J. Mater. Sci. Technol. ›› 2022, Vol. 129: 79-86.DOI: 10.1016/j.jmst.2022.04.034
• Research Article • Previous Articles Next Articles
Zhihua Tiana, Peigen Zhanga,*(), Yan Zhanga, Jingwen Tanga, Yushuang Liub, Jian Liua,c, ZhengMing Suna,*(
)
Received:
2022-03-06
Revised:
2022-03-24
Accepted:
2022-04-08
Published:
2022-05-25
Online:
2022-05-25
Contact:
Peigen Zhang,ZhengMing Sun
About author:
zmsun@seu.edu.cn (Z. Sun).Zhihua Tian, Peigen Zhang, Yan Zhang, Jingwen Tang, Yushuang Liu, Jian Liu, ZhengMing Sun. Tin whisker growth from titanium-tin intermetallic and the mechanism[J]. J. Mater. Sci. Technol., 2022, 129: 79-86.
Fig. 2. XRD patterns of Ti6Sn5 samples. (a) Freshly ball-milled (6 h) sample; (b) after being stored at ambient conditions (20 ± 2 °C and a humidity of 60% ± 5%) for 48 h.
Fig. 3. SEM images of the ball-milled Ti6Sn5 sample: (a) whiskers growing on the particle surfaces, and the striation characteristic of the whiskers shown in the inset; (b) a high magnification image of the selected area of (a).
Fig. 4. STEM characterization of the whiskers: (a) HAADF morphology and element mapping; (b) TEM image of the whisker in (a) and its SAED pattern (the inset) showing it is a β-Sn single crystal; (c) high-resolution TEM (HRTEM) image of the square area of the Sn whisker in (b), showing that the Sn crystal whisker has a very thin oxide scale; (d) EDS results of whisker and its substrate, respectively.
Fig. 5. SEM images showing the morphological characteristics of whiskers. (a) Whisker with a “cap”; (b) root morphology of another whisker; (c) the magnified image of the rectangular area in (b).
Fig. 6. TEM characterization of the whisker and the whisker/substrate interface. (a) bright field (BF) image and the element mapping; (b) magnified image of the area near the whisker/substrate interface, and the corresponding SAED patterns (insets); (c) HRTEM image of the rectangular area in (b); (d) HRTEM image of the small substrate particle to the right of the whisker in (a).
Inequivalent site | Bonding geometry | Bonding with atoms |
---|---|---|
Ti1 | 7-coordinate | 4Ti and 7Sn |
Ti2 | 12-coordinate | 6Ti and 6Sn |
Sn1 | 6-coordinate | 6Ti and 2Sn |
Sn2 | 8-coordinate | 8Ti |
Sn3 | 9-coordinate | 9Ti |
Table. 1. Site occupation (chemical environment) of atoms in Ti6Sn5 (P63/mmc) [38].
Inequivalent site | Bonding geometry | Bonding with atoms |
---|---|---|
Ti1 | 7-coordinate | 4Ti and 7Sn |
Ti2 | 12-coordinate | 6Ti and 6Sn |
Sn1 | 6-coordinate | 6Ti and 2Sn |
Sn2 | 8-coordinate | 8Ti |
Sn3 | 9-coordinate | 9Ti |
Fig. 7. (a) Configuration of a Ti6Sn5 cell with one Ti vacancy or Sn vacancy. (b) DFT calculation results for single vacancy formation energy in Ti6Sn5.
[1] |
C.H. Su, H. Chen, H.Y. Lee, A.T. Wu, Appl. Phys. Lett. 99 (2011) 131906.
DOI URL |
[2] |
Z. Huang, R.E. Jones, A. Jain, Microelectron. Eng. 122 (2014) 46-51.
DOI URL |
[3] |
P.G. Zhang, Y.M. Zhang, Z.M. Sun, J. Mater. Sci. Technol. 31 (2015) 675-698.
DOI URL |
[4] | NASA,Tin Whisker (and Other Metal Whisker) Homepage. . |
[5] |
B.S. Majumdar, I. Dutta, S. Bhassyvasantha, S. Das Mahapatra, JOM 72 (2019) 906-917.
DOI URL |
[6] |
E. Chason, N. Jadhav, F. Pei, E. Buchovecky, A. Bower, Prog. Surf. Sci. 88 (2013) 103-131.
DOI URL |
[7] | P.G. Zhang, J.X. Ding, Y.S. Liu, L. Yang, W.B. Tian, J. Ouyang, Y.M. Zhang, Z. M. Sun, Sci. China Technol. Sci. 63 (2020) 4 40-4 45. |
[8] |
J.W. Tang, P.G. Zhang, Y.S. Liu, C.J. Lu, Y. Zhang, W. He, W.B. Tian, W. Zhang, Z. M. Sun, J. Mater. Sci. Technol. 54 (2020) 206-210.
DOI URL |
[9] |
Y.S. Liu, C.J. Lu, P.G. Zhang, J. Yu, Y.M. Zhang, Z.M. Sun, Acta Mater. 185 (2020) 433-440.
DOI URL |
[10] | Y.S. Liu, P.G. Zhang, J. Yu, J. Chen, Y.M. Zhang, Z.M. Sun, J. Mater. Sci. Technol. 35 (2019) 1735-1739. |
[11] |
Y.T. Cheng, A.M. Weiner, C.A. Wong, M.P. Balogh, M.J. Lukitsch, Appl. Phys. Lett. 81 (2002) 3248-3250.
DOI URL |
[12] | Z.H. Tian, P.G. Zhang, Y.S. Liu, C.J. Lu, J.X. Ding, Z.M. Sun, Acta Metall. Sin. 58 (2022) 295-310. |
[13] |
J. Hektor, S.A. Hall, N.A. Henningsson, J. Engqvist, M. Ristinmaa, F. Lenrick, J.P. Wright, Materials 12 (2019) 446.
DOI URL |
[14] |
C.F. Li, Z.Q. Liu, Acta Mater. 61 (2013) 589-601.
DOI URL |
[15] | J. Wang, M.A. Ashworth, G.D. Wilcox, IEEE T. Comp, Pack Man 4 (2014) 727-740. |
[16] |
D.E. Helling, J. Mater. Eng. Perform. 28 (2019) 1936-1941.
DOI |
[17] | T. El-Raghy, M.W. Barsoum, Science 285 (1999) 1357-1357. |
[18] |
Y.S. Liu, P.G. Zhang, L. Yang, W.B. Tian, Y.M. Zhang, Z.M. Sun, Prog. Nat. Sci. 28 (2018) 569-574.
DOI URL |
[19] | B.H. Chudnovsky,in:Proceedings of the 48th IEEE Holm Conference on Elec- trical Contacts, Orlando, FL, USA, 2002, pp. 140-150. |
[20] | T. Saito, S. Kamishima, IEEE Trans. Magn. 55 (2019) 1-4. |
[21] | X.R. Xin, H.Q. Yu, H.X. Lv, J.Y. Ren, W.Q. Yu, X.X. Ding, Y.M. Zhou, J.H. Zhao, Adv. Eng. Mater. 23 (2020) 20 0 0430. |
[22] |
A. Azmat, M. Tufail, A.D. Chandio, Materials 14 (2021) 7660.
DOI URL |
[23] | P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864-B871. |
[24] |
J. Hafner, J. Comput. Chem. 29 (2008) 2044-2078.
DOI URL |
[25] |
P.E. Blochl, Phys. Rev. B 50 (1994) 17953-17979.
DOI URL |
[26] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI PMID |
[27] |
C. Colinet, J.C. Tedenac, S.G. Fries, Calphad 33 (2009) 250-259.
DOI URL |
[28] |
B. Meyer, M. Fähnle, Phys. Rev. B 56 (1997) 13595-13598.
DOI URL |
[29] |
S.G. Lee, K.J. Chang, Phys. Rev. B 53 (1996) 9784-9790.
PMID |
[30] |
P.C. Wang, Z.Q. Xu, X.F. Liu, H.H. Wang, B. Qin, J.H. Lin, J. Cao, J.L. Qi, J.C. Feng, Carbon 191 (2022) 290-300.
DOI URL |
[31] |
X.D. Rong, D.D. Zhao, C.N. He, C.S. Shi, E.Z. Liu, N.Q. Zhao, Acta Mater. 204 (2021) 116524.
DOI URL |
[32] |
K.N. Tu, Phys. Rev. B 49 (1994) 2030-2034.
DOI URL |
[33] |
P. Jagtap, P. Kumar, J. Electron. Mater. 50 (2020) 735-766.
DOI URL |
[34] | P.G. Zhang, L.W. Shen, J. Ouyang, Y.M. Zhang, S.Q. Wu, Z.M. Sun, J. Alloy. Compd. 619 (2015) 4 88-4 97. |
[35] |
H.P. Howard, J. Cheng, P.T. Vianco, J.C.M. Li, Acta Mater. 59 (2011) 1957-1963.
DOI URL |
[36] |
M.A. Dudek, N. Chawla, Acta Mater. 57 (2009) 4588-4599.
DOI URL |
[37] |
Y. Zhong, Y. Liu, J. Ye, N. Jin, Z. Lin, J. Am. Ceram. Soc. 105 (2022) 2277-2287.
DOI URL |
[38] | The Materials Project, Materials Data on Ti 6 Sn5 by Materials Project. United States. . |
[39] |
C.J. Lu, Y.S. Liu, J. Fang, Y. Zhang, P.G. Zhang, Z.M. Sun, Acta Mater. 203 (2021) 116475.
DOI URL |
[40] |
K.N. Tu, J.C.M. Li, Mater. Sci. Eng. A 409 (2005) 131-139.
DOI URL |
[41] |
Y.T. Yan, J.H. Lin, T. Liu, B.S. Liu, B. Wang, L. Qiao, J.C. Tu, J. Cao, J.L. Qi, Corros. Sci. 200 (2022) 110231.
DOI URL |
[42] | Y.T. Yan, B.S. Liu, T.X. Xu, L. Qiao, S.H. Qin, J. Cao, J.L. Qi, J. Materiomics 8 (3)(2022) 662-668. |
[43] |
F. Pei, E. Buchovecky, A. Bower, E. Chason, Acta Mater. 129 (2017) 462-473.
DOI URL |
[44] |
J. Hektor, J.B. Marijon, M. Ristinmaa, S.A. Hall, H. Hallberg, S. Iyengar, J.S. Micha, O. Robach, F. Grennerat, O. Castelnau, Scr. Mater. 144 (2018) 1-4.
DOI URL |
[45] |
D. Huo, M.J. Kim, Z.H. Lyu, Y.F. Shi, B.J. Wiley, Y.N. Xia, Chem. Rev. 119 (2019) 8972-9073.
DOI PMID |
[46] |
T.H. Chuang, Scr. Mater. 55 (2006) 983-986.
DOI URL |
[47] |
Y.S. Liu, C.J. Lu, Y. Zhang, S. Li, P.G. Zhang, Z.M. Sun, J. Electron. Mater. 50 (2021) 1083-1089.
DOI URL |
[48] |
K. Lin, A.M. Hu, Y.W. Wu, H.Q. Ling, T. Hang, L.M. Gao, M. Li, Scr. Mater. 210 (2022) 114456.
DOI URL |
[49] |
J.F. Ni, X.C. Zhu, Y.F. Yuan, Z.Z. Wang, Y.B. Li, L. Ma, A. Dai, M. Li, T.P. Wu, R. Shahbazian-Yassar, J. Lu, L. Li, Nat. Commun. 11 (1) (2020) 1212.
DOI URL |
[1] | Q. Zhang, F.W. Tang, Z. Zhao, Z.R. Nie, X.Y. Song. Surface modification of tungsten oxide by oxygen vacancies for hydrogen adsorption [J]. J. Mater. Sci. Technol., 2022, 117(0): 23-35. |
[2] | W. Wang X., W. Wang, W. Chen, M. Chen D.. Effect of Al addition and heat treatment on the microstructures and corrosion resistance of Mg-Cu alloys [J]. J. Mater. Sci. Technol., 2022, 98(0): 219-232. |
[3] | Nan Li, Qiuhui Zhu, Guimei Liu, Qi Zhao, Haiqin Lv, Mingzhe Yuan, Qingguo Meng, Yingtang Zhou, Jingkun Xu, Chuanyi Wang. Modulation of photocatalytic activity of SrBi2Ta2O9 nanosheets in NO removal by tuning facets exposure [J]. J. Mater. Sci. Technol., 2022, 122(0): 91-100. |
[4] | Bangyang Zhou, Jian He, Qijie Zhou, Hongbo Guo. Effects of laser shock processing on θ-Al2O3 to α-Al2O3 transformation and oxide scale morphology evolution in (γ’+β) two-phase Ni-34Al-0.1Dy alloys [J]. J. Mater. Sci. Technol., 2022, 109(0): 157-166. |
[5] | Wei-Jian Li, Zi-Yao Chen, Hao Jiang, Xiao-Han Sui, Cong-Fei Zhao, Liang Zhen, Wen-Zhu Shao. Effects of interfacial wettability on arc erosion behavior of Zn2SnO4/Cu electrical contacts [J]. J. Mater. Sci. Technol., 2022, 109(0): 64-75. |
[6] | Jie Xiong, Hong-Yan Zeng, Sheng Xu, Jin-Feng Peng, Fang-Yuan Liu, Li-Hui Wang. Enhancing the intrinsic properties of flower-like BiOI by S-doping toward excellent photocatalytic performances [J]. J. Mater. Sci. Technol., 2022, 118(0): 181-189. |
[7] | Xiaojuan Li, Shunshun Zhao, Guangmeng Qu, Xiao Wang, Peiyu Hou, Gang Zhao, Xijin Xu. Defect engineering in Co-doped Ni3S2 nanosheets as cathode for high-performance aqueous zinc ion battery [J]. J. Mater. Sci. Technol., 2022, 118(0): 190-198. |
[8] | Mirza Zahid Hussain, Jiangtao Xiong, Jinglong Li, Farah Siddique, Lin Jie Zhang, Yajie Du, Xian Rong Zhou. Effect of Ti-Hf-Zr-Cu-Ni high entropy alloy addition on laser beam welded joint of Ti2AlNb based intermetallic alloy [J]. J. Mater. Sci. Technol., 2022, 120(0): 214-226. |
[9] | Chunyu Guo, Enhui Wang, Zhi Fang, Yapeng Zheng, Tao Yang, Zhijun He, Xinmei Hou. New design concept for stable α-silicon nitride based on the initial oxidation evolution at the atomic and molecular levels [J]. J. Mater. Sci. Technol., 2022, 122(0): 156-164. |
[10] | Yang Zhao, Yameng Zhu, Jinpeng Zhu, Hailong Wang, Zhuang Ma, Lihong Gao, Yanbo Liu, Kaijun Yang, Yongchun Shu, Jilin He. Atomic-resolution investigation of structural transformation caused by oxygen vacancy in La0.9Sr0.1TiO3+δ titanate layer perovskite ceramics [J]. J. Mater. Sci. Technol., 2022, 104(0): 172-182. |
[11] | Shijie Li, Mingjie Cai, Chunchun Wang, Yanping Liu, Neng Li, Peng Zhang, Xin Li. Rationally designed Ta3N5/BiOCl S-scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr(VI): Performance, toxicity evaluation and mechanism insight [J]. J. Mater. Sci. Technol., 2022, 123(0): 177-190. |
[12] | Muhammad Ismail, Umesh Chand, Chandreswar Mahata, Jamel Nebhen, Sungjun Kim. Demonstration of synaptic and resistive switching characteristics in W/TiO2/HfO2/TaN memristor crossbar array for bioinspired neuromorphic computing [J]. J. Mater. Sci. Technol., 2022, 96(0): 94-102. |
[13] | Lei Hu, Lin Li, Yuyang Zhang, Xiaohong Tan, Hao Yang, Xiaoming Lin, Yexiang Tong. Construction of cobalt vacancies in cobalt telluride to induce fast ionic/electronic diffusion kinetics for lithium-ion half/full batteries [J]. J. Mater. Sci. Technol., 2022, 127(0): 124-132. |
[14] | Xiaoran Yin, Haitao Wang, En-Hou Han. Cl-induced passivity breakdown in α-Fe2O3 (0001), α-Cr2O3 (0001), and their interface: A DFT study [J]. J. Mater. Sci. Technol., 2022, 129(0): 70-78. |
[15] | Zheao Huang, Qiancheng Zhou, Jieming Wang, Ying Yu. Fermi-level-tuned MOF-derived N-ZnO@NC for photocatalysis: A key role of pyridine-N-Zn bond [J]. J. Mater. Sci. Technol., 2022, 112(0): 68-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||