J. Mater. Sci. Technol. ›› 2022, Vol. 129: 139-162.DOI: 10.1016/j.jmst.2022.04.032
• Research Article • Previous Articles Next Articles
Yumin Zhanga, Jiulong Suna, Xinzhe Xiaoa, Ning Wangb,c, Guozhe Menga, Lin Gua,*()
Received:
2021-11-26
Revised:
2022-03-05
Accepted:
2022-04-11
Published:
2022-05-24
Online:
2022-05-24
Contact:
Lin Gu
About author:
* E-mail addresses: gulin5@mail.sysu.edu.cn (L. Gu).Yumin Zhang, Jiulong Sun, Xinzhe Xiao, Ning Wang, Guozhe Meng, Lin Gu. Graphene-like two-dimensional nanosheets-based anticorrosive coatings: A review[J]. J. Mater. Sci. Technol., 2022, 129: 139-162.
Preparation method | Advantage | Disadvantage |
---|---|---|
Mechanical exfoliation | high crystal quality, clean surface, and large lateral size | low production yield always needs a substrate, hard to control accurately the size and shape of nanosheets, more suitable for lager layered crystals |
Liquid exfoliation | precise to regulate the concentration, lateral size, and thickness of synthesized nanosheets, the obtained volume of sheets alters from hundreds of milliliters to liters | relatively low yield, small lateral size, the used polymers, and surfactants are usually harmful |
Chemical vapor deposition | produce ultrathin 2D nanosheets | high temperature and high vacuum, complicated and low efficient, needs the desired substrate, the complicated transfer process |
Wet-chemical method | high reaction yield, easier control of size and morphology, very good dispersion in organic or aqueous media | difficult to control the final morphology, hard to achieve single-layer nanosheets |
Table 1. Comparison of advantages and disadvantages of different preparation methods of 2D nanosheets [21].
Preparation method | Advantage | Disadvantage |
---|---|---|
Mechanical exfoliation | high crystal quality, clean surface, and large lateral size | low production yield always needs a substrate, hard to control accurately the size and shape of nanosheets, more suitable for lager layered crystals |
Liquid exfoliation | precise to regulate the concentration, lateral size, and thickness of synthesized nanosheets, the obtained volume of sheets alters from hundreds of milliliters to liters | relatively low yield, small lateral size, the used polymers, and surfactants are usually harmful |
Chemical vapor deposition | produce ultrathin 2D nanosheets | high temperature and high vacuum, complicated and low efficient, needs the desired substrate, the complicated transfer process |
Wet-chemical method | high reaction yield, easier control of size and morphology, very good dispersion in organic or aqueous media | difficult to control the final morphology, hard to achieve single-layer nanosheets |
Fig. 5. (a) Process of exfoliation of layered α-ZrP [68]. (b) Exfoliation of DGA-intercalated ZrP nanoplatelets with ionic liquids [71]. (c) Schematic illustrations of interlayer spacing of α-ZrP treated with different organic modifiers: (A) cyclohexylamine, (B) dodecylamine, and (C) an equal mixture of cyclohexylamine and dodecylamine [72].
Fig. 7. (a) Schematic illustration of the functionalization of nanosheets of 1T-MoS2 and 1T-MoSe2 with para-substituted iodobenzenes [106]. (b) Preparation process of the functional MoS2 modified with L-cysteine [107]. (c) Synthesis of MoS2-PAN and pyro-MoS2-PAN [109].
Fig. 8. (a) Possible mechanism for the evolution of hierarchical MoS2@RGO [113]. (b) Schematic graph of the preparation process of EP/SiO2-MoS2 composite coating [114].
Fig. 9. (a) Schematic illustration for the preparation routes: F-ZrP and ALSR/F-ZrP nanocomposite [125]. (b) Preparation of ZrP single-layer nanosheets; grafting reaction on the surface of ZrP single-layer nanosheets [126]. (c) Illustration of the synthetic procedure of functionalized α-zirconium phosphate [128]. (d) Proposed mechanism for the surface modification of ZrP disks for PNIPAM grafting [129].
Fig. 10. (a) A diagram illustrating the preparation of hydrophobic MXene film. Insert photograph: contact angle of hydrophilic and hydrophobic MXene film [134]. (b) Schematic diagrams of PPy-MXene coated textile SCs [137].
Fig. 11. (a) Schematic illustration for the preparation of MnO2/MXene@C [139]. (b) Schematic illustration of the procedure for preparing the phosphate ion-modified RuO2/Ti3C2 composite (PRT) [140].
Fig. 12. (a) Antibacterial mechanism diagram of Cu, G/Cu, h-BN/Cu samples [151]. (b) Diagram of biological corrosion mechanism of Cu and h-BN/Cu samples [152].
Fig. 13. (a) CAs and SAs for water and cetane in MoS2 films and cetane drop placed on 4-MoS2 films [155]. (b) Schematic diagram of MoST/Graphit-iC coating deposition process [156].
Fig. 14. (a) State of 1 mg/mL nanoplate dispersion after standing in water for 2 h [171]. (b) Interaction between h-BN and CAT- [171]. (c) Preparation of h-BN-rGO@PDA/PVB composite coating [172]. (d) Schematic representation of the preparation of h-BN@PDA and h-BN-Fe3O4 [173]. (e) Schematic illustration of the preparation of the BN(OH)x-PrGO filler [174].
Fig. 15. (a) Synthesis mechanism of SiO2-MoS2 core-shell nanoparticles and corrosion resistance mechanism of SiO2-MoS2/epoxy composite coating [178]. (b) Preparation of KZPM filler and its action mechanism in coatings [179].
Fig. 16. (a) Schematic diagram for the preparation of the PDA-ZrP/ WER nanocomposite coating and how PDA-ZrP improves the barrier properties of the coating [181]. (b) Process of exfoliation and functionalization of α-ZrP (f-ZrP) and the preparation of f-ZrP/WEP nanocomposite coatings [133]. (c) Schematic illustration of the fabrication process of the composite containing coating and the structure of PANI/a-ZrP composite [184]. (d) Corrosion mechanism of neat epoxy coating and composite containing coating [184].
Fig. 17. (a) Schematic illustration of preparation of the amino functionalized Ti3C2Tx [190]. (b) Schematic illustration of fabrication process of the wrapping structure of Ti3C2/graphene hybrid [192]. (c) Schematic diagram of preparation of T/EP-on-MAO [191]. (d) Schematic representation of the preparation of Ti3C2Tx nanosheets and the process for the synthesis of Ti3C2Tx/PANI composites (TPCs) [193].
Fig. 18. (a) Schematic illustration exhibiting the synthesis mechanism of ultrathin MNSs. (b) Schematic illustrations of the steps of the preparation of MNS/EP coatings and the barrier mechanism. (c) Bode-phase plots and Bode-modulus plots for MNS/EP samples after two months of immersion [20].
Fig. 21. (a) Schematic diagrams of the anticorrosion mechanisms for graphene-based composite coatings. (b) Schematic of the interfacial interaction between graphene and coating matrix. The illustrations of (c) homogenously dispersed, (d) aligned, and (e) connected graphene layers in the coating matrix [198].
Fig. 22. Schematic representation of visualization of 3D macrodispersion of fillers in organic-inorganic composites. The inorganic fillers modified and bound with AIE molecules are dispersed inside the organic matrix, and then directly visualized by CFM [205].
[1] | J. Sun, W. Cao, N. Wang, L. Gu, W. Li, Acta Chim. Sin. 78 (11) (2020) 1139-1149. |
[2] | L. Gu, J. Ding, H. Yu, Prog. Chem. 28 (5) (2016) 737-743. |
[3] | J. Sun, X. Tang, G. Meng, L. Gu, Prog. Org. Coat. 167 (2022) 106831. |
[4] |
L. Cheng, H. Wu, J. Li, H. Zhao, L. Wang, Corros. Sci. 178 (2021) 109064.
DOI URL |
[5] |
J. Chen, W. Zhao, Chem. Eng. J. 423 (2021) 130195.
DOI URL |
[6] |
X. Zhu, Q. Yan, L. Cheng, H. Wu, H. Zhao, L. Wang, Chem. Eng. J. 389 (2020) 124435.
DOI URL |
[7] |
H. Huang, X. Sheng, Y. Tian, L. Zhang, Y. Chen, X. Zhang, Ind. Eng. Chem. Res. 59 (35) (2020) 15424-15446.
DOI URL |
[8] | J. Mu, F. Gao, G. Cui, S. Wang, S. Tang, Z. Li, Prog. Org. Coat. 157 (2021) 106321. |
[9] |
R. Ding, S. Chen, J. Lv, W. Zhang, X. Zhao, J. Liu, X. Wang, T. Gui, B. Li, Y. Tang, W. Li, J. Alloys Compd. 806 (2019) 611-635.
DOI URL |
[10] | G. Cui, Z. Bi, R. Zhang, J. Liu, X. Yu, Z. Li, Chem. Eng. J. 18 (2019) 104-121. |
[11] |
R. Ding, W. Li, X. Wang, T. Gui, B. Li, P. Han, H. Tian, A. Liu, X. Wang, X. Liu, X. Gao, W. Wang, L. Song, J. Alloys Compd. 764 (2018) 1039-1055.
DOI URL |
[12] |
R.K. Singh Raman, A. Tiwari, JOM 66 (4) (2014) 637-642.
DOI URL |
[13] |
M. Schriver, W. Regan, W.J. Gannett, A.M. Zaniewski, M.F. Crommie, A. Zettl, ACS Nano 7 (7) (2013) 5763-5768.
DOI PMID |
[14] |
W. Sun, Y. Yang, Z. Yang, L. Wang, J. Wang, D. Xu, G. Liu, J. Mater. Sci. Technol. 91 (2021) 278-306.
DOI URL |
[15] |
H. Zhao, J. Ding, P. Liu, H. Yu, Corros. Sci. 183 (2021) 109333.
DOI URL |
[16] |
X. Zhu, Q. Yan, Y. Yu, H. Zhao, Q. Xue, L. Wang, ACS Appl, Nano Mater. 4 (5)(2021) 5413-5424.
DOI URL |
[17] |
H. Zhao, J. Ding, M. Zhou, H. Yu, ACS Appl, Nano Mater. 4 (3) (2021) 3075-3086.
DOI URL |
[18] |
L. Li, Z. Lu, J. Pu, B. Hou, Appl. Surf. Sci. 541 (2021) 148453.
DOI URL |
[19] |
M. Wang, R. Ma, A. Du, S. Hu, M. Muhammad, X. Cao, Y. Fan, X. Zhao, J. Wu, Mater. Chem. Phys. 250 (2020) 123056.
DOI URL |
[20] |
J. Ding, H. Zhao, H. Yu, Nanoscale 12 (30) (2020) 16253-16261.
DOI URL |
[21] |
F. Yang, P. Song, M. Ruan, W. Xu, FlatChem 18 (2019) 100133.
DOI URL |
[22] | K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306 (5696) (2004) 666-669. |
[23] | K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. U. S. A. 102 (30) (2005) 10451-10453. |
[24] |
M. Xu, T. Liang, M. Shi, H. Chen, Chem. Rev. 113 (5) (2013) 3766-3798.
DOI URL |
[25] |
X. Chen, J.F. Dobson, C.L. Raston, Chem. Commun. 48 (31) (2012) 3703-3705.
DOI URL |
[26] |
W. Lei, V.N. Mochalin, D. Liu, S. Qin, Y. Gogotsi, Y. Chen, Nat. Commun. 6 (2015) 8849.
DOI URL |
[27] | J. Ding, H. Zhao, H. Yu,2D Mater. 5 (4) (2018) 045015. |
[28] |
V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Science 340 (6139) (2013) 1226419.
DOI URL |
[29] |
C. Zhi, Y. Bando, C. Tang, H. Kuwahara, D. Golberg, Adv. Mater. 21 (28) (2009) 2889-2893.
DOI URL |
[30] |
K. Zhou, N. Mao, H. Wang, Y. Peng, H. Zhang, Angew. Chem. Int. Ed. 123 (2011) 11031-11034.
DOI URL |
[31] | L. Cao, S. Emami, K. Lafdi, Mater. Express 4 (2) (2014) 165-171. |
[32] |
Y. Wang, Z. Shi, J. Yin, J. Mater. Chem. 21 (30) (2011) 11371-11377.
DOI URL |
[33] |
T. Morishita, H. Okamoto, Y. Katagiri, M. Matsushita, K. Fukumori, Chem. Commun. 51 (60) (2015) 12068-12071.
DOI URL |
[34] |
J. Ding, H. Zhao, Q. Wang, W. Peng, H. Yu, Nanotechnology 28 (47) (2017) 475602.
DOI URL |
[35] | N. Wang, G. Yang, H. Wang, C. Yan, R. Sun, C. Wong, Mater. Today 27 (2019) 33-42. |
[36] |
H. Zhao, J. Ding, Z. Shao, B. Xu, Q. Zhou, H. Yu, ACS Appl. Mater. Interfaces 11 (40) (2019) 37247-37255.
DOI URL |
[37] | G. Lu, T. Wu, Q. Yuan, H. Wang, H. Wang, F. Ding, X. Xie, M. Jiang, Nat. Com- mun. 6 (1) (2015) 6160. |
[38] |
L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, P.M. Ajayan, Nano Lett. 10 (8) (2010) 3209-3215.
DOI PMID |
[39] |
Y.H. Lee, K.K. Liu, A.Y. Lu, C.Y. Wu, C.T. Lin, W. Zhang, C.Y. Su, C.L. Hsu, T.W. Lin, K.H. Wei, Y. Shi, L.J. Li, RSC Adv. 2 (1) (2012) 111-115.
DOI URL |
[40] |
R.Y. Tay, M.H. Griep, G. Mallick, S.H. Tsang, R.S. Singh, T. Tumlin, E.H. Teo, S.P. Karna, Nano Lett. 14 (2) (2014) 839-846.
DOI URL |
[41] |
A. Pakdel, C. Zhi, Y. Bando, T. Nakayama, D. Golberg, ACS Nano 5 (8) (2011) 6507-6515.
DOI PMID |
[42] |
A. Nag, K. Raidongia, K. P.S.S. Hembram, R. Datta, U.V. Waghmare, C.N.R. Rao, ACS Nano 4 (3) (2010) 1539-1544.
DOI URL |
[43] | B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotech- nol. 6 (3) (2011) 147-150. |
[44] |
Z. Wang, B. Mi, Environ. Sci. Technol. 51 (15) (2017) 8229-8244.
DOI URL |
[45] |
R. Esteban-Puyuelo, D.D. Sarma, B. Sanyal, Phys. Rev. B 102 (16) (2020) 165412.
DOI URL |
[46] |
X. Zhang, Z. Lai, C. Tan, H. Zhang, Angew. Chem. Int. Ed. 55 (31) (2016) 8816-8838.
DOI PMID |
[47] |
K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J.N. Coleman, L. Zhang, W.J. Blau, ACS Nano 7 (10) (2013) 9260-9267.
DOI URL |
[48] | Y. Yang, N. Huo, J. Li, J. Mater. Chem. C 5 (44) (2017) 11614-11619. |
[49] |
P. Wu, Z. Liu, Z. Cheng, RSC Adv. 9 (30) (2019) 17016-17024.
DOI URL |
[50] |
Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Angew. Chem. Int. Ed. 50 (47) (2011) 11093-11097.
DOI URL |
[51] |
P. Wu, Z. Liu, Z. Cheng, Mater. Lett. 248 (2019) 236-240.
DOI URL |
[52] |
X. Yang, Z. Chen, J. Fang, Q. Yang, W. Zhao, X. Qian, C. Liu, D. Zhou, S. Tao, X. Liu, Mater. Lett. 255 (2019) 126596.
DOI URL |
[53] | W. Han, Y. Xia, D. Yang, A. Dong, Chem. Commun. 57 (36) (2021) 4 400-4 403. |
[54] |
D. Wang, F. Wu, Y. Song, C. Li, L. Zhou, J. Alloys Compd. 728 (2017) 1030-1036.
DOI URL |
[55] |
P. Chen, X. Liang, Y. Zhou, W. Nie, J. Mater. Sci. 53 (11) (2018) 8221-8231.
DOI URL |
[56] |
P. Yang, X. Zou, Z. Zhang, M. Hong, J. Shi, S. Chen, J. Shu, L. Zhao, S. Jiang, Y. Zhang, J. Sun, X. Xiao et al. X. Zhou, Y. Huan, C. Xie, P. Gao, Q. Chen, Q. Zhang, Z. Liu, Y. Zhang, Nat. Commun. 9 (1) (2018) 979.
DOI URL |
[57] |
Y. Wan, H. Zhang, K. Zhang, Y. Wang, B. Sheng, X. Wang, L. Dai, ACS Appl. Mater. Interfaces 8 (28) (2016) 18570-18576.
DOI URL |
[58] |
K.M. McCreary, E.D. Cobas, A.T. Hanbicki, M.R. Rosenberger, H.J. Chuang, S. V. Sivaram, V.P. Oleshko, B.T. Jonker, ACS Appl. Mater. Interfaces 12 (8)(2020) 9580-9588.
DOI URL |
[59] | Y. Yue, Y. Feng, J. Chen, D. Zhang, W. Feng, J. Mater. Chem. C 5 (24) (2017) 5887-5896. |
[60] |
Y. Jing, P. Wang, Q. Yang, Y. He, Y. Bai, Synth. Met. 259 (2020) 116249.
DOI URL |
[61] |
S. Kumari, H.P. Mungse, R. Gusain, N. Kumar, H. Sugimura, O.P. Khatri, FlatChem 3 (2017) 16-25.
DOI URL |
[62] |
H. Li, F. Xie, W. Li, B.D. Fahlman, M. Chen, W. Li, RSC Adv. 6 (107) (2016) 105222-105230.
DOI URL |
[63] |
A. Clearfield, J.A. Stynes, J. Inorg. Nucl. Chem. 26 (1) (1964) 117-129.
DOI URL |
[64] |
H. Xiao, S. Liu, Mater. Des. 155 (2018) 19-35.
DOI URL |
[65] | M. Pica, Catalysts 7 (6) (2017) 190. |
[66] |
H. Nakayama, A. Hayashi, T. Eguchi, N. Nakamura, M. Tsuhako, Solid State Sci. 4 (8) (2002) 1067-1070.
DOI URL |
[67] |
G. Alberti, M. Casciola, U. Costantino, J. Colloid Interface Sci. 107 (1) (1985) 256-263.
DOI URL |
[68] |
H.N. Kim, S.W. Keller, T.E. Mallouk, J. Schmitt, G. Decher, Chem. Mater. 9 (6)(1997) 1414-1421.
DOI URL |
[69] |
D.M. Kaschak, S.A. Johnson, D.E. Hooks, H.N. Kim, M.D. Ward, T.E. Mallouk, J. Am. Chem. Soc. 120 (42) (1998) 10887-10894.
DOI URL |
[70] | K.L. White, P. Li, H. Yao, R. Nishimura, H.J. Sue, Rheol. Acta 53 (7) (2014) 571-583. |
[71] |
F. Xia, H. Yong, X. Han, D. Sun, Nanoscale Res. Lett. 11 (1) (2016) 348.
DOI URL |
[72] | W.J. Boo, L. Sun, J. Liu, A. Clearfield, H.J. Sue, J. Phys. Chem. C 111 (28) (2007) 10377-10381. |
[73] |
B. Ahmed, D.H. Anjum, Y. Gogotsi, H.N. Alshareef, Nano Energy 34 (2017) 249-256.
DOI URL |
[74] |
H. Zhang, Z. Wang, Y. Shen, P. Mu, Q. Wang, J. Li, J. Colloid Interface Sci. 561 (2020) 861-869.
DOI URL |
[75] | S. Lee, J. Kim, Polymers 13 (3) (2021) 13030379. |
[76] | Y. Zhang, Y. Wang, Q. Jiang, J.K. El-Demellawi, H. Kim, H.N. Alshareef, Adv. Mater. 32 (21) (2020) e1908486. |
[77] |
S. Buczek, M.L. Barsoum, S. Uzun, N. Kurra, R. Andris, E. Pomerantseva, K.A. Mahmoud, Y. Gogotsi, Energy Environ. Mater. 3 (3) (2020) 398-404.
DOI URL |
[78] | Z. Guo, L. Gao, Z. Xu, S. Teo, C. Zhang, Y. Kamata, S. Hayase, T. Ma, Small 14 (47) (2018) e1802738. |
[79] |
H. Kim, Z. Wang, H.N. Alshareef, Nano Energy 60 (2019) 179-197.
DOI URL |
[80] |
M. Naguib, W. Tang, K.L. Browning, G.M. Veith, V. Maliekkal, M. Neurock, A. Villa, ChemCatChem 12 (22) (2020) 5733-5742.
DOI URL |
[81] |
Y. Cao, Q. Deng, Z. Liu, D. Shen, T. Wang, Q. Huang, S. Du, N. Jiang, C.T. Lin, J. Yu, RSC Adv. 7 (33) (2017) 20494-20501.
DOI URL |
[82] | D. Zeleniakiene, G. Monastyreckis, A. Aniskevich, P. Griskevicius, Materials 13 (5) (2020) 13051253. |
[83] |
S. Sun, C. Liao, A.M. Hafez, H. Zhu, S. Wu, Chem. Eng. J. 338 (2018) 27-45.
DOI URL |
[84] |
C.Y. Liu, E.Y. Li, ACS Appl. Mater. Interfaces 11 (1) (2019) 1638-1644.
DOI URL |
[85] |
Z. Wei, Z. Peigen, T. Wubian, Q. Xia, Z. Yamei, Z. Sun, Mater. Chem. Phys. 206 (2018) 270-276.
DOI URL |
[86] |
Y. Fan, D. Chen, X. Liu, G. Fan, B. Liu, Int. J. Hydrog. Energy 44 (55) (2019) 29297-29303.
DOI URL |
[87] |
S.N. Shuvo, A.M. Ulloa Gomez, A. Mishra, W.Y. Chen, A.M. Dongare, L.A. Stan- ciu, ACS Sens. 5 (9) (2020) 2915-2924.
DOI URL |
[88] |
P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota, P.L. Walsh, M. Zhao, V. B. Shenoy, M.W. Barsoum, Y. Gogotsi, Nanoscale 8 (22) (2016) 11385-11391.
DOI PMID |
[89] |
Y. Li, X. Zhou, J. Wang, Q. Deng, M. Li, S. Du, Y.H. Han, J. Lee, Q. Huang, RSC Adv. 7 (40) (2017) 24698-24708.
DOI URL |
[90] |
A. Sarycheva, A. Polemi, Y. Liu, K. Dandekar, B. Anasori, Y. Gogotsi, Sci. Adv. 4 (9) (2018) eaau0920.
DOI URL |
[91] |
T. Li, L. Yao, Q. Liu, J. Gu, R. Luo, J. Li, X. Yan, W. Wang, P. Liu, B. Chen, W. Zhang, W. Abbas, R. Naz, D. Zhang, Angew. Chem. Int. Ed. 57 (21) (2018) 6115-6119.
DOI URL |
[92] |
Q. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Chem. Soc. Rev. 45 (14)(2016) 3989-4012.
DOI URL |
[93] |
Z. Zheng, M. Cox, B. Li, J. Mater. Sci. 53 (1) (2018) 66-99.
DOI URL |
[94] |
Y. Lin, T.V. Williams, T. Xu, W. Cao, H.E. Elsayed-Ali, J.W. Connell, J. Phys. Chem. C 115 (6) (2011) 2679-2685.
DOI URL |
[95] | B. Yu, W. Xing, W. Guo, S. Qiu, X. Wang, S. Lo, Y. Hu, J. Mater. Chem. A 4 (19)(2016) 7330-7340. |
[96] |
T. Sainsbury, A. Satti, P. May, Z. Wang, I. McGovern, Y.K. Gun’ko, J. Coleman, J. Am. Chem. Soc. 134 (45) (2012) 18758-18771.
DOI PMID |
[97] |
W. Cai, N. Hong, X. Feng, W. Zeng, Y. Shi, Y. Zhang, B. Wang, Y. Hu, Chem. Eng. J. 330 (2017) 309-321.
DOI URL |
[98] | Y. Wu, Y. He, T. Zhou, C. Chen, F. Zhong, Y. Xia, P. Xie, C. Zhang, Prog. Org. Coat. 142 (2020) 105541. |
[99] | J. Li, J. Cui, J. Yang, Y. Ma, H. Qiu, J. Yang, Prog. Org. Coat. 99 (2016) 443-451. |
[100] | S. Pourhashem, M.R. Vaezi, A. Rashidi, M.R. Bagherzadeh, Prog. Org. Coat. 111 (2017) 47-56. |
[101] |
M.A. Raza, Z.U. Rehman, F.A. Ghauri, Thin Solid Films 663 (2018) 93-99.
DOI URL |
[102] | Y. Fan, H. Yang, H. Fan, Q. Liu, C. Lv, X. Zhao, M. Yang, J. Wu, X. Cao, Materials 13 (10) (2020) 2340 (Basel, Switzerland). |
[103] |
Z. Liu, J. Li, X. Liu, ACS Appl. Mater. Interfaces 12 (5) (2020) 6503-6515.
DOI URL |
[104] |
Y. Wu, Y. He, C. Chen, F. Zhong, H. Li, J. Chen, T. Zhou, Colloids Surf. A 587 (2020) 124337.
DOI URL |
[105] | M. Cui, S. Ren, S. Qin, Q. Xue, H. Zhao, L. Wang, RSC Adv. 7 (70) (2017) 4 4043-4 4053. |
[106] |
P. Vishnoi, A. Sampath, U.V. Waghmare, C.N. Rao, Chem. Eur. J. 23 (4) (2017) 886-895.
DOI URL |
[107] |
Y. Wang, Y. Du, J. Deng, Z. Wang, Colloids Surf. A 562 (2019) 321-328.
DOI URL |
[108] |
W. Wu, C. Wei, X. Lin, Q. Xu, Chem. Asian J. 13 (10) (2018) 1293-1296.
DOI URL |
[109] |
F. Fan, B. Zhang, S. Song, B. Liu, Y. Cao, Y. Chen, Adv. Electron. Mater. 4 (2)(2018) 1700397.
DOI URL |
[110] | J. Shen, Y. Pei, M. Wang, Y. Ge, P. Dong, J. Yuan, R. Baines, P.M. Ajayan, M. Ye, Adv. Mater. Interfaces 4 (4) (2017) 1600847. |
[111] |
J. Shen, Y. Pei, P. Dong, J. Ji, Z. Cui, J. Yuan, R. Baines, P.M. Ajayan, M. Ye, Nanoscale 8 (18) (2016) 9641-9647.
DOI URL |
[112] |
X. Lu, Y. Jin, X. Zhang, G. Xu, D. Wang, J. Lv, Z. Zheng, Y. Wu, Dalton Trans. 45 (39) (2016) 15406-15414.
DOI URL |
[113] |
Z. Che, Y. Li, K. Chen, M. Wei, J. Power Sources 331 (2016) 50-57.
DOI URL |
[114] |
K. Zhou, X. Qian, R. Gao, F. Mei, J. Colloid Interface Sci. 504 (2017) 158-163.
DOI URL |
[115] | M. Li, Z. Cui, E. Li, Ceram. Int. 45 (11) (2019) 14 4 49-14 456. |
[116] | P. Choudhury, L. Ravavarapu, R. Dekle, S. Chowdhury, J. Phys. Chem. C 121 (5)(2017) 2959-2967. |
[117] |
X. Yin, Y. Li, H. Meng, W. Wu, Appl. Surf. Sci. 486 (2019) 362-370.
DOI URL |
[118] |
Z. Tang, C. Zhang, Q. Wei, P. Weng, B. Guo, Compos. Sci. Technol. 132 (2016) 93-100.
DOI URL |
[119] |
X. Feng, W. Xing, J. Liu, S. Qiu, Y. Hu, K.M. Liew, Compos. Sci. Technol. 137 (2016) 188-195.
DOI URL |
[120] |
K. Zhou, J. Liu, P. Wen, Y. Hu, Z. Gui, Appl. Surf. Sci. 316 (2014) 237-244.
DOI URL |
[121] | B.M. Mosby, A. Diaz, A. Clearfield, Dalton Trans. 43 (27) (2014) 10328-10339. |
[122] | A .F. Mejia A. Diaz, S. Pullela Y.W. Chang M. Simonetty C. Carpenter J. D. Batteas M.S. Mannan A. Clearfield Z. Cheng, Soft Matter 8 (40) (2012) 10245-10253. |
[123] | B.M. Mosby, A. Diaz, V. Bakhmutov, A. Clearfield, ACS Appl. Mater. Interfaces 6 (1) (2014) 585-592. |
[124] | A. Díaz, B.M. Mosby, V.I. Bakhmutov, A. A. Martí, J.D. Batteas, A. Clearfield, Chem. Mater. 25 (5) (2013) 723-728. |
[125] |
Y. Zhang, X. Zeng, X. Lai, H. Li, RSC Adv. 8 (1) (2018) 111-121.
DOI URL |
[126] |
Y. Zhou, R. Huang, F. Ding, A.D. Brittain, J. Liu, M. Zhang, M. Xiao, Y. Meng, L. Sun, ACS Appl. Mater. Interfaces 6 (10) (2014) 7417-7425.
DOI URL |
[127] |
K. Malkappa, J. Bandyopadhyay, S.S. Ray, ACS Omega 5 (23) (2020) 13867-13877.
DOI PMID |
[128] |
L. Xu, C. Lei, R. Xu, X. Zhang, F. Zhang, RSC Adv. 6 (81) (2016) 77545-77552.
DOI URL |
[129] | X. Wang, D. Zhao, I.B. Medina, A. Diaz, H. Wang, A. Clearfield, M.S. Mannan, Z. Cheng, Chem. Commun. 52 (26) (2016) 4 832-4 835. |
[130] | B.M. Mosby, M. Goloby, A. Díaz, V. Bakhmutov, A. Clearfield, Langmuir 30 (9)(2014) 2513-2521. |
[131] |
M. Cui, S. Ren, H. Zhao, Q. Xue, L. Wang, Chem. Eng. J. 335 (2018) 255-266.
DOI URL |
[132] |
X. Zhang, H. Wang, X. Zhang, Z. Zhao, Y. Zhu, Colloids Surf., A 568 (2019) 239-247.
DOI URL |
[133] | H. Huang, M. Li, Y. Tian, Y. Xie, X. Sheng, X. Jiang, X. Zhang, Prog. Org. Coat. 138 (2020) 105390. |
[134] |
R. Bian, S. Xiang, D. Cai, ChemNanoMat 6 (1) (2019) 64-67.
DOI URL |
[135] |
H. Jing, H. Yeo, B. Lyu, J. Ryou, S. Choi, J.H. Park, B.H. Lee, Y.H. Kim, S. Lee, ACS Nano 15 (1) (2021) 1388-1396.
DOI URL |
[136] |
J.E. Heckler, G.R. Neher, F. Mehmood, D.B. Lioi, R. Pachter, R. Vaia, W.J. Kennedy, D. Nepal, Langmuir 37 (18) (2021) 5447-5456.
DOI URL |
[137] |
J. Yan, Y. Ma, C. Zhang, X. Li, W. Liu, X. Yao, S. Yao, S. Luo, RSC Adv. 8 (69)(2018) 39742-39748.
DOI URL |
[138] | J. Zhao, Y. Yang, C. Yang, Y. Tian, Y. Han, J. Liu, X. Yin, W. Que, J. Mater. Chem. A 6 (33) (2018) 16196-16204. |
[139] |
L. Zhu, J. Lv, X. Yu, H. Zhao, C. Sun, Z. Zhou, Y. Ying, L. Tan, Appl. Surf. Sci. 502 (2020) 144171.
DOI URL |
[140] | J. Zhao, F. Liu, W. Li, Nanomaterials 9 (3) (2019) 030377. |
[141] |
M. Boota, P. Urbankowski, W. Porzio, L. Barba, N.C. Osti, M. Bleuel, J.K. Keum, E. Mamontov, ACS Appl. Energy Mater. 3 (5) (2020) 4127-4133.
DOI URL |
[142] | Y. Du, D. Wang, P. Si, L. Wei, Y. Wang, B. Yu, X. Zhang, S. Ye, Surf. Coat. Tech- nol. 354 (2018) 119-125. |
[143] |
L. Jin, C. Wu, K. Wei, L. He, H. Gao, H. Zhang, K. Zhang, A.M. Asiri, K.A. Alamry, L. Yang, X. Chu, ACS Appl. Nano Mater. 3 (12) (2020) 12071-12079.
DOI URL |
[144] |
M. Schriver, W. Regan, W.J. Gannett, A.M. Zaniewski, M.F. Crommie, A. Zettl, ACS Nano 7 (7) (2013) 5763-5768.
DOI PMID |
[145] |
O. Eksik, J. Gao, S.A. Shojaee, A. Thomas, P. Chow, S.F. Bartolucci, D.A. Lucca, N. Koratkar, ACS Nano 8 (5) (2014) 5282-5289.
DOI URL |
[146] |
V.F. Britun, A.V. Kurdyumov, I.A. Petrusha, Mater. Lett. 41 (1999) 83-88.
DOI URL |
[147] |
Z. Liu, Y. Gong, W. Zhou, L. Ma, J. Yu, J.C. Idrobo, J. Jung, A.H. MacDonald, R. Vajtai, J. Lou, P.M. Ajayan, Nat. Commun. 4 (2013) 2541.
DOI URL |
[148] |
K. Liu, G. Zhang, J. Pu, F. Ma, G. Wu, Z. Lu, Ceram. Int. 44 (12) (2018) 13888-13893.
DOI URL |
[149] |
J. Zhang, Y. Yang, J. Lou, Nanotechnology 27 (36) (2016) 364004.
DOI URL |
[150] |
F. Mahvash, S. Eissa, T. Bordjiba, A.C. Tavares, T. Szkopek, M. Siaj, Sci. Rep. 7 (2017) 42139.
DOI PMID |
[151] | C. Parra, F. Montero-Silva, R. Henríquez, M. Flores, C. Garín, C. Ramírez, M. Moreno, J. Correa, M. Seeger, P. Häberle, Appl. Surf. Sci. 7 (12) (2015) 6430-6437. |
[152] |
G. Chilkoor, S.P. Karanam, S. Star, N. Shrestha, R.K. Sani, V.K.K. Upadhyayula, D. Ghoshal, N.A. Koratkar, M. Meyyappan, V. Gadhamshetty, ACS Nano 12 (3)(2018) 2242-2252.
DOI PMID |
[153] |
J.L. Grosseau-Poussard, P. Moine, M. Brendle, Thin Solid Films 307 (1-2)(1997) 163-168.
DOI URL |
[154] |
C. Liu, Q. Bi, A. Matthews, Corros. Sci. 43 (10) (2001) 1953-1961.
DOI URL |
[155] |
Z. Li, S. Hui, J. Yang, Y. Hua, Mater. Lett. 229 (2018) 336-339.
DOI URL |
[156] |
H. Li, P. Yi, D. Zhang, L. Peng, Z. Zhang, J. Pu, Appl. Surf. Sci. 506 (2020) 144961.
DOI URL |
[157] |
K. Shang, S. Zheng, S. Ren, J. Pu, D. He, S. Liu, Appl. Surf. Sci. 437 (2018) 233-244.
DOI URL |
[158] |
S. ArunKumar, V. Jegathish, R. Soundharya, M. JesyAlka, C. Arul, S. Sathya- narayanan, S. Mayavan, RSC Adv. 7 (28) (2017) 17332-17335.
DOI URL |
[159] | A. Shida, H. Sugimura, M. Futsuhara, O. Takai, Surf. Coat. Technol. 169-170 (2003) 686-690. |
[160] |
S.J. Percival, M.A. Melia, C.L. Alexander, D.W. Nelson, E.J. Schindelholz, E. D. Spoerke, Surf. Coat. Technol. 383 (2020) 125228.
DOI URL |
[161] |
X. Zhang, Y. Chen, J. Hu, Corros. Sci. 166 (2020) 108452.
DOI URL |
[162] |
Z. Sharifalhoseini, M.H. Entezari, A. Davoodi, M. Shahidi, J. Ind. Eng. Chem. 83 (2020) 333-342.
DOI URL |
[163] |
E.R. Ghomi, S.N. Khorasani, M.K. Kichi, M. Dinari, S. Ataei, M.H. Enayati, M. S. Koochaki, R.E. Neisiany, Colloid Polym. Sci. 298 (2) (2020) 213-223.
DOI URL |
[164] |
L. Gu, S. Liu, H. Zhao, H. Yu, ACS Appl. Mater. Interfaces 7 (32) (2015) 17641-17648.
DOI URL |
[165] |
S. Liu, L. Gu, H. Zhao, J. Chen, H. Yu, J. Mater. Sci. Technol. 32 (5) (2016) 425-431.
DOI URL |
[166] |
E. Husain, T.N. Narayanan, J.J. Taha-Tijerina, S. Vinod, R. Vajtai, P.M. Ajayan, ACS Appl. Mater. Interfaces 5 (10) (2013) 4129-4135.
DOI URL |
[167] |
M. Yi, Z. Shen, L. Liu, S. Liang, RSC Adv. 5 (4) (2015) 2983-2987.
DOI URL |
[168] | W. Sun, L. Wang, T. Wu, Y. Pan, G. Liu, J. Electrochem. Soc. 163 (2) (2016) C16-C18. |
[169] |
M. Cui, S. Ren, S. Qin, Q. Xue, H. Zhao, L. Wang, Corros. Sci. 131 (2018) 187-198.
DOI URL |
[170] | S. Pathan, S. Ahmad, J. Mater. Chem. A 1 (45) (2013) 14227-14238. |
[171] |
M. Cui, S. Ren, J. Chen, S. Liu, G. Zhang, H. Zhao, L. Wang, Q. Xue, Appl. Surf. Sci. 397 (2017) 77-86.
DOI URL |
[172] | H. Huang, X. Huang, Y. Xie, Y. Tian, X. Jiang, X. Zhang, Prog. Org. Coat. 130 (2019) 124-131. |
[173] |
C. Zhang, Y. He, F. Li, H. Di, L. Zhang, Y. Zhan, J. Alloys Compd. 685 (2016) 743-751.
DOI URL |
[174] | X. Li, P. Bandyopadhyay, T. Kshetri, N.H. Kim, J.H. Lee, J. Mater. Chem. A 6 (43)(2018) 21501-21515. |
[175] | Y. Wu, J. Yu, W. Zhao, C. Wang, B. Wu, G. Lu, Prog. Org. Coat. 133 (2019) 8-18. |
[176] | Z. Xia, G. Liu, Y. Dong, Y. Zhang, Prog. Org. Coat. 133 (2019) 154-160. |
[177] |
F. Gao, A. Du, R. Ma, C. Lv, H. Yang, Y. Fan, X. Zhao, J. Wu, X. Cao, Colloids Surf. A 587 (2020) 124318.
DOI URL |
[178] | Y. Xia, Y. He, C. Chen, Y. Wu, J. Chen, Prog. Org. Coat. 132 (2019) 316-327. |
[179] |
Y. Jing, P. Wang, Q. Yang, Q. Wang, Y. Bai, Colloids Surf. A 608 (2021) 125625.
DOI URL |
[180] |
T.C. Huang, G.H. Lai, C.E. Li, M.H. Tsai, P.Y. Wan, Y.H. Chung, M.H. Lin, RSC Adv. 7 (16) (2017) 9908-9913.
DOI URL |
[181] |
X. Sheng, R. Mo, Y. Ma, X. Zhang, L. Zhang, H. Wu, Ind. Eng. Chem. Res. 58 (36) (2019) 16571-16580.
DOI URL |
[182] |
B. Qian, Z. Zheng, M. Michailids, N. Fleck, M. Bilton, Y. Song, G. Li, D. Shchukin, ACS Appl. Mater. Interfaces 11 (10) (2019) 10283-10291.
DOI URL |
[183] | Y. Situ, W. Ji, H. Huang, Y. Shi, Paint Coat. Ind. 49 (11) (2019) 32-39. |
[184] |
Y. Situ, Y. Guo, W. Ji, D. Liu, D. Wei, H. Huang, J. Coat. Technol. Res. 18 (2021) 999-1012.
DOI URL |
[185] |
I. Bouali, E. Rocca, D. Veys-Renaux, A. Khalil, B. Rhouta, A. Ait Aghzzaf, J. Solid State Electrochem. 25 (3) (2020) 831-840.
DOI URL |
[186] |
Y. Zhao, S. Yan, Y. He, Z. Li, C. Li, H. Li, Colloids Surf. A 635 (2022) 128052.
DOI URL |
[187] |
X. Sheng, S. Li, H. Huang, Y. Zhao, Y. Chen, L. Zhang, D. Xie, J. Mater. Sci. 56 (6) (2020) 4212-4224.
DOI URL |
[188] | Y. Zou, L. Fang, T. Chen, M. Sun, C. Lu, Z. Xu, Polymers 10 (5) (2018) 10050474. |
[189] | H. Yan, W. Li, H. Li, X. Fan, M. Zhu, Prog. Org. Coat. 135 (2019) 156-167. |
[190] |
H. Yan, M. Cai, W. Li, X. Fan, M. Zhu, J. Mater. Sci. Technol. 54 (2020) 144-159.
DOI URL |
[191] |
H. Yan, J. Wang, M. Cai, X. Wang, S. Song, X. Fan, L. Zhang, H. Li, W. Li, M. Zhu, Corros. Sci. 174 (2020) 108813.
DOI URL |
[192] |
H. Yan, L. Zhang, H. Li, X. Fan, M. Zhu, Carbon 157 (2020) 217-233.
DOI URL |
[193] |
M. Cai, H. Yan, Y. Li, W. Li, H. Li, X. Fan, M. Zhu, Chem. Eng. J. 410 (2021) 128310.
DOI URL |
[194] |
M. Cai, X. Fan, H. Yan, Y. Li, S. Song, W. Li, H. Li, Z. Lu, M. Zhu, Chem. Eng. J. 419 (2021) 130050.
DOI URL |
[195] | H. Wang, J. Xu, X. Du, H. Wang, X. Cheng, Z. Du, Prog. Org. Coat. 164 (2022) 106672. |
[196] |
K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S.E. O’Brien, E.K. McGuire, B.M. Sanchez, G.S. Duesberg, N. McEvoy, T.J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, J.N. Coleman, Nat. Mater. 13 (6) (2014) 624-630.
DOI URL |
[197] |
Y. He, H. Dong, Q. Meng, L. Jiang, W. Shao, L. He, W. Hu, Adv. Mater. 23 (46)(2011) 5502-5507.
DOI URL |
[198] |
R. Zhang, X. Yu, Q. Yang, G. Cui, Z. Li, Constr. Build. Mater. 294 (2021) 123613.
DOI URL |
[199] |
M.H. Khan, S.S. Jamali, A. Lyalin, P.J. Molino, L. Jiang, H.K. Liu, T. Taketsugu, Z. Huang, Adv. Mater. Interfaces 29 (4) (2017) 1603937.
DOI URL |
[200] |
M. Zeng, L. Fu, Acc. Chem. Res. 51 (11) (2018) 2839-2847.
DOI URL |
[201] |
L. Chen, Z. Kong, S. Yue, J. Liu, J. Deng, Y. Xiao, R.G. Mendes, M.H. Rümmeli, L. Peng, L. Fu, Chem. Mater. 27 (24) (2015) 8230-8236.
DOI URL |
[202] |
L. Tan, J. Han, R.G. Mendes, M.H. Rümmeli, J. Liu, Q. Wu, X. Leng, T. Zhang, M. Zeng, L. Fu, Adv. Electron. Mater. 1 (11) (2015) 1500223.
DOI URL |
[203] |
H. Tetlow, J. Posthuma de Boer, I.J. Ford, D.D. Vvedensky, J. Coraux, L. Kan- torovich, Phys. Rep. 542 (3) (2014) 195-295.
DOI URL |
[204] |
R.S. Weatherup, L. D’Arsie, A. Cabrero-Vilatela, S. Caneva, R. Blume, J. Robert- son, R. Schloegl, S. Hofmann, J. Am. Chem. Soc. 137 (45) (2015) 14358-14366.
DOI PMID |
[205] |
W. Guan, S. Wang, C. Lu, B.Z. Tang, Nat. Commun. 7 (2016) 11811.
DOI URL |
[206] | S. Amrollahi, B. Ramezanzadeh, H. Yari, M. Ramezanzadeh, M. Mahdavian, Prog. Org. Coat. 136 (2019) 105241. |
[207] |
Z. Liu, S. Tian, Q. Li, J. Wang, J. Pu, G. Wang, W. Zhao, F. Feng, J. Qin, L. Ren, ACS Sustain. Chem. Eng. 8 (17) (2020) 6786-6797.
DOI URL |
[208] |
Y. Ye, D. Zhang, T. Liu, Z. Liu, J. Pu, W. Liu, H. Zhao, X. Li, L. Wang, Carbon 142 (2019) 164-176.
DOI URL |
[209] |
L. Cheng, C. Liu, H. Wu, H. Zhao, L. Wang, Corros. Sci. 193 (2021) 109891.
DOI URL |
[1] | Naifang Zhang, Qiaodan Hu, Zongye Ding, Wenquan Lu, Fan Yang, Jianguo Li. 3D morphological evolution and growth mechanism of proeutectic FeAl3 phases formed at Al/Fe interface under different cooling rates [J]. J. Mater. Sci. Technol., 2022, 116(0): 83-93. |
[2] | Yanyu Song, Duo Liu, Guobiao Jin, Haitao Zhu, Naibin Chen, Shengpeng Hu, Xiaoguo Song, Jian Cao. Fabrication of Si3N4/Cu direct-bonded heterogeneous interface assisted by laser irradiation [J]. J. Mater. Sci. Technol., 2022, 99(0): 169-177. |
[3] | Taiqian Mo, Zejun Chen, Dayu Zhou, Guangming Lu, Yongmeng Huang, Qing Liu. Effect of lamellar structural parameters on the bending fracture behavior of AA1100/AA7075 laminated metal composites [J]. J. Mater. Sci. Technol., 2022, 99(0): 28-38. |
[4] | Z.R. Xu, J.C. Qiao, J. Wang, E. Pineda, D. Crespo. Comprehensive insights into the thermal and mechanical effects of metallic glasses via creep [J]. J. Mater. Sci. Technol., 2022, 99(0): 39-47. |
[5] | Huinan Zhao, Xinyi Guan, Feng Zhang, Yajing Huang, Dehua Xia, Lingling Hu, Xiaoyuan Ji, Ran Yin, Chun He. Rational design of a bismuth oxyiodide (Bi/BiO1-xI) catalyst for synergistic photothermal and photocatalytic inactivation of pathogenic bacteria in water [J]. J. Mater. Sci. Technol., 2022, 100(0): 110-119. |
[6] | Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy [J]. J. Mater. Sci. Technol., 2022, 114(0): 42-54. |
[7] | Aobo Hu, Shuizhou Cai. Spatial phase structure and oxidation process of Al-W alloy powder with high sphericity [J]. J. Mater. Sci. Technol., 2022, 114(0): 62-72. |
[8] | Chao Liu, Yulong Zhang, Jiaxin Wu, Hailu Dai, Chengjian Ma, Qinfang Zhang, Zhigang Zou. Ag-Pd alloy decorated ZnIn2S4 microspheres with optimal Schottky barrier height for boosting visible-light-driven hydrogen evolution [J]. J. Mater. Sci. Technol., 2022, 114(0): 81-89. |
[9] | Langting Zhang, Yajuan Duan, Eloi Pineda, Hidemi Kato, Jean-Marc Pelletier, Jichao Qiao. Effect of physical aging and cyclic loading on power-law creep of high-entropy metallic glass [J]. J. Mater. Sci. Technol., 2022, 115(0): 1-9. |
[10] | Chuanliang Wei, Liwen Tan, Yuchan Zhang, Huiyu Jiang, Baojuan Xi, Shenglin Xiong, Jinkui Feng. Room-temperature liquid metal engineered iron current collector enables stable and dendrite-free sodium metal batteries in carbonate electrolytes [J]. J. Mater. Sci. Technol., 2022, 115(0): 156-165. |
[11] | Guanqiang Wang, Mingsong Chen, Yongcheng Lin, Hongbin Li, Yuqiang Jiang, Yanyong Ma, Chengxu Peng, Jinliang Cai, Quan Chen. Recrystallization nucleation under close-set δ phase in a nickel-based superalloy during annealing [J]. J. Mater. Sci. Technol., 2022, 115(0): 166-176. |
[12] | Jijun Wang, Songlin Yu, Qingqing Wu, Yan Li, Fangyuan Li, Xiao Zhou, Yuhua Chen, Bingzhen Li, Panbo Liu. Heterogeneous junctions of magnetic Ni core@binary dielectric shells toward high-efficiency microwave attenuation [J]. J. Mater. Sci. Technol., 2022, 115(0): 71-80. |
[13] | Qimin Shi, Shoufeng Yang, Yi Sun, Yifei Gu, Ben Mercelis, Shengping Zhong, Bart Van Meerbeek, Constantinus Politis. In-situ formation of Ti-Mo biomaterials by selective laser melting of Ti/Mo and Ti/Mo2C powder mixtures: A comparative study on microstructure, mechanical and wear performance, and thermal mechanisms [J]. J. Mater. Sci. Technol., 2022, 115(0): 81-96. |
[14] | Eun-Ae Choi, Seung Zeon Han, Hyung Giun Kim, Jee Hyuk Ahn, Sung Hwan Lim, Sangshik Kim, Nong-Moon Hwang, Kwangho Kim, Jehyun Lee. Coherent interface driven super-plastic elongation of brittle intermetallic nano-fibers at room temperature [J]. J. Mater. Sci. Technol., 2022, 115(0): 97-102. |
[15] | Jianen Zhou, Qingyun Yang, Qiongyi Xie, Hong Ou, Xiaoming Lin, Akif Zeb, Lei Hu, Yongbo Wu, Guozheng Ma. Recent progress in Co-based metal-organic framework derivatives for advanced batteries [J]. J. Mater. Sci. Technol., 2022, 96(0): 262-284. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||