J. Mater. Sci. Technol. ›› 2022, Vol. 122: 148-155.DOI: 10.1016/j.jmst.2021.12.047
• Research Article • Previous Articles Next Articles
Yunwei Liua, Chang Liua, Zelin Chenb,*(), Xuerong Zhenga,b, Rui Jianga, Xing Tongc,*(
), Yida Denga,b,*(
), Wenbin Hua
Received:
2021-11-18
Revised:
2021-12-31
Accepted:
2021-12-31
Published:
2022-09-20
Online:
2022-03-28
Contact:
Zelin Chen,Xing Tong,Yida Deng
About author:
yida.deng@tju.edu.cn (Y. Deng).Yunwei Liu, Chang Liu, Zelin Chen, Xuerong Zheng, Rui Jiang, Xing Tong, Yida Deng, Wenbin Hu. Fabrication of amorphous PdNiCuP nanoparticles as efficient bifunctional and highly durable electrocatalyst for methanol and formic acid oxidation[J]. J. Mater. Sci. Technol., 2022, 122: 148-155.
Fig. 2. Characterizations on PdNiCuP-A and PdNiCuP-C NPs. (a) low-magnification and amplified TEM image of PdNiCuP-A NPs. (b, c) HRTEM images of PdNiCuP-A and corresponding FFT (Fast Fourier Transform, inset) pattern. (d) Elemental mapping images of Pd, Ni, Cu, and P on PdNiCuP-A NPs. (e) low-magnification and amplified TEM image of PdNiCuP-C. (f) HRTEM image of PdNiCuP-C NPs. (g) XRD patterns of PdNiCuP-A and PdNiCuP-C. High resolution XPS spectra of (h) Pd 3d, (i) Ni 2p, (j) Cu 2p, and (k) P 2p in PdNiCuP-A and PdNiCuP-C NPs.
Fig. 3. Electrochemical measurements of PdNiCuP-A, PdNiCuP-C and Pd/C. (a) CV curves recorded in 1 M KOH solution. (b) CV curves recorded in 1 M KOH solution + 1 M CH3OH solution. (c) Specific and mass activities of PdNiCuP-A, PdNiCuP-C and Pd/C toward electrocatalytic MOR. (d) Stability of MOR catalysis of PdNiCuP-A, PdNiCuP-C and Pd/C in 1000 CVs cycles between -0.8 to 0.3 V vs. SCE. (e, f) Comparison of the MOR activity and durability with other reported results. (g) CV curves of PdNiCuP-A, PdNiCuP-C and Pd/C recorded in a 0.5 M H2SO4 solution. (h) FAOR CV curves of PdNiCuP-A, PdNiCuP-C and Pd/C recorded in 0.5 M H2SO4 + 1 M HCOOH solution. (i) Stability of FAOR catalysis of PdNiCuP-A, PdNiCuP-C and Pd/C in 100 CVs cycles between -0.3 to 1.0 V vs. SCE. All CV tests are performed in N2-saturated solution at a scan rate of 50 mV s-1.
Sample | MOR | FAOR | ||||||
---|---|---|---|---|---|---|---|---|
ECSA (m2 g-1) | Specific activity (mA cm-2) | Mass activity (A mg-1) | Stability (%) | ECSA (m2 g-1) | Specific activity (mA cm-2) | Mass activity (mA mg-1) | Stability (%) | |
PdNiCuP-A | 65.95 | 2.49 | 1.61 | 77.4 | 27.61 | 3.12 | 737.8 | 53.1 |
PdNiCuP-C | 58.08 | 2.47 | 1.51 | 17.6 | 26.33 | 1.90 | 577.6 | 36.6 |
Pd/C | 50.35 | 0.99 | 0.5 | 28.2 | 15.50 | 2.43 | 377.6 | 27.8 |
Table 1. Summary of the MOR and FAOR results of PdNiCuP-A, PdNiCuP-C and Pd/C.
Sample | MOR | FAOR | ||||||
---|---|---|---|---|---|---|---|---|
ECSA (m2 g-1) | Specific activity (mA cm-2) | Mass activity (A mg-1) | Stability (%) | ECSA (m2 g-1) | Specific activity (mA cm-2) | Mass activity (mA mg-1) | Stability (%) | |
PdNiCuP-A | 65.95 | 2.49 | 1.61 | 77.4 | 27.61 | 3.12 | 737.8 | 53.1 |
PdNiCuP-C | 58.08 | 2.47 | 1.51 | 17.6 | 26.33 | 1.90 | 577.6 | 36.6 |
Pd/C | 50.35 | 0.99 | 0.5 | 28.2 | 15.50 | 2.43 | 377.6 | 27.8 |
Fig. 4. Cyclic voltammograms of CO-stripping on (a) PdNiCuP-A, (b) PdNiCuP-C and (c) commercial Pd/C catalysts in 1 M KOH and (d) PdNiCuP-A, (e) PdNiCuP-C and (f) commercial Pd/C in 0.5 M H2SO4 solution at a scan rate of 50 mV · s-1.
Fig. 5. XPS spectra of (a) Pd 3d, (b) Ni 2p, (c) Cu 2p, and (d) P 2p in PdNiCuP-A and (e) Pd 3d, (f) Ni 2p, (g) Cu 2p, and (h) P 2p in PdNiCuP-C NPs after 500 and 1000 CV cycles. (i) Schematic illustration of the CO tolerance abilities for the PdNiCuP-A, PdNiCuP-C and commercial Pd/C catalysts. (j) Schematic illustration of the enhanced anti-CO poisoning property for amorphous structure.
[1] |
N.T. Li, S.C. Tang, X.K. Meng,J. Mater. Sci. Technol. 31 (2015) 30-36.
DOI URL |
[2] |
Y. Zhang, J.F. Zhang, Z.L. Chen, Y.W. Liu, M.M. Zhang, X.P. Han, C. Zhong, W.B. Hu, Y.D. Deng,Sci. China-Mater. 61 (2018) 697-706.
DOI URL |
[3] |
F. Saleem, B. Xu, B. Ni, H. Liu, F. Nosheen, H. Li, X. Wang,Adv. Mater. 27 (2015) 2013-2018.
DOI URL |
[4] | Z. Chen, J. Zhang, Y. Zhang, Y. Liu, X. Han, C. Zhong, W. Hu,Y. Deng, Nano Energy 42 (2017) 353-362. |
[5] | S. Liu, Y. Shen, Y. Zhang, B. Cui, S. Xi, J. Zhang, L. Xu, S. Zhu, Y. Chen, Y. Deng, W. Hu,Adv. Mater. 34 (2022) 2106973. |
[6] | M. Iqbal, Y. Bando, Z. Sun, K.C.W. Wu, A.E. Rowan, J. Na, B.Y. Guan, Y. Yamauchi,Adv. Mater. 33 (2021) 2004554. |
[7] | S.P. Luo, W. Chen, Y. Cheng, X. Song, Q.L. Wu, L.X. Li, X.T. Wu, T.H. Wu, M.R. Li, Q. Yang, K.R. Deng, Z.W. Quan,Adv. Mater. 31 (2019) 1903683. |
[8] | W.Q. Yao, X. Jiang, M. Li, Y.L. Li, Y.Y. Liu, X. Zhan, G.T. Fu, Y.W. Tang,Appl. Catal. B- Environ. 282 (2021) 119595. |
[9] | P.P. Song, X.N. Cui, Q. Shao, Y.G. Feng, X. Zhu, X.Q. Huang,J. Mater. Chem. A 5 (2017) 24626-24630. |
[10] | H.J. Huang, J.X. Zhu, D.B. Li, C. Shen, M.M. Li, X. Zhang, Q.G. Jiang, J.F. Zhang, Y.P. Wu,J. Mater. Chem. A 5 (2017) 4560-4567. |
[11] | L.L. Wang, D.F. Zhang,L. Guo, Nanoscale 6 (2014) 4635-4641. |
[12] | X. Qiu, P. Wu, L. Xu, Y. Tang, J.-.M. Lee,Adv. Mater. Inter. 2 (2015) 1500321. |
[13] |
R. Chang, L.J. Zheng, C.W. Wang, D.C. Yang, G.X. Zhang, S.H. Sun,Appl. Catal. B- Environ. 211 (2017) 205-211.
DOI URL |
[14] |
C. Liu, Z.L. Chen, D.W. Rao, J.F. Zhang, Y.W. Liu, Y.N. Chen, Y.D. Deng, W.B. Hu,Sci. China-Mater. 64 (2021) 611-620.
DOI URL |
[15] | J.X. Xiong, J. Yang, X. Chi, K. Wu, L.H. Song, T. Li, Y. Zhao, H.M. Huang, P.R. Chen, J. L. Wu, L.M. Chen, M.L. Fu, D.Q. Ye,Appl. Catal. B-Environ. 292 (2021) 120201. |
[16] | L. Chen, L.L. Lu, H.L. Zhu, Y.G. Chen, Y. Huang, Y.D. Li, L.Y. Wang,Nat. Commun. 8 (2017) 14136. |
[17] |
Z.-.P. Wu, D.T. Caracciolo, Y. Maswadeh, J. Wen, Z. Kong, S. Shan, J.A. Vargas, S. Yan, E. Hopkins, K. Park, A. Sharma, Y. Ren, V. Petkov, L. Wang, C.-.J. Zhong,Nat. Commun. 12 (2021) 859-859.
DOI URL |
[18] | O.T. Ajenifujah, A. Nouralishahi, S. Carl, S.C. Eady, Z. Jiang, L.T. Thompson,Chem. Eng. J. 406 (2021) 126670. |
[19] | X.T. Yu, J.F. Liu, J.S. Li, Z.S. Luo, Y. Zuo, C.C. Xing, J. Llorca, D. Nasiou, J. Arbiol, K. Pan, T. Kleinhanns, Y. Xie,A. Cabot, Nano Energy 77 (2020) 105116. |
[20] | N. Zhang, S. Guo, X. Zhu, J. Guo, X.Q. Huang,Chem. Mater. 28 (2016) 4447-4452. |
[21] | J. Xie, Q.H. Zhang, L. Gu, S. Xu, P. Wang, J.G. Liu, Y. Ding, Y.F. Yao, C.W. Nan, M. Zhao, Y. You,Z.G. Zou, Nano Energy 21 (2016) 247-257. |
[22] | P.F. Yin, M. Zhou, J. Chen, C. Tan, G. Liu, Q. Ma, Q. Yun, X. Zhang, H. Cheng, Q. Lu, B. Chen, Y. Chen, Z. Zhang, J. Huang, D. Hu, J. Wang, Q. Liu, Z. Luo, Z. Liu, Y. Ge, X.J. Wu, X.W. Du,H. Zhang, Adv Mater 32 (2020) 2000482. |
[23] |
M. Zhao, Y. Ji, M.Y. Wang, N. Zhong, Z.N. Kang, N. Asao, W.J. Jiang, Q. Chen,Acs Appl. Mater. Inter. 9 (2017) 34804-34811.
DOI URL |
[24] | M. Carmo, R.C. Sekol, S.Y. Ding, G. Kumar, J. Schroers,A.D. Taylor, ACS Nano 5 (2011) 2979-2983. |
[25] | P.T. Wang, X. Zhang, J. Zhang, S. Wan, S.J. Guo, G. Lu, J.L. Yao, X.Q. Huang,Nat. Commun. 8 (2017) 14580. |
[26] |
Y.C. Hu, Y.Z. Wang, R. Su, C.R. Cao, F. Li, C.W. Sun, Y. Yang, P.F. Guan, D.W. Ding, Z. L. Wang, W.H. Wang,Adv. Mater. 28 (2016) 10293-10297.
DOI URL |
[27] | Y.C. Hu, C.X. Sun,C.W. Sun, ChemCatChem 11 (2019) 2401-2414. |
[28] | Z. Jia, X. Duan, P. Qin, W. Zhang, W. Wang, C. Yang, H. Sun, S. Wang, L.C. Zhang,Adv. Funct. Mater. 27 (2017) 1702258. |
[29] | Z. Jia, Q. Wang, L. Sun, Q. Wang, L.C. Zhang, G. Wu, J.H. Luan, Z.B. Jiao, A. Wang, S. X. Liang, M. Gu, J. Lu,Adv. Funct. Mater. 29 (2019) 1807857. |
[30] | R.C. Sekol, G. Kumar, M. Carmo, F. Gittleson, N. Hardesty-Dyck, S. Mukherjee, J. Schroers,A.D. Taylor, Small 9 (2013) 2081-2085. |
[31] | F. Hu, S. Zhu, S. Chen, Y. Li, L. Ma, T. Wu, Y. Zhang, C. Wang, C. Liu, X. Yang, L. Song, X. Yang, Y. Xiong,Adv. Mater. 29 (2017) 28639333. |
[32] |
J. Xiao, P. Liu, C.X. Wang, G.W. Yang,Prog. Mater. Sci. 87 (2017) 140-220.
DOI URL |
[33] | M. Tiberi, A. Simonelli, G. Cristoforetti, P. Marsili, F. Giammanco, E. Giorgetti, Appl. Phys. A-Mater. Sci. Process. 110 (2013) 857-861. |
[34] | S. Wackerow,A. Abdolvand, Opt Express 22 (2014) 5076-5085. |
[35] | Y.F. Bao, H. Liu, Z. Liu, F.L. Wang, L.G. Feng,Appl. Catal. B-Environ. 274 (2020) 119106. |
[36] |
J.W. Liu, Z. Huang, K. Cai, H. Zhang, Z.C. Lu, T.T. Li, Y.P. Zuo, H.Y. Han,Chem.-Eur. J. 21 (2015) 17779-17785.
DOI URL |
[37] | A.M. Hofstead-Duffy, D.-.J. Chen, S.-.G. Sun, Y.J. Tong,J. Mater. Chem. 22 (2012) 5205. |
[38] | H. Xu, B. Yan, K. Zhang, C. Wang, J. Zhong, S. Li, P. Yang, Y. Du, Int. J. Hydrog.Energy. 42 (2017) 11229-11238. |
[39] | L. Zhang, Y. Tang, J. Bao, T. Lu,C. Li, J. Power Source 162 (2006) 177-179. |
[40] | Z. Kang, M. Zhao, Y. Wu, T. Xia, J.-.P. Cao, W. Cai, L. Chen,Appl. Surf. Sci. 484 (2019) 441-445. |
[41] |
K. Deng, Y. Xu, D. Yang, X. Qian, Z. Dai, Z. Wang, X. Li, L. Wang, H. Wang,J. Mater. Chem. A. 7 (2019) 9791-9797.
DOI URL |
[42] |
T. Li, Y. Wang, Y. Tang, L. Xu, L. Si, G. Fu, D. Sun, Y. Tang,Catal. Sci. Technol. 7 (2017) 3355-3360.
DOI URL |
[43] |
J. Zhang, Y. Xu, B. Zhang,Chem Commun (Camb) 50 (2014) 13451-13453.
DOI URL |
[44] | C. Rettenmaier, R.M. Aran-Ais, J. Timoshenko, R. Rizo, H.S. Jeon, S. Kuhl, S.W. Chee, A. Bergmann,B.Roldan Cuenya, ACS Catal 10 (2020) 14540-14551. |
[45] |
T. Vidakovic, M. Christov, K. Sundmacher,Electrochim. Acta 52 (2007) 5606-5613.
DOI URL |
[46] |
P. Liu, A. Logadottir, J.K. Norskov,Electrochim. Acta 48 (2003) 3731-3742.
DOI URL |
[47] |
N. Nalajala, W.F.G. Saleha, B.P. Ladewig, M. Neergat,Chem. Commun. 50 (2014) 9365-9368.
DOI URL |
[48] |
G. Doubek, R.C. Sekol, J.Y. Li, W.H. Ryu, F.S. Gittleson, S. Nejati, E. Moy, C. Reid, M. Carmo, M. Linardi, P. Bordeenithikasem, E. Kinser, Y.H. Liu, X. Tong, C.O. Os- uji, J. Schroers, S. Mukherjee, A.D. Taylor,Adv. Mater. 28 (2016) 1940-1949.
DOI URL |
[49] | Y. Zhao, J. Liu, C. Liu, F. Wang,Y. Song, ACS Catal 6 (2016) 4127-4134. |
[50] | J. Wang, L.L. Han, B.L. Huang, Q. Shao, H.L.L. Xin, X.Q. Huang,Nat. Commun. 10 (2019) 5692. |
[1] | Kwang Kyu Ko, Hyo Ju Bae, Eun Hye Park, Hyeon-Uk Jeong, Hyoung Seok Park, Jae Seok Jeong, Jung Gi Kim, Hyokyung Sung, Nokeun Park, Jae Bok Seol. A feasible route to produce 1.1 GPa ferritic-based low-Mn lightweight steels with ductility of 47% [J]. J. Mater. Sci. Technol., 2022, 117(0): 225-237. |
[2] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Jian Sun, Levente Vitos. Theoretical and experimental study of phase transformation and twinning behavior in metastable high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 99(0): 161-168. |
[3] | Qijing Sun, David M Miskovic, Michael Ferry. Probing the formation of ultrastable metallic glass from structural heterogeneity [J]. J. Mater. Sci. Technol., 2022, 104(0): 214-223. |
[4] | Aobo Hu, Shuizhou Cai. Spatial phase structure and oxidation process of Al-W alloy powder with high sphericity [J]. J. Mater. Sci. Technol., 2022, 114(0): 62-72. |
[5] | Keer Li, W. Chen, G.X. Yu, J.Y. Zhang, S.W. Xin, J.X. Liu, X.X. Wang, J. Sun. Deformation kinking and highly localized nanocrystallization in metastable β-Ti alloys using cold forging [J]. J. Mater. Sci. Technol., 2022, 120(0): 53-64. |
[6] | Jinyong Zhang, Bingnan Qian, Wang Lin, Ping Zhang, Yijin Wu, Yangyang Fu, Yu Fan, Zheng Chen, Jun Cheng, Jinshan Li, Yuan Wu, Yu Wang, Fan Sun. Compressive deformation-induced hierarchical microstructure in a TWIP β Ti-alloy [J]. J. Mater. Sci. Technol., 2022, 112(0): 130-137. |
[7] | Changgang Wang, Rongyao Ma, Yangtao Zhou, Yang Liu, Enobong Felix Daniel, Xiaofang Li, Pei Wang, Junhua Dong, Wei Ke. Effects of rare earth modifying inclusions on the pitting corrosion of 13Cr4Ni martensitic stainless steel [J]. J. Mater. Sci. Technol., 2021, 93(0): 232-243. |
[8] | Huaicheng Xiang, Lei Yao, Junqi Chen, Aihong Yang, Haitao Yang, Liang Fang. Microwave dielectric high-entropy ceramic Li(Gd0.2Ho0.2Er0.2Yb0.2Lu0.2)GeO4 with stable temperature coefficient for low-temperature cofired ceramic technologies [J]. J. Mater. Sci. Technol., 2021, 93(0): 28-32. |
[9] | Yixuan He, Yuhao Wu, Fan Bu, Chengxiong Zou, Zhangchi Bian, Qiliang Huang, Tie Liu, Qiang Wang, Jun Wang, Jinshan Li, Eric Beaugnon. Effects of an ultra-high magnetic field up to 25 T on the phase transformations of undercooled Co-B eutectic alloy [J]. J. Mater. Sci. Technol., 2021, 93(0): 79-88. |
[10] | Yifei Wang, Jing Zhang, Kangmei Li, Jun Hu. Surface characterization and biocompatibility of isotropic microstructure prepared by UV laser [J]. J. Mater. Sci. Technol., 2021, 94(0): 136-146. |
[11] | Zijian Yu, Xi Xu, Adil Mansoor, Baotian Du, Kang Shi, Ke Liu, Shubo Li, Wenbo Du. Precipitate characteristics and their effects on the mechanical properties of as-extruded Mg-Gd-Li-Y-Zn alloy [J]. J. Mater. Sci. Technol., 2021, 88(0): 21-35. |
[12] | Chaoqiang Liu, Houwen Chen, Min Song, Jian-Feng Nie. Electron beam irradiation induced metastable phase in a Mg-9.8 wt%Sn alloy [J]. J. Mater. Sci. Technol., 2021, 84(0): 133-138. |
[13] | Shuqun Chen, Jinshu Wang, Ronghai Wu, Zheng Wang, Yangzhong Li, Yiwen Lu, Wenyuan Zhou, Peng Hu, Hongyi Li. Insights into the nucleation, grain growth and phase transformation behaviours of sputtered metastable β-W films [J]. J. Mater. Sci. Technol., 2021, 90(0): 66-75. |
[14] | Zejiang Yu, Wei Zheng, Zhiqiang Li, Yunzhuo Lu, Xinbing Yun, Zuoxiang Qin, Xing Lu. Accelerated exploration of TRIP metallic glass composite by laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 78(0): 68-73. |
[15] | Bingnan Qian, Jinyong Zhang, Yangyang Fu, Fan Sun, Yuan Wu, Jun Cheng, Philippe Vermaut, Frédéric Prima. In-situ microstructural investigations of the TRIP-to-TWIP evolution in Ti-Mo-Zr alloys as a function of Zr concentration [J]. J. Mater. Sci. Technol., 2021, 65(0): 228-237. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||