J. Mater. Sci. Technol. ›› 2020, Vol. 47: 169-176.DOI: 10.1016/j.jmst.2020.02.007
• Research Article • Previous Articles Next Articles
Han Wu, Jingdong Guo, De’an Yang*()
Received:
2019-10-03
Revised:
2019-12-24
Accepted:
2020-01-08
Published:
2020-06-15
Online:
2020-06-24
Contact:
De’an Yang
Han Wu, Jingdong Guo, De’an Yang. Facile autoreduction synthesis of core-shell Bi-Bi2O3/CNT with 3-dimensional neural network structure for high-rate performance supercapacitor[J]. J. Mater. Sci. Technol., 2020, 47: 169-176.
Fig. 2. SEM images of (a) pure Bi2O3, (b) Bi2O3/CNT and (c, d) Bi-Bi2O3/CNT. (e) TEM images of Bi-Bi2O3/CNT. (f) HRTEM images (inset: SAED pattern) of Bi-Bi2O3/CNT. (g) HAADF-STEM image and corresponding elemental mapping images of Bi, C, and O of Bi-Bi2O3/CNT.
Fig. 3. (a) XRD patterns of CNT, Bi2O3, Bi2O3/CNT, and Bi-Bi2O3/CNT. (b) Nitrogen adsorption-desorption isotherms, (c) Pore-size distribution plots of Bi2O3, Bi2O3/CNT, Bi-Bi2O3/CNT. (d) XPS Survey spectrum of Bi-Bi2O3/CNT. (e) Bi 4f and (f) O 1s spectrum of Bi-Bi2O3/CNT.
Fig. 4. (a, b, c) CV curves of Bi2O3, Bi2O3/CNT, Bi-Bi2O3/CNT at different rates. (d, e, f) GCD curves of Bi2O3, Bi2O3/CNT, Bi-Bi2O3/CNT at various current density.
Fig. 5. (a) SC valve of Bi2O3, Bi2O3/CNT, Bi-Bi2O3/CNT at various current density. (b) EIS of Bi2O3/CNT, Bi-Bi2O3/CNT. (c) Scheme illustrating the benefits of core-shell Bi-Bi2O3/CNT neural network nanostructure.
Fig. 6. (a) Comparison CV curves of Bi-Bi2O3/CNT electrode and Ni(OH)2/CNT electrode at a scan rate of 20 mV/s. (b) CV curves at different scan rates (10-200 mV/s). (c) GCD curves at different current densities. (d) Specific Capcitance at different current densities. (e) Cycle performance of ASC device(inset: photograph of the ignited LED from Bi-Bi2O3/CNT//Ni(OH)2/CNT ASC device). (f) Ragone plots of the Bi-Bi2O3/CNT//Ni(OH)2/CNT ASC device. The values reported for other ASCs are added for comparison.
[1] | P. Simon, Y. Gogotsi, Nat. Mater. 7 (2008) 845-854. |
[2] |
Y. Wang, Y. Song, Y. Xia, Chem. Soc. Rev. 45 (2016) 5925-5950.
URL PMID |
[3] | S. Pan, J. Ren, X. Fang, H. Peng, Adv. Energy Mater. 6 (2016), 1501867. |
[4] | Z. Yu, L. Tetard, L. Zhai, J. Thomas, Energy Environ. Sci. 8 (2015) 702-730. |
[5] | A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Renew. Sustain. Energy Rev. 58 (2016) 1189-1206. |
[6] | W. Raza, F. Ali, N. Raza, Y. Luo, K.-H. Kim, J. Yang, S. Kumar, A. Mehmood, E.E. Kwon, Nano Energy 52 (2018) 441-473. |
[7] | A. Sumboja, C.Y. Foo, X. Wang, P.S. Lee, Adv. Mater. 25 (2013) 2809-2815. |
[8] | B. Mendoza-Sánchez, T. Brousse, C. Ramirez-Castro, V. Nicolosi, P.S. Grant, Electrochim. Acta 91 (2013) 253-260. |
[9] | F. Barzegar, A. Bello, D.Y. Momodu, J.K. Dangbegnon, F. Taghizadeh, M.J. Madito, T.M. Masikhwa, N. Manyala, RSC Adv. 5 (2015) 37462-37468. |
[10] | P. Du, W. Wei, D. Liu, H. Kang, C. Liu, P. Liu, J. Mater. Sci. 53 (2017) 5255-5269. |
[11] |
C. Guan, J.L. Liu, Y.D. Wang, L. Mao, Z.X. Fan, Z.X. Shen, H. Zhang, J. Wang, ACS Nano 9 (2015) 5198-5207.
DOI URL PMID |
[12] | S. Zhang, B. Yin, Z. Wang, F. Peter, Chem. Eng. J. 306 (2016) 193-203. |
[13] | K. Karthikeyan, S. Amaresh, S.N. Lee, V. Aravindan, Y.S. Lee, Chem. Asian J. 9 (2014) 852-857. |
[14] | J. Ni, X. Bi, Y. Jiang, L. Li, J. Lu, Nano Energy 34 (2017) 356-366. |
[15] | Y. Qiu, H. Fan, X. Chang, H. Dang, Q. Luo, Z. Cheng, Appl. Surf. Sci. 434 (2018) 16-20. |
[16] | N.M. Shinde, Q.X. Xia, J.M. Yun, R.S. Mane, K.H. Kim, ACS Appl. Mater. Interfaces 10 (2018) 11037-11047. |
[17] | H. Xu, X. Hu, H. Yang, Y. Sun, C. Hu, Y. Huang, Adv. Energy Mater. 5 (2015), 1401882. |
[18] | R. Liu, L. Ma, G. Niu, X. Li, E. Li, Y. Bai, G. Yuan, Adv. Funct. Mater. 27 (2017), 1701635. |
[19] |
X. Li, C. Guan, Y. Hu, J. Wang, ACS Appl. Mater. Interfaces 9 (2017) 26008-26015.
DOI URL PMID |
[20] | Q. Cao, J.A. Rogers, Adv. Mater. 21 (2009) 29-53. |
[21] | P. Wang, Y. Xu, H. Liu, Y. Chen, J. Yang, Q. Tan, Nano Energy 15 (2015) 116-124. |
[22] | Y.G. Zhu, Y. Wang, Y. Shi, J.I. Wong, H.Y. Yang, Nano Energy 3 (2014) 46-54. |
[23] | R.R. Salunkhe, J. Lin, V. Malgras, S.X. Dou, J.H. Kim, Y. Yamauchi, Nano Energy 11 (2015) 211-218. |
[24] | L.G.H. Staaf, P. Lundgren, P. Enoksson, Nano Energy 9 (2014) 128-141. |
[25] | Y. Chen, X. Hu, B. Evanko, X. Sun, X. Li, T. Hou, S. Cai, C. Zheng, W. Hu, G.D. Stucky, Nano Energy 46 (2018) 117-127. |
[26] | P. Yang, Y. Chen, X. Yu, P. Qiang, K. Wang, X. Cai, S. Tan, P. Liu, J. Song, W. Mai, Nano Energy 10 (2014) 108-116. |
[27] | W. Chen, X.L. Pan, M.G. Willinger, D.S. Su, X.H. Bao, J. Am. Chem. Soc. 128 (2006) 3136-3137. |
[28] | W. Chen, X.L. Pan, X.H. Bao, J. Am. Chem. Soc. 129 (2007) 7421-7426. |
[29] | J. Lü, C. Huang, S. Bai, Y. Jiang, Z. Li, J. Nat. Gas Chem. 21 (2012) 37-42. |
[30] | A. Roy, A. Ray, S. Saha, M. Ghosh, T. Das, B. Satpati, M. Nandi, S. Das, Electrochim. Acta 283 (2018) 327-337. |
[31] |
R. Punn, A.M. Feteira, D.C. Sinclair, C. Greaves, J. Am. Chem. Soc. 128 (2006) 15386-15387.
URL PMID |
[32] | M.J. Chen, Y. Li, Z.Y. Wang, Y.X. Gao, Y. Huang, J.J. Cao, W.K. Ho, S.C. Lee, Ind. Eng. Chem. Res. 56 (2017) 10251-10258. |
[33] | V. Vivier, A. Regis, G. Sagon, J.Y. Nedelec, L.T. Yu, C. Cachet-Vivier, Electrochim. Acta 46 (2001) 907-914. |
[34] |
T.A. Hanna, A.L. Rieger, P.H. Rieger, X.Y. Wang, Inorg. Chem. 41 (2002) 3590-3592.
URL PMID |
[35] | T.P. Gujar, V.R. Shinde, C.D. Lokhande, S.-H. Han, J. Power Sources 161 (2006) 1479-1485. |
[36] | F.L. Zheng, G.R. Li, Y.N. Ou, Z.L. Wang, C.Y. Su, Y.X. Tong, Chem. Commun. 46 (2010) 5021. |
[37] | S.T. Senthilkumar, R.K. Selvan, M. Ulaganathan, J.S. Melo, Electrochim. Acta115 (2014) 518-524. |
[38] |
D.P. Dubal, G.S. Gund, C.D. Lokhande, R. Holze, ACS Appl. Mater. Interfaces 5 (2013) 2446-2454.
URL PMID |
[39] | N.M. Shinde, Q.X. Xia, J.M. Yun, S. Singh, R.S. Mane, K.H. Kim, Dalton Trans. 46 (2017) 6601-6611. |
[40] | L. Li, X. Zhang, Z. Zhang, M. Zhang, L. Cong, Y. Pan, S. Lin, J. Mater. Chem. A 4 (2016) 16635-16644. |
[1] | Liuyang Cao, Xue Cheng, Hongjie Xu, Guoqin Cao, Junhua Hu, Guosheng Shao. Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode [J]. J. Mater. Sci. Technol., 2021, 76(0): 156-165. |
[2] | Mengmeng Wang, Jinshan Yang, Xiao You, Chunjing Liao, Jingyi Yan, Jing Ruan, Shaoming Dong. Nanoinfiltration behavior of carbon nanotube based nanocomposites with enhanced mechanical and electrical properties [J]. J. Mater. Sci. Technol., 2021, 71(0): 23-30. |
[3] | Qinchuan He, Hejun Li, Xuemin Yin, Jinhua Lu. Effects of PyC shell thickness on the microstructure, ablation resistance of SiCnws/PyC-C/C-ZrC-SiC composites [J]. J. Mater. Sci. Technol., 2021, 71(0): 55-66. |
[4] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
[5] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[6] | K. Ma, Z.Y. Liu, X.X. Zhang, B.L. Xiao, Z.Y. Ma. Microstructure evolution and hot deformation behavior of carbon nanotube reinforced 2009Al composite with bimodal grain structure [J]. J. Mater. Sci. Technol., 2021, 70(0): 73-82. |
[7] | Ying Li, Jixiang Qiao, Yang Zhao, Qing Lan, Pengyan Mao, Jianhang Qiu, Kaiping Tai, Chang Liu, Huiming Cheng. A flexible thermoelectric device based on a Bi2Te3-carbon nanotube hybrid [J]. J. Mater. Sci. Technol., 2020, 58(0): 80-85. |
[8] | Qi Wang, Wen Shi, Bo Zhu, Dang Sheng Su. An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin [J]. J. Mater. Sci. Technol., 2020, 40(0): 24-30. |
[9] | Thang Q. Tran, Jeremy Kong Yoong Lee, Amutha Chinnappan, W.A.D.M. Jayathilaka, Dongxiao Ji, Vishnu Vijay Kumar, Seeram Ramakrishna. Strong, lightweight, and highly conductive CNT/Au/Cu wires from sputtering and electroplating methods [J]. J. Mater. Sci. Technol., 2020, 40(0): 99-106. |
[10] | Xing Zhou, Jian Su, Chenxi Wang, Changqing Fang, Xinyu He, Wanqing Lei, Chaoqun Zhang, Zhigang Huang. Design, preparation and measurement of protein/CNTs hybrids: A concise review [J]. J. Mater. Sci. Technol., 2020, 46(0): 74-87. |
[11] | Xin Wu, Fengwen Mu, Haiyan Zhao. Recent progress in the synthesis of graphene/CNT composites and the energy-related applications [J]. J. Mater. Sci. Technol., 2020, 55(0): 16-34. |
[12] | Yinli Peng, Nan Wang. Effect of phase-separated patterns on the formation of core-shell structure [J]. J. Mater. Sci. Technol., 2020, 38(0): 64-72. |
[13] | Chuang Liu, Fanxin Zeng, Li Xu, Shuangyu Liu, Jincheng Liu, Xinping Ai, Hanxi Yang, Yuliang Cao. Enhanced cycling stability of antimony anode by downsizing particle and combining carbon nanotube for high-performance sodium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 81-88. |
[14] | Feng Zhang, Jia Sun, Yonggang Zheng, Peng-Xiang Hou, Chang Liu, Min Cheng, Xin Li, Hui-Ming Cheng, Zhen Chen. The importance of H2 in the controlled growth of semiconducting single-wall carbon nanotubes [J]. J. Mater. Sci. Technol., 2020, 54(0): 105-111. |
[15] | Changsong Chen, Jiang Chen, Zhen Wang, Jian Zhang, Haisheng San, Shichao Liu, Chunyu Wu, Werner Hofmann. Free-standing ZnO nanorod arrays modified with single-walled carbon nanotubes for betavoltaics and photovoltaics [J]. J. Mater. Sci. Technol., 2020, 54(0): 48-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||