J. Mater. Sci. Technol. ›› 2021, Vol. 61: 186-196.DOI: 10.1016/j.jmst.2020.05.024
• Research Article • Previous Articles Next Articles
Yanhua Zeng, Fenfen Yang, Zongning Chen, Enyu Guo*(), Minqiang Gao, Xuejian Wang, Huijun Kang*(
), Tongmin Wang
Received:
2019-12-24
Revised:
2020-04-09
Accepted:
2020-05-05
Published:
2021-01-20
Online:
2021-01-20
Contact:
Enyu Guo,Huijun Kang
Yanhua Zeng, Fenfen Yang, Zongning Chen, Enyu Guo, Minqiang Gao, Xuejian Wang, Huijun Kang, Tongmin Wang. Enhancing mechanical properties and corrosion resistance of nickel-aluminum bronze via hot rolling process[J]. J. Mater. Sci. Technol., 2021, 61: 186-196.
Fig. 1. Optical micrographs of the NAB samples: (a) as-cast; (b) as-annealed; (c) the as-annealed NAB sample further held at 850 °C for 220 min; (d) hot-rolled (the rolling direction is as indicated by the arrow).
Fig. 3. TEM images showing the microstructure of NAB samples: (a, b) the bright-field TEM images with SADP inset from κIII and κV precipitates of as-annealed NAB, respectively; (c), (d) and (e) the bright-field TEM images with SADP inset from κIII, κV precipitates, twins of hot-rolled NAB, respectively.
Sample | Al | Ni | Mn | Fe | Cu | |
---|---|---|---|---|---|---|
As-cast | Point A | 15.37 | 6.62 | 1.12 | 3.29 | 73.59 |
Point B | 24.53 | 14.12 | 1.06 | 5.28 | 55.00 | |
Point C | 32.03 | 23.99 | 1.48 | 8.56 | 33.94 | |
As-annealed | Point D | 13.69 | 3.76 | 1.35 | 2.30 | 78.89 |
Point E | 33.63 | 24.26 | 1.12 | 8.89 | 32.10 | |
Point F | 23.72 | 15.01 | 0.84 | 5.14 | 55.29 | |
Hot-rolled | Point G | 14.63 | 4.53 | 1.23 | 2.88 | 76.74 |
Point H | 32.92 | 23.84 | 1.38 | 7.77 | 34.09 | |
Point I | 29.64 | 23.14 | 1.11 | 7.92 | 38.20 |
Table 1 Chemical composition (in at.%) measurement by EDS at selected points in Fig. 2.
Sample | Al | Ni | Mn | Fe | Cu | |
---|---|---|---|---|---|---|
As-cast | Point A | 15.37 | 6.62 | 1.12 | 3.29 | 73.59 |
Point B | 24.53 | 14.12 | 1.06 | 5.28 | 55.00 | |
Point C | 32.03 | 23.99 | 1.48 | 8.56 | 33.94 | |
As-annealed | Point D | 13.69 | 3.76 | 1.35 | 2.30 | 78.89 |
Point E | 33.63 | 24.26 | 1.12 | 8.89 | 32.10 | |
Point F | 23.72 | 15.01 | 0.84 | 5.14 | 55.29 | |
Hot-rolled | Point G | 14.63 | 4.53 | 1.23 | 2.88 | 76.74 |
Point H | 32.92 | 23.84 | 1.38 | 7.77 | 34.09 | |
Point I | 29.64 | 23.14 | 1.11 | 7.92 | 38.20 |
Fig. 4. (a) Typical stress-strain curves of NAB samples after different processing conditions. (b), (c) and (d) the fractographs of the as-cast, as-annealed, and hot-rolled NAB samples, respectively.
Sample | σb (MPa) | σ0.2 (MPa) | Elongation (%) | Hardness (HV) |
---|---|---|---|---|
As-cast | 585.9 ± 5.7 | 290.5 ± 2.7 | 18.6 ± 1.2 | 176.5 ± 3.7 |
As-annealed | 688.4 ± 6.7 | 357.6 ± 14.3 | 11.4 ± 0.7 | 209.6 ± 3.0 |
Hot-rolled | 882.8 ± 5.5 | 658.7 ± 4.9 | 15.2 ± 0.5 | 264.6 ± 3.1 |
Table 2 Mechanical properties of the NAB samples after different processing conditions.
Sample | σb (MPa) | σ0.2 (MPa) | Elongation (%) | Hardness (HV) |
---|---|---|---|---|
As-cast | 585.9 ± 5.7 | 290.5 ± 2.7 | 18.6 ± 1.2 | 176.5 ± 3.7 |
As-annealed | 688.4 ± 6.7 | 357.6 ± 14.3 | 11.4 ± 0.7 | 209.6 ± 3.0 |
Hot-rolled | 882.8 ± 5.5 | 658.7 ± 4.9 | 15.2 ± 0.5 | 264.6 ± 3.1 |
Fig. 6. Nyquist plots for the NAB samples after various periods of immersion in 3.5 wt.% NaCl solution: (a) 1 d; (b) 5 d; (c) the equivalent circuit used in the fitting of the impedance data. The insert in (a) shows the details of the curves. The solid curves in (a) and (b) are the fitted results.
Immersion time | Sample | Rs (Ω cm2) | Q1 (μF cm-2 sn-1) | n1 | Rf (Ω cm2) | Q2 (μF cm-2 sn-1) | n2 | Rct (Ω cm2) | Rp (Ω cm2) | Wd (×10-3 S cm-2 s1/2) | χ2 (×10-3) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 day | As-cast | 2.0 | 153 | 0.92 | 261 | 150 | 0.71 | 3173 | 3434 | 3.5 | 5.73 |
As-annealed | 1.9 | 149 | 0.94 | 106 | 349 | 0.67 | 821 | 927 | 2.6 | 6.35 | |
Hot-rolled | 2.2 | 152 | 0.82 | 301 | 14 | 0.88 | 16,200 | 16,501 | 0.5 | 4.33 | |
5 days | As-cast | 2.0 | 124 | 0.90 | 796 | 83 | 0.58 | 23,860 | 24,656 | 1.1 | 5.27 |
As-annealed | 2.3 | 216 | 0.95 | 210 | 175 | 0.78 | 2280 | 2490 | 4.1 | 3.65 | |
Hot-rolled | 2.8 | 108 | 0.90 | 3783 | 41 | 0.72 | 115,900 | 119,683 | 1.0 | 2.33 |
Table 3 Equivalent circuit parameters for the NAB samples after 1 day and 5 days immersion in 3.5 wt.% NaCl solution.
Immersion time | Sample | Rs (Ω cm2) | Q1 (μF cm-2 sn-1) | n1 | Rf (Ω cm2) | Q2 (μF cm-2 sn-1) | n2 | Rct (Ω cm2) | Rp (Ω cm2) | Wd (×10-3 S cm-2 s1/2) | χ2 (×10-3) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 day | As-cast | 2.0 | 153 | 0.92 | 261 | 150 | 0.71 | 3173 | 3434 | 3.5 | 5.73 |
As-annealed | 1.9 | 149 | 0.94 | 106 | 349 | 0.67 | 821 | 927 | 2.6 | 6.35 | |
Hot-rolled | 2.2 | 152 | 0.82 | 301 | 14 | 0.88 | 16,200 | 16,501 | 0.5 | 4.33 | |
5 days | As-cast | 2.0 | 124 | 0.90 | 796 | 83 | 0.58 | 23,860 | 24,656 | 1.1 | 5.27 |
As-annealed | 2.3 | 216 | 0.95 | 210 | 175 | 0.78 | 2280 | 2490 | 4.1 | 3.65 | |
Hot-rolled | 2.8 | 108 | 0.90 | 3783 | 41 | 0.72 | 115,900 | 119,683 | 1.0 | 2.33 |
Fig. 8. Surface morphology evolution of the NAB samples after different periods of immersion in 3.5 wt.% NaCl solution: (a1)-(a4) as-cast; (b1)-(b4) as-annealed; (c1)-(c4) hot-rolled.
[1] |
G. Kear, B.D. Barker, K. Stokes, F.C. Walsh, J. Appl. Electrochem. 34 (2004) 1235-1240.
DOI URL |
[2] |
E.A. Culpan, G. Rose, J. Mater. Sci. 13 (1978) 1647-1657.
DOI URL |
[3] |
A. Jahanafrooz, F. Hasan, G.W. Lorimer, N. Ridley, Metall. Trans. A 14 (1983) 1951-1956.
DOI URL |
[4] |
Y. Liu, J. Mazumder, K. Shibata, Acta Metall. Mater. 42 (1994) 1755-1762.
DOI URL |
[5] | J. Iqbal, F. Hasan, F. Ahmad, J. Mater. Sci. Technol. 22 (2006) 63-68. |
[6] |
F. Hasan, A. Jahanafrooz, G.W. Lorimer, N. Ridley, Metall. Trans. A 13 (1982) 1337-1345.
DOI URL |
[7] |
N.N. Liang, Y.H. Zhao, Y. Li, T. Topping, Y.T. Zhu, R.Z. Valiev, E.J. Lavernia, J. Mater. Sci. 53 (2018) 13173-13185.
DOI URL |
[8] |
A. Meng, J.F. Nie, K. Wei, H.J. Kang, Z.J. Liu, Y.H. Zhao, Vacuum 167 (2019) 329-335.
DOI URL |
[9] | H. Yu, Y.G. Zheng, Z.M. Yao, J. Mater. Sci. Technol. 25 (2009) 758-766. |
[10] |
N.N. Liang, Y.H. Zhao, J.T. Wang, Y.T. Zhu, Sci. Rep. 7 (2017) 44783.
DOI URL PMID |
[11] | X.L. Zhu, J. Mater. Sci. Technol. 16 (2000) 411-415. |
[12] | M. Wysiecki, L. Labuc, Int. J. Mater. Prod. Technol. 5 (1990) 339-348. |
[13] | J. Łabanowski, T. Olkowski, Adv. Mater. Sci. 9 (2009) 23-29. |
[14] |
F.F. Yang, H.J. Kang, E.Y. Guo, R.G. Li, Z.N. Chen, Y.H. Zeng, T.M. Wang, Corros. Sci. 139 (2018) 333-345.
DOI URL |
[15] |
D.T. McDonald, C.J. Barr, K. Xia, Metall. Mater. Trans. A 44 (2013) 5556-5566.
DOI URL |
[16] |
S.K. Menon, F.A. Pierce, B.P. Rosemark, K. Oh-Ishi, S. Swaminathan, T.R. McNelley, Metall. Mater. Trans. A 43 (2012) 3687-3702.
DOI URL |
[17] |
Z. Wu, Y.F. Cheng, L. Liu, W.J. Lv, W.B. Hu, Corros. Sci. 98 (2015) 260-270.
DOI URL |
[18] |
R.P. Chen, Z.Q. Liang, W.W. Zhang, D.T. Zhang, Z.Q. Luo, Y.Y. Li, Trans. Nonferrous Met. Soc. 17 (2007) 1254-1258.
DOI URL |
[19] |
J.A. Wharton, R.C. Barik, G. Kear, R.J.K. Wood, K.R. Stokes, F.C. Walsh, Corros. Sci. 47 (2005) 3336-3367.
DOI URL |
[20] |
Y.T. Lv, L.Q. Wang, Y.F. Han, X.Y. Xu, W.J. Lu, Mater. Sci. Eng. A 643 (2015) 17-24.
DOI URL |
[21] |
D.R. Ni, B.L. Xiao, Z.Y. Ma, Y.X. Qiao, Y.G. Zheng, Corros. Sci. 52 (2010) 1610-1617.
DOI URL |
[22] |
M. Lotfollahi, M. Shamanian, A. Saatchi, Mater. Des. 62 (2014) 282-287.
DOI URL |
[23] | G.K. Padhy, C.S. Wu, S. Gao, J. Mater. Sci. Technol. 34 (2018) 1-38. |
[24] |
Q.N. Song, Y.G. Zheng, D.R. Ni, Z.Y. Ma, Corrosion 70 (2014) 261-270.
DOI URL |
[25] |
C.H. Tang, F.T. Cheng, H.C. Man, Surf. Coat. Technol. 182 (2004) 300-307.
DOI URL |
[26] |
C.H. Tang, F.T. Cheng, H.C. Man, Mater. Sci. Eng. A 373 (2004) 195-203.
DOI URL |
[27] |
Z.B. Qin, Z. Wu, X.S. Zen, Q. Luo, L. Liu, W.J. Lu, W.B. Hu, Corrosion 72 (2016) 1269-1280.
DOI URL |
[28] |
Z.B. Qin, Q. Luo, Q. Zhang, Z. Wu, L. Liu, B. Shen, W.B. Hu, Surf. Coat. Technol. 334 (2018) 402-409.
DOI URL |
[29] |
D.R. Ni, P. Xue, D. Wang, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 524 (2009) 119-128.
DOI URL |
[30] |
Q.N. Song, Y.G. Zheng, D.R. Ni, Z.Y. Ma, Corros. Sci. 92 (2015) 95-103.
DOI URL |
[31] |
A. Al-Hashem, P.G. Caceres, W.T. Riad, H.M. Shalaby, Corrosion 51 (1995) 331-342.
DOI URL |
[32] |
Q.N. Song, Y.G. Zheng, D.R. Ni, Z.Y. Ma, Corrosion 71 (2015) 606-614.
DOI URL |
[33] | W.A. Nabach, Naval Postgraduate School, 2003. |
[34] |
Z.Z. Shi, J. Yu, X.F. Liu, L.N. Wang, J. Mater. Sci. Technol. 34 (2018) 1008-1015.
DOI URL |
[35] | ASTM Standard G31-72, Standard Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM Standards, West Conshohocken, 2004. |
[36] |
F. Hasan, G.W. Lorimer, N. Ridley, Met. Sci. 17 (1983) 289-295.
DOI URL |
[37] |
B. Sabbaghzadeh, R. Parvizi, A. Davoodi, M.H. Moayed, Mater. Des. 58 (2014) 346-356.
DOI URL |
[38] |
C.X. Wang, C.H. Jiang, Z. Chai, M. Chen, L.B. Wang, V. Ji, Surf. Coat. Technol. 313 (2017) 136-142.
DOI URL |
[39] |
F. Rosalbino, R. Carlini, F. Soggia, G. Zanicchi, G. Scavino, Corros. Sci. 58 (2012) 139-144.
DOI URL |
[40] |
Y.J. Qiang, S.T. Zhang, S. Yan, X.F. Zou, S.J. Chen, Corros. Sci. 126 (2017) 295-304.
DOI URL |
[41] |
I.O. K’Owino, O.A. Sadik, Electroanalysis 17 (2005) 2101-2113.
DOI URL |
[42] | Y. Chen, D.M. Qi, H.P. Wang, Z. Xu, C.X. Yi, Z. Zhang, Int. J. Electrochem. Sci. 10 (2015) 9056-9072. |
[43] |
C.J. Barr, D.T. McDonald, K. Xia, J. Mater. Sci. 48 (2013) 4749-4757.
DOI URL |
[44] |
K. Wang, N.R. Tao, G. Liu, J. Lu, K. Lu, Acta Mater. 54 (2006) 5281-5291.
DOI URL |
[45] | B.J. Zhao, Y.T. Lv, Y. Ding, L.Q. Wang, W.J. Lu, Mater. Charact. 144 (2018) 77-85. |
[46] | J. Anantapong, V. Uthaisangsuk, S. Suranuntchai, A. Manonukul, Mater. Des. 60 (2014) 233-243. |
[47] | X.Y. Xu, Y.T. Lv, M. Hu, D. Xiong, L.F. Zhang, L.Q. Wang, W.J. Lu, Int. J. Fatigue 82 (2016) 579-587. |
[48] | S. Neodo, D. Carugo, J.A. Wharton, K.R. Stokes, J. Electroanal. Chem. 695 (2013) 38-46. |
[49] | J.A. Wharton, K.R. Stokes, Electrochem. Commun. 9 (2007) 1035-1040. |
[50] | R.C. Barik, J.A. Wharton, R.J.K. Wood, K.R. Stokes, Wear 267 (2009) 1900-1908. |
[51] | H.N. Krogstad, R. Johnsen, Corros. Sci. 121 (2017) 43-56. |
[52] | C. Deslouis, B. Tribollet, G. Mengoli, M.M. Musiani, J. Appl. Electrochem. 18 (1988) 374-383. |
[53] |
G. Kear, B.D. Barker, F.C. Walsh, Corros. Sci. 46 (2004) 109-135.
DOI URL |
[54] |
G. Kear, B.D. Barker, K. Stokes, F.C. Walsh, J. Appl. Electrochem. 34 (2004) 659-669.
DOI URL |
[55] | J.A. Wharton, K.R. Stokes, Electrochim. Acta 53 (2008) 2463-2473. |
[56] |
H. Nady, N.H. Helal, M.M. El-Rabiee, W.A. Badawy, Mater. Chem. Phys. 134 (2012) 945-950.
DOI URL |
[57] |
W.A. Badawy, M.M. El-Rabiei, H. Nady, Electrochim. Acta 120 (2014) 39-45.
DOI URL |
[58] |
L. Freire, M.J. Carmezim, M.G.S. Ferreira, M.F. Montemor, Electrochim. Acta 55 (2010) 6174-6181.
DOI URL |
[59] | A. Schussler, H.E. Exner, Corros. Sci. 34 (1993) 1793-1802. |
[60] | Y. Ding, R. Zhao, Z.B. Qin, Z. Wu, L.Q. Wang, L. Liu, W.J. Lu, Materials 12 (2019) 209. |
[61] | J. Gao, A.M. Hu, M. Li, D.L. Mao, Appl. Surf. Sci. 255 (2009) 5943-5947. |
[1] | Changhong Cai, Marta M. Alves, Renbo Song, Yongjin Wang, Jingyuan Li, M. Fátima Montemor. Non-destructive corrosion study on a magnesium alloy with mechanical properties tailored for biodegradable cardiovascular stent applications [J]. J. Mater. Sci. Technol., 2021, 66(0): 128-138. |
[2] | Durga Bhakta Pokharel, Liping Wu, Junhua Dong, Xin Wei, Ini-Ibehe Nabuk Etim, Dhruba Babu Subedi, Aniefiok Joseph Umoh, Wei Ke. Effect of D-fructose on the in-vitro corrosion behavior of AZ31 magnesium alloy in simulated body fluid [J]. J. Mater. Sci. Technol., 2021, 66(0): 202-212. |
[3] | Fandi Meng, Li Liu, Yu Cui, Fuhui Wang. Evaluation of coating resistivity for pigmented/unpigmented epoxy coatings under marine alternating hydrostatic pressure [J]. J. Mater. Sci. Technol., 2021, 64(0): 165-175. |
[4] | Ini-Ibehe Nabuk Etim, Junhua Dong, Jie Wei, Chen Nan, Durga Bhakta Pokharel, Aniefiok Joseph Umoh, Dake Xu, Mingzhong Su, Wei Ke. Effect of organic silicon quaternary ammonium salts on mitigating corrosion of reinforced steel induced by SRB in mild alkaline simulated concrete pore solution [J]. J. Mater. Sci. Technol., 2021, 64(0): 126-140. |
[5] | Yue Wang, Xin Mu, Junhua Dong, Aniefiok Joseph Umoh, Wei Ke. Insight into atmospheric corrosion evolution of mild steel in a simulated coastal atmosphere [J]. J. Mater. Sci. Technol., 2021, 76(0): 41-50. |
[6] | Dequan Wu, Lingwei Ma, Bei Liu, Dawei Zhang, Badar Minhas, Hongchang Qian, Herman A. Terryn, Johannes M.C.Mol. Long-term deterioration of lubricant-infused nanoporous anodic aluminium oxide surface immersed in NaCl solution [J]. J. Mater. Sci. Technol., 2021, 64(0): 57-65. |
[7] | Mingna Wang, Chuang Qiao, Xiaolin Jiang, Long Hao, Xiahe Liu. Microstructure induced galvanic corrosion evolution of SAC305 solder alloys in simulated marine atmosphere [J]. J. Mater. Sci. Technol., 2020, 51(0): 40-53. |
[8] | Jiaxin Zhang, Jinshan Zhang, Fuyin Han, Wei Liu, Longlong Zhang, Rui Zhao, Chunxiang Xu, Jing Dou. Modification of Mn on corrosion and mechanical behavior of biodegradable Mg88Y4Zn2Li5 alloy with long-period stacking ordered structure [J]. J. Mater. Sci. Technol., 2020, 42(0): 130-142. |
[9] | Guangyu Liu, Shohreh Khorsand, Shouxun Ji. Electrochemical corrosion behaviour of Sn-Zn-xBi alloys used for miniature detonating cords [J]. J. Mater. Sci. Technol., 2019, 35(8): 1618-1628. |
[10] | Xuehui Hao, Junhua Dong, Xin Mu, Jie Wei, Changgang Wang, Wei Ke. Influence of Sn and Mo on corrosion behavior of ferrite-pearlite steel in the simulated bottom plate environment of cargo oil tank [J]. J. Mater. Sci. Technol., 2019, 35(5): 799-811. |
[11] | Min Cao, Li Liu, Zhongfen Yu, Lei Fan, Ying Li, Fuhui Wang. Electrochemical corrosion behavior of 2A02 Al alloy under an accelerated simulation marine atmospheric environment [J]. J. Mater. Sci. Technol., 2019, 35(4): 651-659. |
[12] | Chuang Qiao, Lianfeng Shen, Long Hao, Xin Mu, Junhua Dong, Wei Ke, Jing Liu, Bo Liu. Corrosion kinetics and patina evolution of galvanized steel in a simulated coastal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35(10): 2345-2356. |
[13] | Wenhua Xu, En-Hou Han, Zhenyu Wang. Effect of tannic acid on corrosion behavior of carbon steel in NaCl solution [J]. J. Mater. Sci. Technol., 2019, 35(1): 64-75. |
[14] | Jiazhen Wang, Jianqiu Wang, Hongliang Ming, Zhiming Zhang, En-Hou Han. Effect of temperature on corrosion behavior of alloy 690 in high temperature hydrogenated water [J]. J. Mater. Sci. Technol., 2018, 34(8): 1419-1427. |
[15] | Pan Chen, Lv Wangyan, Wang Zhenyao, Su Wei, Wang Chuan, Liu Shinian. Atmospheric Corrosion of Copper Exposed in a Simulated Coastal-Industrial Atmosphere [J]. J. Mater. Sci. Technol., 2017, 33(6): 587-595. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||