J. Mater. Sci. Technol. ›› 2022, Vol. 122: 156-164.DOI: 10.1016/j.jmst.2022.01.016
• Research Article • Previous Articles Next Articles
Chunyu Guoa, Enhui Wanga,b,*(), Zhi Fanga, Yapeng Zhenga, Tao Yanga, Zhijun Hec, Xinmei Houa,c,*(
)
Received:
2021-10-01
Revised:
2022-01-03
Accepted:
2022-01-06
Published:
2022-09-20
Online:
2022-03-22
Contact:
Enhui Wang,Xinmei Hou
About author:
houxinmeiustb@ustb.edu.cn (X. Hou).Chunyu Guo, Enhui Wang, Zhi Fang, Yapeng Zheng, Tao Yang, Zhijun He, Xinmei Hou. New design concept for stable α-silicon nitride based on the initial oxidation evolution at the atomic and molecular levels[J]. J. Mater. Sci. Technol., 2022, 122: 156-164.
Fig. 1. Configuration of α-Si3N4 (001) surface and the possible adsorption sites. (a) α-Si3N4 (001) surface model. (b) Top view of α-Si3N4 (001) surface and the possible adsorption sites.
Fig. 2. Configurations of single O adsorbed at different sites of α-Si3N4 (001) surface and PDOS before and after O adsorption. (a) Optimized structures of single O adsorbed at NI, NⅡ, SiI, bridge-I, and bridge-Ⅱ sites. (b) PDOS of α-Si3N4 (001) pristine surface. (c) PDOS of α-Si3N4 (001) surface with single O adsorbed at the bridge-Ⅰ site. (d) PDOS of α-Si3N4 (001) surface with single O adsorbed at the bridge-Ⅱ site.
Fig. 3. $\text{ }\!\!\Delta\!\!\text{ }G_{n}^{\text{O}}$ as a function of ΔμO. The lower side of X-axis is the corresponding oxygen partial pressure value at 300 K, 800 K, 1300 K, and 1800 K, respectively.
Fig. 4. Optimized structures of NO2, NO, and N2 emission at different oxygen coverages and the corresponding formation energies. (a) Configuration of optimized structures (VN are labeled by the blue dotted circle). (b) Gas formation energies.
Fig. 5. PDOS of α-Si3N4 (001) surface with N2 emission at 0 ML and 1/3 ML O coverage (Fermi energy is set to zero). (a) 0 ML O coverage; (b) 1/3 ML O coverage.
Fig. 6. Oxidation process of α-Si3N4 (001) surface. (a) Initial and final configurations of α-Si3N4 (001) surface oxidation. N in different chemical environments is represented by different colors. (b) Optimized structures of each step during oxidation. The O adsorption is marked with “+O”, and the N desorption is marked with “-N”. (O adsorption sites are labeled by dashed red circles and VN is labeled by the dashed blue circles.)
Fig. 7. Interfacial reaction models of α-Si3N4 with different surfaces. (a) (001) surface in contact with O2 and (b) (100) surface in contact with O2.
Fig. 8. Structure evolution of α-Si3N4 oxidation at 1673 K. Each frame is 250 ps apart. (a) (001) surface in contact with O2; (b) (100) surface in contact with O2. (c) Partially enlarged view of the interface between Si3N4 and O2 at a certain time.
Fig. 9. Evolution of Na for Si-O, N-N, and ξ for Si-N during the oxidation of different α-Si3N4 surface at 1673 K. The red dotted line represents the (001) surface while the blue dotted line represents the (100) surface.
[1] |
X.F. Lu, X. Gao, X. Guo, P.Q. La, Q.Z. Dong, X.Q. Zhang, J. Phys. Chem. Lett. 7 (2016) 3766-3769.
DOI URL |
[2] |
C. Wang, M. Chen, H.J. Wang, X.Y. Fan, H.Y. Xia, J. Eur. Ceram. Soc. 36 (2016) 689-695.
DOI URL |
[3] |
W. Chen, H.X. Shi, H. Xin, N.R. He, W.L. Yang, H.Z. Gao, Ceram. Int. 44 (2018) 16799-16808.
DOI URL |
[4] |
X.M. Li, L.T. Zhang, X.W. Yin, J. Mater. Sci. Technol. 28 (2012) 1151-1156.
DOI URL |
[5] |
C.K. Ande, H.C. Knoops, K. de Peuter, M. van Drunen, S.D. Elliott, W.M. Kessels, J. Phys. Chem. Lett. 6 (2015) 3610-3614.
DOI URL |
[6] |
N. Nishiyama, K. Fujii, E. Kulik, M. Shiraiwa, N.A. Gaida, Y. Higo, Y. Tange, A. Holzheid, M. Yashima, F. Wakai, J. Eur. Ceram. Soc. 39 (2019) 3627-3633.
DOI URL |
[7] |
W. Zhou, L. Long, Y. Li, J. Mater. Sci. Technol. 35 (2019) 2809-2813.
DOI URL |
[8] |
G.H. Hou, B.L. Cheng, F. Ding, M.S. Yao, P. Hu, F.L. Yuan, ACS Appl. Mater. Inter- faces 7 (2015) 2873-2881.
DOI URL |
[9] | L.B. Sun, C.F. Liu, S.S. Guo, J. Fang, D.B. Wang, J. Zhang, Appl. Surf. Sci. 517 (2020) 146178. |
[10] |
C.X. Zhang, Y.P. Zeng, D.X. Yao, J.W. Yin, K.H. Zuo, Y.F. Xia, H.Q. Liang, J. Mater. Sci. Technol. 35 (2019) 1345-1353.
DOI URL |
[11] |
H. Huang, L. Yin, L.B. Zhou, J. Mater. Process. Technol. 141 (2003) 329-336.
DOI URL |
[12] | J.E. Sheehan, J. Am. Ceram. Soc. 65 (1982) c111-c113. |
[13] | T. Otani, M. Hirata, Thin Solid Films 442 (2003) 44-47. |
[14] |
S. Ogata, N. Hirosaki, C. Kocer, Y. Shibutani, Acta Mater. 52 (2004) 233-238.
DOI URL |
[15] |
S.P. Taguchi, S. Ribeiro, J. Mater, Process. Technol. 147 (2004) 336-342.
DOI URL |
[16] |
X.M. Hou, E.H. Wang, B. Li, J.H. Chen, K.C. Chou, Ceram. Int. 43 (2017) 4344-4352.
DOI URL |
[17] |
E.H. Wang, B. Li, Z.F. Yuan, J.H. Chen, K.C. Chou, X.M. Hou, J. Alloy Compd. 725 (2017) 840-847.
DOI URL |
[18] |
C. Kawai, A. Yamakawa, J. Am. Ceram. Soc. 80 (2005) 2705-2708.
DOI URL |
[19] |
B. Li, Y.Y. Feng, G.Q. Li, H.Y. Chen, J.H. Chen, X.M. Hou, Ceram. Int. 45 (2019) 6335-6339.
DOI URL |
[20] |
X.L. Zheng, P. Wu, L. Wang, Ind. Eng. Chem. Res. 58 (2019) 23005-23013.
DOI URL |
[21] |
F.F. Lange, J. Am. Ceram. Soc. 56 (1973) 518-522.
DOI URL |
[22] |
Y. Ukyo, A. Suda, H. Masaki, J. Ceram. Soc. Jpn. 105 (1997) 85-87.
DOI URL |
[23] |
H. Klemm, J. Am. Ceram. Soc. 93 (2010) 1501-1522.
DOI URL |
[24] |
W.C. Tripp, H.C. Graham, J. Am. Ceram. Soc. 59 (1976) 399-403.
DOI URL |
[25] |
X.M. Hou, K.C. Chou, X.J. Hu, H.L. Zhao, J. Alloy Compd. 459 (2008) 123-129.
DOI URL |
[26] |
E.H. Wang, J.H. Chen, X.J. Hu, K.C. Chou, X.M. Hou, J. Am. Ceram. Soc. 99 (2016) 2699-2705.
DOI URL |
[27] |
R. Flammini, A. Bellucci, F. Wiame, R. Belkhou, M. Carbone, D.M. Trucchi, S. Colonna, F. Ronci, M. Hajlaoui, M.G. Silly, F. Sirotti, Appl. Surf. Sci. 355 (2015) 93-97.
DOI URL |
[28] |
S.C. Singhal, J. Mater. Sci. 11 (1976) 500-509.
DOI URL |
[29] | D.A. Newsome, D. Sengupta, H. Foroutan, M.F. Russo, A.C.T. van Duin, J. Phys. Chem. C 116 (2012) 16111-16121. |
[30] | W. Walkosz, J.C. Idrobo, R.F. Klie, S. Öğüt, Phys. Rev. B 78 (2008) 165322. |
[31] |
J.P. Cai, X.M. Hou, Z. Fang, E.H. Wang, J. Feng, J.H. Chen, T.X. Liang, G.P. Bei, J. Am. Ceram. Soc. 103 (2019) 2808-2816.
DOI URL |
[32] |
M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64 (1992) 1045-1097.
DOI URL |
[33] | G. Kresse, J. Furthmuller, Phys. Rev. B Condens. Matter 54 (1996) 11169-11186. |
[34] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI URL PMID |
[35] | S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104. |
[36] | G.X. Zhang, A. Tkatchenko, J. Paier, H. Appel, M. Scheffler,Phys. Rev. Lett. 107 (2011) 245501. |
[37] | S. Ehrlich, J. Moellmann, W. Reckien, T. Bredow, S. Grimme, Chemphyschem 12 (2011) 3414-3420. |
[38] |
Z.S. Luo, C.Z. Hu, L. Xie, H.B. Nie, C.Y. Xiang, X.F. Gu, J.Q. He, W.Q. Zhang, Z.Y. Yu, J. Luo, Mater. Horiz. 7 (2020) 173-180.
DOI URL |
[39] |
D. Vanderbilt, Phys. Rev. B 41 (1990) 7892-7895.
DOI URL |
[40] | S. Plimpton, J. Comput. Phys. 117 (1995) 1-19. |
[41] |
A.D. Kulkarni, D.G. Truhlar, S. Goverapet Srinivasan, A.C.T. van Duin, P. Norman, T.E. Schwartzentruber, J. Phys. Chem. C 117 (2012) 258-269.
DOI URL |
[42] |
I. Kohatsu, J.W. McCauley, Mater. Res. Bull. 9 (1974) 917-920.
DOI URL |
[43] | E. Heifets, W.A. Goddard, E.A. Kotomin, R.I. Eglitis, G. Borstel, Phys. Rev. B 69 (2004) 035408. |
[44] | Q. Li, M. Rellán-Piñeiro, N. Almora-Barrios, M. Garcia-Ratés, I.N. Remediakis, N. López, Nanoscale 9 (2017) 13089-13094. |
[45] | L. Wang, T. Maxisch, G. Ceder, Phys. Rev. B 73 (2006) 195107. |
[46] |
L. Wang, T. Maxisch, G. Ceder, Chem. Mater. 19 (2006) 543-552.
DOI URL |
[47] | K. Reuter, M. Scheffler, Phys. Rev. B 65 (2001) 035406. |
[48] | Q.Y. Ruan, J.C. Ye, D.J. Shu, M. Wang, Phys. Rev. B 96 (2017) 115412. |
[49] | A. Soon, M. Todorova, B. Delley, C. Stampfl, Phys. Rev. B 75 (2007) 125420. |
[50] | M.W. Chase Jr, J. Phys. Chem. Ref. Data Monogr. 9 (1998) 1-1951. |
[51] | J.D. Cox, D.D. Wagman, V.A. Medvedev, CODATA Key Values for Thermodynam- ics, Hemisphere Publishing Corp., New York, 1989. |
[52] |
S.H. Zou, Y.S. Liu, J.H. Li, C.P. Liu, R. Feng, F.L. Jiang, Y.X. Li, J.Z. Song, H.B. Zeng, M. C. Hong, X.Y. Chen, J. Am. Chem. Soc. 139 (2017) 11443-11450.
DOI URL |
[53] |
A. Swarnkar, W.J. Mir, A. Nag, ACS Energy Lett. 3 (2018) 286-289.
DOI URL |
[54] | Z. Fang, X.M. Hou, Y.P. Zheng, Z.B. Yang, K.C. Chou, G. Shao, M.H. Shang, W.Y. Yang, T. Wu, Adv. Funct. Mater. 31 (2021) 2102330. |
[55] |
F.L. Riley, J. Am. Ceram. Soc. 83 (2004) 245-265.
DOI URL |
[56] |
Z. Fang, E.H. Wang, Y.F. Chen, X.M. Hou, K.C. Chou, W.Y. Yang, J.H. Chen, M. H. Shang, ACS Appl. Mater. Interfaces 10 (2018) 30811-30818.
DOI URL |
[57] |
R.T. Sanderson, J. Am. Chem. Soc. 105 (1983) 2259-2261.
DOI URL |
[1] | Cecil Cherian Lukose, Guillaume Zoppi, Martin Birkett. Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistance [J]. J. Mater. Sci. Technol., 2022, 99(0): 138-147. |
[2] | Yangfan Zhang, Yao Li, Han Yu, Kai Yu, Hongbing Yu. Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance [J]. J. Mater. Sci. Technol., 2022, 106(0): 139-146. |
[3] | Wangwang Qian, Zhe Chen, Jinfeng Zhang, Lichang Yin. Monolayer MoSi2N4-x as promising electrocatalyst for hydrogen evolution reaction: A DFT prediction [J]. J. Mater. Sci. Technol., 2022, 99(0): 215-222. |
[4] | Xue Yan, Cheng Zhang, Yangshuai Li, Youjian Yi, Ziruo Cui, Bingyuan Han. Laser-induced topology optimized amorphous nanostructure and corrosion electrochemistry of supersonically deposited Ni30Cr25Al15Co15Mo5Ti5Y5 HEA coating based on AIMD [J]. J. Mater. Sci. Technol., 2022, 106(0): 257-269. |
[5] | Nan Li, Qiuhui Zhu, Guimei Liu, Qi Zhao, Haiqin Lv, Mingzhe Yuan, Qingguo Meng, Yingtang Zhou, Jingkun Xu, Chuanyi Wang. Modulation of photocatalytic activity of SrBi2Ta2O9 nanosheets in NO removal by tuning facets exposure [J]. J. Mater. Sci. Technol., 2022, 122(0): 91-100. |
[6] | Zheao Huang, Qiancheng Zhou, Jieming Wang, Ying Yu. Fermi-level-tuned MOF-derived N-ZnO@NC for photocatalysis: A key role of pyridine-N-Zn bond [J]. J. Mater. Sci. Technol., 2022, 112(0): 68-76. |
[7] | Zheng Zhang, Ying Huang, Xiang Li, Zhiming Zhou. Rational construction of hollow nanoboxes for long cycle life alkali metal ion batteries [J]. J. Mater. Sci. Technol., 2022, 102(0): 46-55. |
[8] | Wei-Jian Li, Zi-Yao Chen, Hao Jiang, Xiao-Han Sui, Cong-Fei Zhao, Liang Zhen, Wen-Zhu Shao. Effects of interfacial wettability on arc erosion behavior of Zn2SnO4/Cu electrical contacts [J]. J. Mater. Sci. Technol., 2022, 109(0): 64-75. |
[9] | Yan Zhang, Chengjie Lu, Yun Dong, Min Zhou, Jiandang Liu, Hongjun Zhang, Bangjiao Ye, ZhengMing Sun. Insights into the dual-roles of alloying elements in the growth of Sn whiskers [J]. J. Mater. Sci. Technol., 2022, 117(0): 65-71. |
[10] | Sheng Guo, Zhixiong Yang, Huali Zhang, Wei Yang, Jun Li, Kun Zhou. Enhanced photocatalytic degradation of organic contaminants over CaFe2O4 under visible LED light irradiation mediated by peroxymonosulfate [J]. J. Mater. Sci. Technol., 2021, 62(0): 34-43. |
[11] | Mengmeng Fan, Jiewu Cui, Junjie Zhang, Jingjie Wu, Shuangming Chen, Li Song, Zixing Wang, Ao Wang, Robert Vajtai, Yucheng Wu, Pulickel M. Ajayan, Jianchun Jiang, Dongping Sun. The modulating effect of N coordination on single-atom catalysts researched by Pt-Nx-C model through both experimental study and DFT simulation [J]. J. Mater. Sci. Technol., 2021, 91(0): 160-167. |
[12] | Bin Wang, Yuanfu Chen, Qi Wu, Yingjiong Lu, Xiaojuan Zhang, Xinqiang Wang, Bo Yu, DongXu Yang, Wanli Zhang. A co-coordination strategy to realize janus-type bimetallic phosphide as highly efficient and durable bifunctional catalyst for water splitting [J]. J. Mater. Sci. Technol., 2021, 74(0): 11-20. |
[13] | Zhengkun Xie, Xiaowei An, Zhijun Wu, Xiyan Yue, Jiajia Wang, Xiaogang Hao, Abuliti Abudula, Guoqing Guan. Fluoropyridine family: Bifunction as electrolyte solvent and additive to achieve dendrites-free lithium metal batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 119-127. |
[14] | Zhanyong Gu, Zhitao Cui, Zijing Wang, Tingru Chen, Peng Sun, Dawei Wen. Synthesis of crystalline carbon nitride with enhanced photocatalytic NO removal performance: An experimental and DFT theoretical study [J]. J. Mater. Sci. Technol., 2021, 83(0): 113-122. |
[15] | Zhonghuai Wu, Liangchi Zhang. Mechanical properties and deformation mechanisms of surface-modified 6H-silicon carbide [J]. J. Mater. Sci. Technol., 2021, 90(0): 58-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||