J. Mater. Sci. Technol. ›› 2017, Vol. 33 ›› Issue (6): 558-566.DOI: 10.1016/j.jmst.2017.01.013
• Orginal Article • Previous Articles Next Articles
Li Yanleia(), Wu Guohuaa, Chen Antaoa, Liu Wencaia, Wang Yingxinab(
), Zhang Lianga
Received:
2016-11-07
Revised:
2016-12-10
Accepted:
2016-12-16
Online:
2017-06-20
Published:
2017-08-22
About author:
These authors contributed equally to this work.
Li Yanlei, Wu Guohua, Chen Antao, Liu Wencai, Wang Yingxin, Zhang Liang. Effects of processing parameters and addition of flame-retardant into moulding sand on the microstructure and fluidity of sand-cast magnesium alloy Mg-10Gd-3Y-0.5Zr[J]. J. Mater. Sci. Technol., 2017, 33(6): 558-566.
Element | Gd | Y | Zr | Mg |
---|---|---|---|---|
wt% | 9.85 | 3.26 | 0.48 | Bal. |
Table 1 Actual chemical composition of Mg-10Gd-3Y-0.5Zr alloy in this work (wt%).
Element | Gd | Y | Zr | Mg |
---|---|---|---|---|
wt% | 9.85 | 3.26 | 0.48 | Bal. |
Part | Flame-retardant content (wt%) | Pouring temperature (°C) | Mould pre-heating temperature (°C) |
---|---|---|---|
1 | 1 | 720/750/780 | 70 |
0 | 720/750/780 | ||
2 | 1 | 750 | 40/110 |
0 | 40/110 | ||
0 | |||
0.5 | |||
3 | 1 | 750 | 70 |
1.5 | |||
2 |
Table 2 Fluidity test parameters varied in this work.
Part | Flame-retardant content (wt%) | Pouring temperature (°C) | Mould pre-heating temperature (°C) |
---|---|---|---|
1 | 1 | 720/750/780 | 70 |
0 | 720/750/780 | ||
2 | 1 | 750 | 40/110 |
0 | 40/110 | ||
0 | |||
0.5 | |||
3 | 1 | 750 | 70 |
1.5 | |||
2 |
Fig. 3. Optical microstructures of Mg-10Gd-3Y-0.5Zr alloy at different pouring temperatures and no addition of flame retardant into moulding sand: (a) 720 °C, (b) 750 °C, (c) 780 °C, and (d) variations in grain size as a function of pouring temperature.
Fig. 5. Identification of typical oxide inclusion phases in as-cast Mg-10Gd-3Y-0.5Zr alloy by SEM-EDS: (a) SEM image of the Mg-10Gd-3Y-0.5Zr alloy prepared at 1.5% flame-retardant addition in moulding sand, (b) magnified view of the box region in (a), (c) EDS spectrum of a polygonal particle (labeled as “1” in (b)).
Oxide inclusions content (vol.%) | Pouring temperature (°C) | Mould pre-heating temperature (°C) | Flame retardant content (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
720 | 750 | 780 | 40 | 70 | 110 | 0.5 | 1 | 1.5 | 2 | |
Flame-retardant | 0.43 | 0.42 | 0.73 | 0.28 | 0.42 | 0.45 | 0.46 | 0.38 | 0.42 | 0.35 |
No added | 0.52 | 0.68 | 0.83 | 0.35 | 0.68 | 0.48 |
Table 3 Oxide inclusions content of as-cast Mg-10Gd-3Y-0.5Zr alloy under different conditions.
Oxide inclusions content (vol.%) | Pouring temperature (°C) | Mould pre-heating temperature (°C) | Flame retardant content (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
720 | 750 | 780 | 40 | 70 | 110 | 0.5 | 1 | 1.5 | 2 | |
Flame-retardant | 0.43 | 0.42 | 0.73 | 0.28 | 0.42 | 0.45 | 0.46 | 0.38 | 0.42 | 0.35 |
No added | 0.52 | 0.68 | 0.83 | 0.35 | 0.68 | 0.48 |
Fig. 6. Optical micrographs showing grain structure in Mg-10Gd-3Y-0.5Zr alloy at different preheating sand moulding temperatures: (a) 40 °C, (b) 70 °C, (c) 110 °C, and (d) variation in grain size as a function of mould pre-heating temperature.
Fig. 8. Optical microstructures of Mg-10Gd-3Y-0.5Zr alloy at different flame retardant addition levels: (a) 0%, (b) 0.5%, (c) 1%, (d) 1.5%, (e) 2%, and (f) variation in grain size as a function of flame retardant content.
Fig. 11. FTIR spectrograms for gaseous products during combustion of furan resin sand (a) combustion at 226 °C, (b) combustion at 517 °C, and (c) combustion at 700 °C.
Fig. 12. (a) Variation in gas evolution of moulding sand as a function of the flame-retardant addition level, and (b) variation in air permeability of moulding sand as a function of the flame retardant addition level.
|
[1] | Qiyu Liao, Yanchao Jiang, Qichi Le, Xingrui Chen, Chunlong Cheng, Ke Hu, Dandan Li. Hot deformation behavior and processing map development of AZ110 alloy with and without addition of La-rich Mish Metal [J]. J. Mater. Sci. Technol., 2021, 61(0): 1-15. |
[2] | Qianqian Jin, Xiaohong Shao, Shijian Zheng, Yangtao Zhou, Bo Zhang, Xiuliang Ma. Interfacial dislocations dominated lateral growth of long-period stacking ordered phase in Mg alloys [J]. J. Mater. Sci. Technol., 2021, 61(0): 114-118. |
[3] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[4] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[5] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[6] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[7] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[8] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[9] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[10] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[11] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[12] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[13] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[14] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[15] | Xu-Ping Wu, Xue-Mei Luo, Hong-Lei Chen, Ji-Peng Zou, Guang-Ping Zhang. A unified model for determining fracture strain of metal films on flexible substrates [J]. J. Mater. Sci. Technol., 2020, 54(0): 87-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||