?d-Phe | -646 | -671 | 0.93 | 61.1 | 86.5 | |
4 | Control | -528 | -625 | 2.95 | 154 | -** |
THPS | -461 | -551 | 1.26 | 162 | -** | |
THPS?+?d-Phe | -650 | -678 | 1.84 | 254 | 184 | |
7 | Control | -524 | -711 | 5.47 | 332 | -** |
THPS | -459 | -611 | 0.74 | 294 | -** | |
THPS?+?d-Phe | -656 | -673 | 2.65 | 287 | 123 |
Condition | IE | |||
---|---|---|---|---|
0.5 day | 2 days | 4 days | 7 days | |
THPS | 97.4% | 92.0% | 57.3% | 86.5% |
THPS?+?d-Phe | 98.1% | 95.1% | 37.6% | 51.6% |
Table 4 Inhibition efficiency of THPS and THPS?+?d-Phe with time.
Condition | IE | |||
---|---|---|---|---|
0.5 day | 2 days | 4 days | 7 days | |
THPS | 97.4% | 92.0% | 57.3% | 86.5% |
THPS?+?d-Phe | 98.1% | 95.1% | 37.6% | 51.6% |
Time (day) | Condition | Rs (Ω?cm2) | Yf (S?secn?cm-2) | n1 | Rf (Ω?cm2) | Ydl (S?secn?cm-2) | n2 | Rt (Ω?ncm2) |
---|---|---|---|---|---|---|---|---|
0.5 | Control | 14.1 | 1.36?×?10-2 | 0.806 | 35.2 | 5.06?×?10-2 | 0.739 | 0.402?×?104 |
THPS | 22.7 | - | - | - | 2.11?×?10-4 | 0.925 | 1.11?×?104 | |
THPS?+?d-Phe | 18.7 | - | - | - | 2.05?×?10-4 | 0.931 | 1.41?×?104 | |
2 | Control | 22.5 | 4.13?×?10-2 | 0.848 | 37.8 | 2.45?×?10-2 | 0.817 | 0.82?×?104 |
THPS | 24.5 | - | - | - | 2.54?×?10-4 | 0.924 | 1.44?×?104 | |
THPS?+?d-Phe | 20.7 | - | - | - | 2.44?×?10-4 | 0.944 | 1.89?×?104 | |
4 | Control | 24.1 | 4.89?×?10-2 | 0.704 | 51.2 | 3.18?×?10-2 | 0.958 | 0.166?×?104 |
THPS | 23.9 | 3.22?×?10-2 | 0.759 | 32.8 | 9.29?×?10-3 | 0.959 | 1.38?×?104 | |
THPS?+?d-Phe | 20.4 | - | - | - | 3.17?×?10-4 | 0.941 | 1.04?×?104 | |
7 | Control | 20.9 | 4.46?×?10-2 | 0.719 | 17.7 | 3.8?×?10-2 | 0.984 | 0.391?×?104 |
THPS | 23.0 | 1.92?×?10-2 | 0.848 | 64.1 | 1.63?×?10-2 | 0.92 | 2.24?×?104 | |
THPS?+?d-Phe | 18.1 | - | - | - | 4.88?×?10-2 | 0.93 | 0.487?×?104 |
Table 5 Fitting results of EIS plots.
Time (day) | Condition | Rs (Ω?cm2) | Yf (S?secn?cm-2) | n1 | Rf (Ω?cm2) | Ydl (S?secn?cm-2) | n2 | Rt (Ω?ncm2) |
---|---|---|---|---|---|---|---|---|
0.5 | Control | 14.1 | 1.36?×?10-2 | 0.806 | 35.2 | 5.06?×?10-2 | 0.739 | 0.402?×?104 |
THPS | 22.7 | - | - | - | 2.11?×?10-4 | 0.925 | 1.11?×?104 | |
THPS?+?d-Phe | 18.7 | - | - | - | 2.05?×?10-4 | 0.931 | 1.41?×?104 | |
2 | Control | 22.5 | 4.13?×?10-2 | 0.848 | 37.8 | 2.45?×?10-2 | 0.817 | 0.82?×?104 |
THPS | 24.5 | - | - | - | 2.54?×?10-4 | 0.924 | 1.44?×?104 | |
THPS?+?d-Phe | 20.7 | - | - | - | 2.44?×?10-4 | 0.944 | 1.89?×?104 | |
4 | Control | 24.1 | 4.89?×?10-2 | 0.704 | 51.2 | 3.18?×?10-2 | 0.958 | 0.166?×?104 |
THPS | 23.9 | 3.22?×?10-2 | 0.759 | 32.8 | 9.29?×?10-3 | 0.959 | 1.38?×?104 | |
THPS?+?d-Phe | 20.4 | - | - | - | 3.17?×?10-4 | 0.941 | 1.04?×?104 | |
7 | Control | 20.9 | 4.46?×?10-2 | 0.719 | 17.7 | 3.8?×?10-2 | 0.984 | 0.391?×?104 |
THPS | 23.0 | 1.92?×?10-2 | 0.848 | 64.1 | 1.63?×?10-2 | 0.92 | 2.24?×?104 | |
THPS?+?d-Phe | 18.1 | - | - | - | 4.88?×?10-2 | 0.93 | 0.487?×?104 |
|
[1] | Xian-Zong Wang, Hong-Qiang Fan, Triratna Muneshwar, Ken Cadien, Jing-Li Luo. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 75-84. |
[2] | Hu Liu, Jie Wei, Junhua Dong, Yiqing Chen, Yumin Wu, Yangtao Zhou, Subedi Dhruba Babu, Wei Ke. Influence of cementite spheroidization on relieving the micro-galvanic effect of ferrite-pearlite steel in acidic chloride environment [J]. J. Mater. Sci. Technol., 2021, 61(0): 234-246. |
[3] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[4] | Jiawei Ding, Haitao Wang, En-Hou Han. A multiphysics model for studying transient crevice corrosion of stainless steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 186-196. |
[5] | Hongxia Wan, Dongdong Song, Xiaolei Shi, Yong Cai, Tingting Li, Changfeng Chen. Corrosion behavior of Al0.4CoCu0.6NiSi0.2Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment [J]. J. Mater. Sci. Technol., 2021, 60(0): 197-205. |
[6] | Yanhua Zeng, Fenfen Yang, Zongning Chen, Enyu Guo, Minqiang Gao, Xuejian Wang, Huijun Kang, Tongmin Wang. Enhancing mechanical properties and corrosion resistance of nickel-aluminum bronze via hot rolling process [J]. J. Mater. Sci. Technol., 2021, 61(0): 186-196. |
[7] | Jun Gao, Jibo Tan, Ming Jiao, Xinqiang Wu, Lichen Tang, Yifeng Huang. Role of welding residual strain and ductility dip cracking on corrosion fatigue behavior of Alloy 52/52M dissimilar metal weld in borated and lithiated high-temperature water [J]. J. Mater. Sci. Technol., 2020, 42(0): 163-174. |
[8] | Yucheng Ji, Chaofang Dong, Decheng Kong, Xiaogang Li. Design materials based on simulation results of silicon induced segregation at AlSi10Mg interface fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 46(0): 145-155. |
[9] | Yuanjie Zhi, Tao Yang, Dongmei Fu. An improved deep forest model for forecast the outdoor atmospheric corrosion rate of low-alloy steels [J]. J. Mater. Sci. Technol., 2020, 49(0): 202-210. |
[10] | Di Wang, Mahmoud Ramadan, Sith Kumseranee, Suchada Punpruk, Tingyue Gu. Mitigating microbiologically influenced corrosion of an oilfield biofilm consortium on carbon steel in enriched hydrotest fluid using 2,2-dibromo-3-nitrilopropionamide (DBNPA) enhanced by a 14-mer peptide [J]. J. Mater. Sci. Technol., 2020, 57(0): 146-152. |
[11] | Xiao-Li Fan, Chang-Yang Li, Yu-Bo Wang, Yuan-Fang Huo, Shuo-Qi Li, Rong-Chang Zeng. Corrosion resistance of an amino acid-bioinspired calcium phosphate coating on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 49(0): 224-235. |
[12] | Inime Ime Udoh, Hongwei Shi, Mohammad Soleymanibrojeni, Fuchun Liu, En-Hou Han. Inhibition of galvanic corrosion in Al/Cu coupling model by synergistic combination of 3-Amino-1,2,4-triazole-5-thiol and cerium chloride [J]. J. Mater. Sci. Technol., 2020, 44(0): 102-115. |
[13] | Hongchang Qian, Lingwei Ma, Dawei Zhang, Ziyu Li, Luyao Huang, Yuntian Lou, Cuiwei Du. Microbiologically influenced corrosion of 304 stainless steel by halophilic archaea Natronorubrum tibetense [J]. J. Mater. Sci. Technol., 2020, 46(0): 12-20. |
[14] | Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2020, 47(0): 10-19. |
[15] | Lu Shen, Yong Li, Wenjie Zhao, Kui Wang, Xiaojing Ci, Yangmin Wu, Gang Liu, Chao Liu, Zhiwen Fang. Tuning F-doped degree of rGO: Restraining corrosion-promotion activity of EP/rGO nanocomposite coating [J]. J. Mater. Sci. Technol., 2020, 44(0): 121-132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||