J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (7): 1284-1297.DOI: 10.1016/j.jmst.2019.01.012
• Orginal Article • Previous Articles Next Articles
Huixin Lianga, Youwen Yangbc1, Deqiao Xiea, Lan Lid, Ning Maoaf, Changjiang Wange, Zongjun Tiana, Qing Jiangd*(), Lida Shena*(
)
Received:
2018-11-19
Revised:
2018-12-17
Accepted:
2019-01-14
Online:
2019-07-20
Published:
2019-06-20
Contact:
Jiang Qing,Shen Lida
About author:
1These authors contributed equally.
Huixin Liang, Youwen Yang, Deqiao Xie, Lan Li, Ning Mao, Changjiang Wang, Zongjun Tian, Qing Jiang, Lida Shen. Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility[J]. J. Mater. Sci. Technol., 2019, 35(7): 1284-1297.
Ti | Al | V | O | N | C | H | Fe |
---|---|---|---|---|---|---|---|
Bal | 5.90 | 3.91 | 0.12 | 0.05 | 0.08 | 0.012 | 0.3 |
Table 1 Chemical composition of the Ti-6Al-4 V ELI powder (mass %).
Ti | Al | V | O | N | C | H | Fe |
---|---|---|---|---|---|---|---|
Bal | 5.90 | 3.91 | 0.12 | 0.05 | 0.08 | 0.012 | 0.3 |
Fig. 2. (a) Schematic of irregularly porous structure modeling, (b) schematic of selective laser melting process and (c) as-built Ti-6Al-4 V scaffolds by SLM.
Laser power | Scan speed | Hatch spacing | Layer thickness | Laser focus | Atmosphere |
---|---|---|---|---|---|
180 W | 1350 mm/s | 0.1 mm | 0.03 mm | 0.1 mm | Ar |
Table 2 Optimized process parameters used in the SLM fabrication.
Laser power | Scan speed | Hatch spacing | Layer thickness | Laser focus | Atmosphere |
---|---|---|---|---|---|
180 W | 1350 mm/s | 0.1 mm | 0.03 mm | 0.1 mm | Ar |
ε | Strut thickness (μm) | Volume (mm3) | Surface area (mm2) | Specific surface area (mm-1) | Porosity (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CAD | μCT | CAD | μCT | CAD | μCT | CAD | μCT | D | CAD | μCT | D | ||
Set 1 | 0.06 | 361 ± 35 | 611 ± 52 | 85.49 | 113.23 | 890.32 | 794.75 | 10.41 | 7.01 | -3.4 | 70.92 | 61.49 | -9.43 |
0.25 | 352 ± 62 | 487 ± 49 | 87.93 | 109.81 | 884.33 | 830.24 | 10.06 | 7.56 | -2.5 | 70.01 | 62.65 | -7.36 | |
0.5 | 368 ± 81 | 464 ± 41 | 89.67 | 106.67 | 929.53 | 895.92 | 10.37 | 8.4 | -1.97 | 69.5 | 63.95 | -5.55 | |
Set 2 | 0.5 | 730 ± 56 | 797 ± 34 | 133.08 | 150.44 | 789.53 | 756.71 | 5.93 | 5.03 | -0.9 | 54.73 | 48.83 | -5.9 |
550 ± 61 | 630 ± 21 | 95.04 | 107.29 | 709.16 | 673.54 | 7.46 | 6.28 | -1.18 | 67.67 | 63.51 | -4.16 | ||
380 ± 49 | 468 ± 39 | 59.98 | 75.63 | 588.31 | 547.28 | 9.81 | 7.23 | -2.58 | 79.6 | 74.28 | -5.32 |
Table 3 Comparison between the designed and experimental characteristics of scaffolds (n = 3; D: difference value).
ε | Strut thickness (μm) | Volume (mm3) | Surface area (mm2) | Specific surface area (mm-1) | Porosity (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CAD | μCT | CAD | μCT | CAD | μCT | CAD | μCT | D | CAD | μCT | D | ||
Set 1 | 0.06 | 361 ± 35 | 611 ± 52 | 85.49 | 113.23 | 890.32 | 794.75 | 10.41 | 7.01 | -3.4 | 70.92 | 61.49 | -9.43 |
0.25 | 352 ± 62 | 487 ± 49 | 87.93 | 109.81 | 884.33 | 830.24 | 10.06 | 7.56 | -2.5 | 70.01 | 62.65 | -7.36 | |
0.5 | 368 ± 81 | 464 ± 41 | 89.67 | 106.67 | 929.53 | 895.92 | 10.37 | 8.4 | -1.97 | 69.5 | 63.95 | -5.55 | |
Set 2 | 0.5 | 730 ± 56 | 797 ± 34 | 133.08 | 150.44 | 789.53 | 756.71 | 5.93 | 5.03 | -0.9 | 54.73 | 48.83 | -5.9 |
550 ± 61 | 630 ± 21 | 95.04 | 107.29 | 709.16 | 673.54 | 7.46 | 6.28 | -1.18 | 67.67 | 63.51 | -4.16 | ||
380 ± 49 | 468 ± 39 | 59.98 | 75.63 | 588.31 | 547.28 | 9.81 | 7.23 | -2.58 | 79.6 | 74.28 | -5.32 |
Fig. 6. Compression test results of as-built scaffolds with various irregularities, porosities and different heat treatment processes: (a, b) stress-strain curves; (c, d) calculated elastic modulus; (e, f) ultimate strength.
Fig. 7. Viability and proliferation of MG63 cells on porous Ti-6Al-4 V scaffolds with different irregularities and porosities: (a, b) fluorescence microscopy images after being cultured for 1 d (live cells appeared as bright green dots); (c, d) CCK-8 assay results after being cultured for 1, 3 and 5 d, n = 3 (sample size), #Significant difference (one-way ANOVA: p<0.05).
Fig. 8. SEM micrographs of cell adhesion morphologies on scaffolds with different irregularities and porosities after being cultured for 3 d (cell bridging behaviors were highlighted by red arrows).
Fig. 9. ALP activity of MG63 cells on different porous Ti-6Al-4 V scaffold designs after being cultured for 14 d, n = 3 (sample size), #Significant difference (one-way ANOVA: p<0.05).
Fig. 10. (a) Reconstructed 3D model of healthy spongy bone with, (b) trabecular-like porous structure with homogeneity in porosity, (c) reconstructed 3D model of gradient structure of trabecular bone and (d) trabecular-like porous structure with gradient in porosity.
Fig. 12. Comparisons between design and fabrication of scaffolds with different irregularities: (a, b) sections from the same location; (c, d) unit cells of 2.4 mm × 2.4 mm × 2.4 mm.
|
[1] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[2] | L. Deng, K. Kosiba, R. Limbach, L. Wondraczek, U. Kühn, S. Pauly. Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 60(0): 139-146. |
[3] | Huihui Yang, Guanyi Jing, Piao Gao, Zemin Wang, Xiangyou Li. Effects of circular beam oscillation technique on formability and solidification behaviour of selective laser melted Inconel 718: From single tracks to cuboid samples [J]. J. Mater. Sci. Technol., 2020, 51(0): 137-150. |
[4] | Haoqing Li, Ming Wang, Dianjun Lou, Weilong Xia, Xiaoying Fang. Microstructural features of biomedical cobalt-chromium-molybdenum (CoCrMo) alloy from powder bed fusion to aging heat treatment [J]. J. Mater. Sci. Technol., 2020, 45(0): 146-156. |
[5] | Yucheng Ji, Chaofang Dong, Decheng Kong, Xiaogang Li. Design materials based on simulation results of silicon induced segregation at AlSi10Mg interface fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 46(0): 145-155. |
[6] | P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion [J]. J. Mater. Sci. Technol., 2020, 45(0): 98-107. |
[7] | Juan Hou, Wei Chen, Zhuoer Chen, Kai Zhang, Aijun Huang. Microstructure, tensile properties and mechanical anisotropy of selective laser melted 304L stainless steel [J]. J. Mater. Sci. Technol., 2020, 48(0): 63-71. |
[8] | Yanjin Lu, Xiongcheng Xu, Chunguang Yang, Ling Ren, Kai Luo, Ke Yang, Jinxin Lin. In vitro insights into the role of copper ions released from selective laser melted CoCrW-xCu alloys in the potential attenuation of inflammation and osteoclastogenesis [J]. J. Mater. Sci. Technol., 2020, 41(0): 56-67. |
[9] | P. Wang, C.S. Lao, Z.W. Chen, Y.K. Liu, H. Wang, H. Wendrock, J. Eckert, S. Scudino. Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36(0): 18-26. |
[10] | Hongyu Wu, Dong Zhang, Biaobiao Yang, Chao Chen, Yunping Li, Kechao Zhou, Liang Jiang, Ruiping Liu. Microstructural evolution and defect formation in a powder metallurgy nickel-based superalloy processed by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36(0): 7-17. |
[11] | Guanyi Jing, Wenpu Huang, Huihui Yang, Zemin Wang. Microstructural evolution and mechanical properties of 300M steel produced by low and high power selective laser melting [J]. J. Mater. Sci. Technol., 2020, 48(0): 44-56. |
[12] | Piao Gao, Wenpu Huang, Huihui Yang, Guanyi Jing, Qi Liu, Guoqing Wang, Zemin Wang, Xiaoyan Zeng. Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5Y alloy produced by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 39(0): 144-154. |
[13] | Peng Chen, Sheng Li, Yinghao Zhou, Ming Yan, Moataz M. Attallah. Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying [J]. J. Mater. Sci. Technol., 2020, 43(0): 40-43. |
[14] | Yuan Zhong, Leifeng Liu, Ji Zou, Xiaodong Li, Daqing Cui, Zhijian Shen. Oxide dispersion strengthened stainless steel 316L with superior strength and ductility by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 42(0): 97-105. |
[15] | Qian Yan, Bo Song, Yusheng Shi. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting [J]. J. Mater. Sci. Technol., 2020, 41(0): 199-208. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||