J. Mater. Sci. Technol. ›› 2023, Vol. 132: 1-17.DOI: 10.1016/j.jmst.2022.05.042
• Research Article • Next Articles
J.R. Lia, D.S. Xiea, Z.R. Zengb, B. Songc, H.B. Xiea, R.S. Peid, H.C. Pana,*(), Y.P. Rena, G.W. Qina
Received:
2022-03-04
Revised:
2022-05-19
Accepted:
2022-05-19
Published:
2023-01-01
Online:
2022-06-22
Contact:
H.C. Pan
About author:
* E-mail addresses: panhc@atm.neu.edu.cn (H.C. Pan).J.R. Li, D.S. Xie, Z.R. Zeng, B. Song, H.B. Xie, R.S. Pei, H.C. Pan, Y.P. Ren, G.W. Qin. Mechanistic investigation on Ce addition in tuning recrystallization behavior and mechanical property of Mg alloy[J]. J. Mater. Sci. Technol., 2023, 132: 1-17.
Fig. 1. True stress-strain curves of (a) as-extruded pure Mg and Mg-0.3Ce samples, and (b) E280 samples annealed at 300 °C for 0 h, 3 h, 6 h, and 12 h.
Alloy | Ce (at.%) | YS/MPa | UTS/MPa | EL/% | Processing parameter | Refs. |
---|---|---|---|---|---|---|
Mg-25Ce | 0.043 | 131.7 | 197.8 | 37.5 | Extrusion @375 °C | [ |
Mg-0.5Ce | 0.086 | 294.9 | 295.4 | 15.9 | Extrusion @375 °C | [ |
Mg-1Ce | 0.17 | 316.1 | 321.5 | 7.6 | Extrusion @375 °C | [ |
Mg-2Ce | 0.34 | 248.9 | 263.0 | 19.8 | Extrusion @375 °C | [ |
Mg-0.4Ce | 0.069 | 91.1 | 240.4 | 21.0 | Extrusion @430 °C | [ |
Mg-0.2Ce | 0.034 | 110 | 250 | 17.0 | Rolled@350 °C | [ |
Mg-0.2Ce | 0.034 | 60 | 200 | 30 | ECAP@350 °C | [ |
Mg-0.2Ce | 0.034 | 55 | 250 | 40 | MAF@350 °C | [ |
Mg-0.2Ce | 0.034 | 90±5 | - | 20±2 | Rolled @400 °C | [ |
Mg-0.2Ce | 0.034 | 64±3 | - | 38±3 | MAF @350 °C | [ |
Mg-0.2Ce | 0.034 | 63±2 | - | 19±2 | MAF@350 °C→@300 °C | [ |
Mg-0.3Ce | 0.046 | 352 | 356 | 1.8 | Extrusion @280 °C | This work |
Mg-0.3Ce | 0.046 | 332 | 335 | 9.2 | Extrusion @350 °C | This work |
Table 1. Comparison of mechanical properties between reported Mg-Ce and present Mg alloys.
Alloy | Ce (at.%) | YS/MPa | UTS/MPa | EL/% | Processing parameter | Refs. |
---|---|---|---|---|---|---|
Mg-25Ce | 0.043 | 131.7 | 197.8 | 37.5 | Extrusion @375 °C | [ |
Mg-0.5Ce | 0.086 | 294.9 | 295.4 | 15.9 | Extrusion @375 °C | [ |
Mg-1Ce | 0.17 | 316.1 | 321.5 | 7.6 | Extrusion @375 °C | [ |
Mg-2Ce | 0.34 | 248.9 | 263.0 | 19.8 | Extrusion @375 °C | [ |
Mg-0.4Ce | 0.069 | 91.1 | 240.4 | 21.0 | Extrusion @430 °C | [ |
Mg-0.2Ce | 0.034 | 110 | 250 | 17.0 | Rolled@350 °C | [ |
Mg-0.2Ce | 0.034 | 60 | 200 | 30 | ECAP@350 °C | [ |
Mg-0.2Ce | 0.034 | 55 | 250 | 40 | MAF@350 °C | [ |
Mg-0.2Ce | 0.034 | 90±5 | - | 20±2 | Rolled @400 °C | [ |
Mg-0.2Ce | 0.034 | 64±3 | - | 38±3 | MAF @350 °C | [ |
Mg-0.2Ce | 0.034 | 63±2 | - | 19±2 | MAF@350 °C→@300 °C | [ |
Mg-0.3Ce | 0.046 | 352 | 356 | 1.8 | Extrusion @280 °C | This work |
Mg-0.3Ce | 0.046 | 332 | 335 | 9.2 | Extrusion @350 °C | This work |
Fig. 2. EBSD images of as-extruded alloys, including (a, d) pure Mg extruded at 180 °C, (b, e) Mg-0.3Ce extruded at 280 °C, and (c, f) Mg-0.3Ce extruded at 350 °C samples. (a), (b), (c) display the IPF maps and (d), (e), (f) display the IPF images. The mean DRXed grain size profile is also included as inset image.
Fig. 3. TKD images over cross-sectional of the as-extruded E280 sample, including (a, b) typical region A with lower degree of DRX, and (c, d) typical region B with higher degree of DRX. Figs. b, d display the IGMA results for the region A and B, respectively. The LAGBs are marked by the red lines, and the HAGBs are displayed as black lines.
Fig. 4. Typical STEM-DF images and 3D-APT result of the E280 sample, (a, b) showing non-DRXed region involving LAGBs and residual dislocations, (c) DRXed region with string like sub-/DRXed grains. Compared with STEM-DF image in (d), the Z-contrast image in (e) of the same region shows the non-DRXed region with no obvious segregation, and the DRXed region with partial segregations. Also, the Z-contrast images in (f, g) show the existences of nano-particles. 3D-APT result confirms the Ce segregation along HAGB in (h).
Fig. 5. Typical EBSD results of pure Mg-180 sample, including (a) ~17.5 mm, (b) ~12.5 mm, (c) ~7.5 mm and (d) ~2.5 mm away from the die-exit. (e) Misorientation angle profile and (f) inverse pole figures at different positions are also included. The characterized position is elucidated as inset in (d).
Fig. 6. Optical images of the interrupted Mg-0.3Ce extrusion sample at different positions below extrusion die exit, showing (a) montaged large area near the die exit and (b) the enlarged images at different distances from the die exit.
Fig. 7. EBSD results of microstructure evolution during extrusion process of Mg-0.3Ce-280 sample, including (a-e) IPF maps of 22.5-2.5 mm positions below extrusion die exit, (f) point-to-origin line profiles of misorientation angle along paths indicated by AB and CD in (e), (g) the enlarged IPF map from the marked region in (d), and (h) the corresponding orientation map based on quaternion disorientaion coloring mode. The IGMA images for positions at 7.5 mm and 2.5 mm and the misorientation angle profile for 22.5 mm, 17.5 mm and 12.5 mm positions are displayed in (i) and (j), respectively.
Fig. 8. Typical TEM images at the position of 17.5 mm below extrusion die exit of Mg-0.3Ce billet, (a, b) showing the existance of <c+a> dislocations under WBDF condition and (c, d) particles/second phases under STEM condition.
Fig. 9. Typical TEM images at the position of 12.5 mm below extrusion die exit of Mg-0.3Ce billet, showing <c+a> dislocation and <a> dislocation identified by WBDF conditions of (a, c) g=0002 and (b, d) g=$ 11\bar{2}0$, and (e) the dislocation tangles and (f) chain-like distributed particle.
Fig. 10. Typical TEM images at the position of 7.5 mm below extrusion die exit of Mg-0.3Ce billet (a, b, c) showing the initial formation stage of LAGBs which are perpendicular to basal plane via <c+a> dislocations accumulation, under the two-beam conditions of (a, b) g=0002 and (c) g=$10\bar{1}0 $, and (d) the corresponding schematical image.
Fig. 11. Typical TEM images at the position of 2.5 mm below extrusion die exit of Mg-0.3Ce billet, (a) showing the formation of polygonized sub-grains, (b) LAGBs being perpendicular and parallel to basal plane, and (c) LAGBs being askew to basal plane. Typical TEM images under conditions of (d) bright-field, (e) dark-field with g=0002, (f) dark-field with g=$ 11\bar{2}0 $, (g) dark-field with g=$\bar{1}\bar{1}22$, (h) dark-field with g=$11\bar{2}2$, and (i) the corresponding schematical image for dislocations and LAGBs.
Fig. 12. Typical EBSD images for E280 sample annealed at 300 °C for 3 h, (a) showing the IPF map and corresponding pole figure. And (b, c) the enlarged inverse pole figure maps in rectangular regions marked as “b” and “c” in (a), which include misorientation profiles along the direction indicated by arrows of AB and CD in region “b”, and sub regions with grain size less and above 3 μm in region “c”, respectively.
Fig. 13. Typical EBSD results of E280 sample annealed at 300 °C, showing (a) the inverse pole figure map of 6 h-annealed sample and (b) inverse pole figure, and (c, e) the corresponding sub region maps for DRXed grains less or larger than 5 μm, and (d, f) the pole figure and IPF, and (g) the inverse pole figure map of 12 h-annealed sample with (h) whole and DRXed region IPF, and (i) RE-textured grains map with the threshold of 15° and (j) the distribution of 〈$ 10\bar{1}0 $〉 and $\langle 44\bar{8}3\rangle$ orientated grains.
Fig. 14. Schematic illustration showing (a) the loading condition of the billet during indirect extrusion, and (b) the corresponding stress state of the billet as well as (c-g) the deformation mechanisms at different position below extrusion die exit including (c, d) twinning dominated region, (d) <c+a> dislocation activated region, (e, f) formation of LAGBs and (g) the finally formation of strings of sub-grains and/or HAGBs.
Fig. 15. Schmidt factor maps and statistical Schmidt factor values of (a-c) basal slip, (d-f) prismatic slip, (g-i) pyramidal I slip and (j-l) pyramidal II slip systems at the position of (a, d, g, j) 7.5 mm and (b, e, h, k) 2.5 mm. Average Schmidt factor values were calculated and indicate in (c, f, i, l). The stress state is shown in top-right corner exhibiting the geometrical condition of c-axis under compression, in (b).
Slip system | mSF(k) | CRSS (MPa) (Estimated) | m'(k) | ||
---|---|---|---|---|---|
7.5 mm | 2.5 mm | 7.5 mm | 2.5 mm | ||
Basal | 0.222 | 0.296 | ∼ 150 | 0.148 | 0.197 |
Prism. | 0.067 | 0.105 | ∼ 100 | 0.067 | 0.105 |
Pyr. I | 0.483 | 0.453 | - | - | - |
Pyr. II | 0.490 | 0.441 | ∼ 200 | 0.245 | 0.221 |
Table 2. Calculated average Schmidt factor, estimated CRSS values and the resulting SOF values of different slip systems at 7.5 mm/2.5 mm positions.
Slip system | mSF(k) | CRSS (MPa) (Estimated) | m'(k) | ||
---|---|---|---|---|---|
7.5 mm | 2.5 mm | 7.5 mm | 2.5 mm | ||
Basal | 0.222 | 0.296 | ∼ 150 | 0.148 | 0.197 |
Prism. | 0.067 | 0.105 | ∼ 100 | 0.067 | 0.105 |
Pyr. I | 0.483 | 0.453 | - | - | - |
Pyr. II | 0.490 | 0.441 | ∼ 200 | 0.245 | 0.221 |
[1] |
J.F. Nie, K.S. Shin, Z.R. Zeng, Metall. Mater. Trans. A 51 (2020) 6045-6109.
DOI URL |
[2] |
Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen, F. Pan, J. Magnes. Alloy. 9 (2021) 705-747.
DOI URL |
[3] |
J. Li, A. Zhang, H. Pan, Y. Ren, Z. Zeng, Q. Huang, C. Yang, L. Ma, G. Qin, J. Magnes. Alloy. 9 (2021) 1297-1303.
DOI URL |
[4] |
J. Wu, L. Jin, J. Dong, F. Wang, S. Dong, J. Mater. Sci. Technol. 42 (2020) 175-189.
DOI URL |
[5] |
M.G. Jiang, C. Xu, H. Yan, S.H. Lu, T. Nakata, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, Sci. Rep. 8 (2018) 16800.
DOI URL PMID |
[6] |
T. Al-Samman, X. Li, Mater. Sci. Eng. A 528 (2011) 3809-3822.
DOI URL |
[7] |
D. Wu, R.S. Chen, E.H. Han, J. Alloy. Compd. 509 (2011) 2856-2863.
DOI URL |
[8] |
W.X. Wu, L. Jin, Z.Y. Zhang, W.J. Ding, J. Dong, J. Alloy. Compd. 585 (2014) 111-119.
DOI URL |
[9] |
S. Liu, H. Liu, X. Chen, G. Huang, Q. Zou, A. Tang, B. Jiang, Y. Zhu, F. Pan, J. Mater. Sci. Technol. 113 (2022) 271-286.
DOI URL |
[10] |
R.K. Sabat, A.P. Brahme, R.K. Mishra, K. Inal, S. Suwas, Acta Mater. 161 (2018) 246-257.
DOI URL |
[11] |
Y. Chino, M. Kado, M. Mabuchi, Mater. Sci. Eng. A 494 (2008) 343-349.
DOI URL |
[12] |
R.K. Sabat, R.K. Mishra, A.K. Sachdev, S. Suwas, Mater. Lett. 153 (2015) 158-161.
DOI URL |
[13] |
C. Ha, J. Bohlen, X. Zhou, H.G. Brokmeier, K.U. Kainer, N. Schell, D. Letzig, S. Yi, Mater. Charact. 175 (2021) 111044.
DOI URL |
[14] |
T. Zheng, Y. Hu, C. Zhang, T. Zhao, F. Pan, A. Tang, Mater. Charact. 179 (2021) 111299.
DOI URL |
[15] |
X. Wei, L. Jin, F. Wang, J. Li, N. Ye, Z. Zhang, J. Dong, J. Mater. Sci. Technol. 44 (2020) 19-23.
DOI URL |
[16] |
C. Xu, G.H. Fan, T. Nakata, X. Liang, Y.Q. Chi, X.G. Qiao, G.J. Cao, T.T. Zhang, M. Huang, K.S. Miao, M.Y. Zheng, S. Kamado, H.L. Xie, Metall. Mater. Trans. A 49 (2018) 1931-1947.
DOI URL |
[17] |
H. Pan, D. Xie, J. Li, H. Xie, Q. Huang, Q. Yang, G. Qin, Mater. Res. Lett. 9 (2021) 329-335.
DOI URL |
[18] |
H. Huang, H. Miao, G. Yuan, Z. Wang, W. Ding, J. Magnes. Alloy. 6 (2018) 107-113.
DOI URL |
[19] |
M.G. Jiang, C. Xu, H. Yan, G.H. Fan, T. Nakata, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, B.H. Lu, Acta Mater. 157 (2018) 53-71.
DOI URL |
[20] |
A. Imandoust, C.D. Barrett, T. Al-Samman, M.A. Tschopp, E. Essadiqi, N. Hort, H. El Kadiri, Metall. Mater. Trans. A 49 (2018) 1809-1829.
DOI URL |
[21] |
A. Imandoust, C.D. Barrett, A.L. Oppedal, W.R. Whittington, Y. Paudel, H. El Kadiri, Acta Mater. 138 (2017) 27-41.
DOI URL |
[22] |
L.Y. Zhao, H. Yan, R.S. Chen, E.-H. Han, Scr. Mater. 188 (2020) 200-205.
DOI URL |
[23] |
L.Y. Zhao, H. Yan, R.S. Chen, E.-H. Han, J. Magnes. Alloy. 9 (2021) 818-828.
DOI URL |
[24] |
L.Y. Zhao, H. Yan, R.S. Chen, E.-H. Han, J. Mater. Sci. Technol. 60 (2021) 162-167.
DOI URL |
[25] |
D. Guan, W.M. Rainforth, J. Gao, L. Ma, B. Wynne, Acta Mater. 145 (2018) 399-412.
DOI URL |
[26] |
D. Guan, W.M. Rainforth, J. Gao, J. Sharp, B. Wynne, L. Ma, Acta Mater. 135 (2017) 14-24.
DOI URL |
[27] |
Z.R. Zeng, M.Z. Bian, S.W. Xu, C.H.J. Davies, N. Birbilis, J.F. Nie, Scr. Mater. 108 (2015) 6-10.
DOI URL |
[28] |
Y.B. Chun, M. Battaini, C.H.J. Davies, S.K. Hwang, Metall. Mater. Trans. A 41 (2010) 3473-3487.
DOI URL |
[29] |
H. Pan, G. Qin, Y. Huang, Y. Ren, X. Sha, X. Han, Z.-Q. Liu, C. Li, X. Wu, H. Chen, C. He, L. Chai, Y. Wang, J.-F. Nie, Acta Mater. 149 (2018) 350-363.
DOI URL |
[30] |
J.P. Hadorn, K. Hantzsche, S. Yi, J. Bohlen, D. Letzig, J.A. Wollmershauser, S.R. Agnew, Metall. Mater. Trans. A 43 (2011) 1347-1362.
DOI URL |
[31] |
B. Yang, C. Shi, X. Ye, J. Teng, R. Lai, Y. Cui, D. Guan, H. Cui, Y. Li, A. Chiba, J. Magnes. Alloy. (2021), doi: 10.1016/j.jma.2021.01.006.
DOI URL |
[32] |
D. Zhao, G. Li, P. Li, J. Zhou, K. Cheng, Y. Liu, Y. Yang, J. Duan, R. Ghomashchi, X. Wang, Mater. Sci. Eng. A 803 (2021) 140508.
DOI URL |
[33] |
T. Kong, B.J. Kwak, J. Kim, J.H. Lee, S.H. Park, J.H. Kim, Y.H. Moon, H.S. Yoon, T. Lee, J. Magnes. Alloy. 8 (2020) 163-171.
DOI URL |
[34] |
Q. Yang, B. Jiang, W. Jiang, S. Luo, F. Pan, Mater. Sci. Eng. A 628 (2015) 143-148.
DOI URL |
[35] |
N. Stanford, M.R. Barnett, Mater. Sci. Eng. A 496 (2008) 399-408.
DOI URL |
[36] |
H. Okamoto, J. Phase. Equilib. Diff. 32 (2011) 265-266.
DOI URL |
[37] |
Y. Liu, N. Li, M. Arul Kumar, S. Pathak, J. Wang, R.J. McCabe, N.A. Mara, C. N. Tomé, Acta Mater. 135 (2017) 411-421.
DOI URL |
[38] |
J. Zhang, G. Xi, X. Wan, C. Fang, Acta Mater. 133 (2017) 208-216.
DOI URL |
[39] |
C.D. Barrett, A. Imandoust, H. El Kadiri, Scr. Mater. 146 (2018) 46-50.
DOI URL |
[40] |
X. Huang, Y. Xin, Y. Cao, G. Huang, W. Li, J. Mater. Sci. Technol. 109 (2022) 30-48.
DOI URL |
[41] | M.R. Barnett, in: C. Bettles, M. Barnett (Eds.), Advances in Wrought Magnesium Alloys, Woodhead Publishing, 2012, pp. 105-143. |
[42] |
Q. Yang, B. Jiang, B. Song, Z. Yu, D. He, Y. Chai, J. Zhang, F. Pan, J. Magnes. Alloy. 10 (2022) 411-422.
DOI URL |
[43] | B.-Y. Liu, F. Liu, N. Yang, X.-B. Zhai, L. Zhang, Y. Yang, B. Li, J. Li, E. Ma, J.-F. Nie, Z.-W. Shan, Science 365 (2019) 73-75. |
[44] | H. Yoshinaga, R. Horiuchi, Transact. Japan Inst. Metals 4 (1963) 1-8. |
[45] | H. Yoshinaga, R. Horiuchi, Trans. Japan Inst. Metals 5 (1964) 14-21. |
[46] |
A. Akhtar, E. Teghtsoonian, Acta Mater. 17 (1969) 1351-1356.
DOI URL |
[47] |
A. Couret, D. Caillard, Acta Mater. 33 (1985) 1447-1454.
DOI URL |
[48] |
T. Obara, H. Yoshinga, S. Morozumi, Acta Mater. 21 (1973) 845-853.
DOI URL |
[49] |
C.M. Byer, B. Li, B. Cao, K.T. Ramesh, Scr. Mater. 62 (2010) 536-539.
DOI URL |
[50] |
B. Syed, J. Geng, R.K. Mishra, K.S. Kumar, Scr. Mater. 67 (2012) 700-703.
DOI URL |
[51] |
K.Y. Xie, Z. Alam, A. Caffee, K.J. Hemker, Scr. Mater. 112 (2016) 75-78.
DOI URL |
[52] |
H. Su, X. Zhou, S. Zheng, H. Ye, Z. Yang, Scr. Mater. 206 (2022) 114237.
DOI URL |
[53] | N. Li, L. Yang, C. Wang, M.A. Monclús, D. Shi, J.M. Molina-Aldareguía, Mater. Sci. Eng. A 819 (2021). |
[54] |
J. Wang, Y. Chen, Z. Chen, J. Llorca, X. Zeng, Acta Mater. 217 (2021) 117151.
DOI URL |
[55] |
J. Wu, S. Si, K. Takagi, T. Li, Y. Mine, K. Takashima, Y.L. Chiu, Philos. Mag. 100 (2020) 1454-1475.
DOI URL |
[56] |
J.-K. Lee, B.-J. Lee, Metall. Mater. Trans. A 52 (2021) 964-974.
DOI URL |
[57] |
D. Zhao, X. Ma, A. Srivastava, G. Turner, I. Karaman, K.Y. Xie, Acta Mater. 207 (2021) 116691.
DOI URL |
[58] |
M. Yamasaki, K. Hagihara, S.-i. Inoue, J.P. Hadorn, Y. Kawamura, Acta Mater. 61 (2013) 2065-2076.
DOI URL |
[59] | Y. Kawano, T. Mayama, M. Mitsuhara, S. Yamasaki, M. Sato, Mater. Today Com- mun. 26 (2021) 102041. |
[60] |
L. Wang, Z. Huang, H. Wang, A. Maldar, S. Yi, J.-S. Park, P. Kenesei, E. Lilleodden, X. Zeng, Acta Mater. 155 (2018) 138-152.
DOI URL |
[61] |
J. Li, J. Wu, L. Jin, M. Celikin, F. Wang, S. Dong, J. Dong, Sci. Rep. 11 (2021) 2860.
DOI URL |
[62] |
M. Huang, P.E.J. Rivera-Díaz-del-Castillo, O. Bouaziz, S. van der Zwaag, Mater. Sci. Technol. 25 (2009) 833-839.
DOI URL |
[63] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI URL |
[64] |
N. Liang, Y. Zhao, Y. Li, T. Topping, Y. Zhu, R.Z. Valiev, E.J. Lavernia, J. Mater. Sci. 53 (2018) 13173-13185.
DOI URL |
[65] |
L. Zhao, N. Park, Y. Tian, A. Shibata, N. Tsuji, Adv. Eng. Mater. 20 (2018) 1701016.
DOI URL |
[66] |
H. Pan, R. Kang, J. Li, H. Xie, Z. Zeng, Q. Huang, C. Yang, Y. Ren, G. Qin, Acta Mater. 186 (2020) 278-290.
DOI URL |
[67] |
Z. He, N. Jia, H. Yan, Y. Shen, M. Zhu, X. Guan, X. Zhao, S. Jin, G. Sha, Y. Zhu, C. T. Liu, Int. J. Plast. 139 (2021) 102965.
DOI URL |
[68] |
L.P. Kubin, A. Mortensen, Scr. Mater. 48 (2003) 119-125.
DOI URL |
[1] | Dong Wu, Wenya Li, Kun Liu, Yang Yang, Sijie Hao. Optimization of cold spray additive manufactured AA2024/Al2O3 metal matrix composite with heat treatment [J]. J. Mater. Sci. Technol., 2022, 106(0): 211-224. |
[2] | Jie Kuang, Xiaolong Zhao, Yuqing Zhang, Jinyu Zhang, Gang Liu, Jun Sun, Guangming Xu, Zhaodong Wang. Impact of thermal exposure on the microstructure and mechanical properties of a twin-roll cast Al-Mn-Fe-Si strip [J]. J. Mater. Sci. Technol., 2022, 107(0): 183-196. |
[3] | Changzheng Li, Huan Liu, Yunchang Xin, Bo Guan, Guangjie Huang, Peidong Wu, Qing Liu. Achieving ultra-high strength using densely ultra-fine LPSO phase [J]. J. Mater. Sci. Technol., 2022, 129(0): 135-138. |
[4] | Sijia Huo, Lei Chen, Xinrui Liu, Qingyi Kong, Yujin Wang, Hui Gu, Yu Zhou. Reactive sintering of dual-phase high-entropy ceramics with superior mechanical properties [J]. J. Mater. Sci. Technol., 2022, 129(0): 223-227. |
[5] | Daixiu Wei, Wu Gong, Liqiang Wang, Bowen Tang, Takuro Kawasaki, Stefanus Harjo, Hidemi Kato. Strengthening of high-entropy alloys via modulation of cryo-pre-straining-induced defects [J]. J. Mater. Sci. Technol., 2022, 129(0): 251-260. |
[6] | T. Fang X., K. Li Z., F. Wang Y., M. Ruiz, L. Ma X., Y. Wang H., Y. Zhu, R. Schoell, C. Zheng, D. Kaoumi, T. Zhu Y.. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures [J]. J. Mater. Sci. Technol., 2022, 98(0): 244-247. |
[7] | Huang Chunping, Liang Renyu, Liu Fenggang, Yang Haiou, Lin Xin. Effect of dimensionless heat input during laser solid forming of high-strength steel [J]. J. Mater. Sci. Technol., 2022, 99(0): 127-137. |
[8] | Xuli Liu, Yidong Wu, Yansong Wang, Jinbin Chen, Rui Bai, Lei Gao, Zhe Xu, William Yi Wang, Chengwen Tan, Xidong Hui. Enhanced dynamic deformability and strengthening effect via twinning and microbanding in high density NiCoFeCrMoW high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 127(0): 164-176. |
[9] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
[10] | Zhengyi Mao, Mengke Huo, Fucong Lyu, Yongsen Zhou, Yu Bu, Lei Wan, Lulu Pan, Jie Pan, Hui Liu, Jian Lu. Nacre-liked material with tough and post-tunable mechanical properties [J]. J. Mater. Sci. Technol., 2022, 114(0): 172-179. |
[11] | Xin-Yu Mao, Xiao-Lei Shi, Liang-Chuang Zhai, Wei-Di Liu, Yue-Xing Chen, HanGao , Meng Li, De-Zhuang Wang, Hao Wu, Zhuang-Hao Zheng, Yi-Feng Wang, Qingfeng Liu, Zhi-Gang Chen. High thermoelectric and mechanical performance in the n-type polycrystalline SnSe incorporated with multi-walled carbon nanotubes [J]. J. Mater. Sci. Technol., 2022, 114(0): 55-61. |
[12] | Haolin Zhu, Ling Liu, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Zhuang Ma, Yanbo Liu, Yanchun Zhou. Improved thermal stability and infrared emissivity of high-entropy REMgAl11O19 and LaMAl11O19 (RE=La, Nd, Gd, Sm, Pr, Dy; M=Mg, Fe, Co, Ni, Zn) [J]. J. Mater. Sci. Technol., 2022, 104(0): 131-144. |
[13] | Xinfeng Li, Jing Yin, Jin Zhang, Yanfei Wang, Xiaolong Song, Yong Zhang, Xuechong Ren. Hydrogen embrittlement and failure mechanisms of multi-principal element alloys: A review [J]. J. Mater. Sci. Technol., 2022, 122(0): 20-32. |
[14] | Changshu He, Ying Li, Jingxun Wei, Zhiqiang Zhang, Ni Tian, Gaowu Qin, Xiang Zhao. Enhancing the mechanical performance of Al-Zn-Mg alloy builds fabricated via underwater friction stir additive manufacturing and post-processing aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 26-36. |
[15] | Nan Yang, Nagasivamuni Balasubramani, Jeffrey Venezuela, Helle Bielefeldt-Ohmann, Rachel Allavena, Sharifah Almathami, Matthew Dargusch. Microstructure refinement in biodegradable Zn-Cu-Ca alloy for enhanced mechanical properties, degradation homogeneity, and strength retention in simulated physiological condition [J]. J. Mater. Sci. Technol., 2022, 125(0): 1-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||