J. Mater. Sci. Technol. ›› 2022, Vol. 121: 40-51.DOI: 10.1016/j.jmst.2021.11.068
• Research Article • Previous Articles Next Articles
D. Zhanga,b,c, H.C. Jianga,c,d,*(), Z.J. Cuia,b,c, D.S. Yana,c, Y.Y. Songa,c, L.J. Ronga,c,*(
)
Received:
2021-10-09
Revised:
2021-11-12
Accepted:
2021-11-19
Published:
2022-09-10
Online:
2022-03-04
Contact:
H.C. Jiang,L.J. Rong
About author:
ljrong@imr.ac.cn (L.J. Rong).D. Zhang, H.C. Jiang, Z.J. Cui, D.S. Yan, Y.Y. Song, L.J. Rong. Synchronous improvement of mechanical properties and stress corrosion resistance by stress-aging coupled with natural aging pre-treatment in an Al-Zn-Mg alloy with high recrystallization fraction[J]. J. Mater. Sci. Technol., 2022, 121: 40-51.
Fig. 5. Precipitate information obtained from the SAXS measurements after artificial aging at 160 ℃: (a) radius of the assumed sphere as a function of aging time; (b) number density of precipitates as a function of aging time.
Fig. 6. Atom probe tomography analysis of samples artificial aging for 12 h at 160 ℃: (a), (c), (e) and (g) isocomposition surface of 10 at.% Mg & Zn embedded in the Zn matrix. (b), (d), (f) and (h) corresponding proximity histograms of a representative phase marked in (a), (c), (e) and (g), respectively. (a, b) 10-TSA; (c, d) 75-TSA; (e, f) 75-SFA; (g, h) 120-TSA.
Fig. 7. TEM micrographs and statistical results of the subgrain boundaries for Al-Zn-Mg alloy aged for 12 h at 160 ℃ under different heat treatment conditions: (a) 3-TSA; (b) 10-TSA: (c) 30-TSA; (d) 75-TSA; (e) 120-TSA; (f) 75-SFA days; (g) average PFZ width; (h) average GBPs size.
Fig. 8. TEM micrographs of the typical recrystallized grain boundaries for studied Al-Zn-Mg alloy: (a) 10-TSA, and (b) corresponding partial enlarged detail marked in (a); (c) 120-TSA, and (d) corresponding partial enlarged detail marked in (c); (e) 75-SFA, and (f) corresponding partial enlarged detail marked in (e).
Fig. 9. Atom probe tomography analysis of the tensile stress-aged samples with different natural aging treatment: (a) and (d) 3D reconstructed Mg & Zn atom maps of 10-TSA and 120-TSA specimens, respectively, with precipitates defined by isoconcentration surfaces of 10 at.% Mg &Zn (in dark cyan); (b) and (e) 1D composition profile showing the compositions of the selected grain boundary precipitate (GBP) in a 5 nm-diameter cylinder (marked in (a) and (d), respectively) along the z-direction. (c) and (f) 1D Composition profiles across the grain boundary along the direction of the pink arrows (marked in (a) and (b), respectively) using a 5 nm-diameter cylinder.
Fig. 10. Typical SSRT curves of the stress-aged Al-Zn-Mg alloys subjected to different natural aging pre-treatment: (a) in air; (b) in 3.5 wt.% NaCl aqueous solution at pH 3.0.
Alloy temper | Environment | Yield strength(MPa) | Tensile strength(MPa) | Elongation(%) | ISCC(%) |
---|---|---|---|---|---|
3-TSA | Air | 202.1 ± 6.9 | 262.8 ± 5.1 | 19.9 ± 0.4 | 14.4 |
Solution | 203.8 ± 4.5 | 264.4 ± 5.3 | 17.0 ± 0.4 | ||
10-TSA | Air | 253.8 ± 10.9 | 297.0 ± 13.3 | 16.6 ± 0.2 | 6.3 |
Solution | 244.4 ± 15.2 | 286.8 ± 12.3 | 15.6 ± 0.3 | ||
30-TSA | Air | 298.9 ± 6.5 | 333.5 ± 5.4 | 16.5 ± 0.2 | 5.5 |
Solution | 296.7 ± 4.1 | 329.8 ± 3.1 | 15.6 ± 0.3 | ||
75-TSA | Air | 303.4 ± 5.7 | 338.5 ± 5.4 | 17.1 ± 0.5 | 3.3 |
Solution | 299.6 ± 9.7 | 333.8 ± 10.5 | 16.5 ± 0.2 | ||
120-TSA | Air | 316.7 ± 1.9 | 352.0 ± 2.6 | 15.2 ± 0.0 | — |
Solution | 325.4 ± 6.2 | 360.3 ± 7.1 | 15.4 ± 0.1 | ||
75-SFA | Air | 285.8 ± 1.1 | 322.5 ± 1.7 | 17.9 ± 0.2 | 6.0 |
Solution | 288.3 ± 2.0 | 323.2 ± 2.6 | 16.8 ± 0.0 |
Table 1. SSRT results of the tensile stress-aged samples after different natural aging pre-treatment.
Alloy temper | Environment | Yield strength(MPa) | Tensile strength(MPa) | Elongation(%) | ISCC(%) |
---|---|---|---|---|---|
3-TSA | Air | 202.1 ± 6.9 | 262.8 ± 5.1 | 19.9 ± 0.4 | 14.4 |
Solution | 203.8 ± 4.5 | 264.4 ± 5.3 | 17.0 ± 0.4 | ||
10-TSA | Air | 253.8 ± 10.9 | 297.0 ± 13.3 | 16.6 ± 0.2 | 6.3 |
Solution | 244.4 ± 15.2 | 286.8 ± 12.3 | 15.6 ± 0.3 | ||
30-TSA | Air | 298.9 ± 6.5 | 333.5 ± 5.4 | 16.5 ± 0.2 | 5.5 |
Solution | 296.7 ± 4.1 | 329.8 ± 3.1 | 15.6 ± 0.3 | ||
75-TSA | Air | 303.4 ± 5.7 | 338.5 ± 5.4 | 17.1 ± 0.5 | 3.3 |
Solution | 299.6 ± 9.7 | 333.8 ± 10.5 | 16.5 ± 0.2 | ||
120-TSA | Air | 316.7 ± 1.9 | 352.0 ± 2.6 | 15.2 ± 0.0 | — |
Solution | 325.4 ± 6.2 | 360.3 ± 7.1 | 15.4 ± 0.1 | ||
75-SFA | Air | 285.8 ± 1.1 | 322.5 ± 1.7 | 17.9 ± 0.2 | 6.0 |
Solution | 288.3 ± 2.0 | 323.2 ± 2.6 | 16.8 ± 0.0 |
Fig. 11. SEM image of fracture surfaces of the SSRT specimens tested in 3.5 wt.% NaCl aqueous solution at pH 3: (a) 3-TSA; (b) 10-TSA; (c) 30-TSA; (d) 75-TSA; (e) 120-TSA; (f) 75-SFA.
Fig. 12. 3D maps showing the distribution of Zn (in gray) and Mg (in purple) atoms in clusters from the reconstruction after natural aging for (a) 3 days; (b) 30 days; (c) 75 days; (d) 120 days. All boxes are of the same size of 25 mm × 25 mm × 50 nm to facilitate visual comparisons.
Fig. 15. Schematic illustration showing the remarkable influence of stress-aging coupled with natural aging on grain boundary characteristics of Al-Zn-Mg alloy.
[1] |
B. Li, X.M. Wang, H. Chen, J. Hu, C. Huang, G.Q. Gou, J. Alloy. Compd. 678 (2016) 160-166.
DOI URL |
[2] |
F. Cao, J. Zheng, Y. Jiang, B. Chen, Y. Wang, T. Hu, Acta Mater. 164 (2019) 207-219.
DOI URL |
[3] |
X.B. Yang, J.H. Chen, J.Z. Liu, F. Qin, J. Xie, C.L. Wu, J. Alloy. Compd. 610 (2014) 69-73.
DOI URL |
[4] |
G.M. Scamans, R. Alani, P.R. Swann, Corros. Sci. 16 (1976) 443-459.
DOI URL |
[5] |
G.M. Scamans, N.J.H. Holroyd, C.D.S. Tuck, Corros. Sci. 27 (1987) 329-347.
DOI URL |
[6] |
R.G. Song, W. Dietzel, B.J. Zhang, W.J. Liu, M.K. Tseng, A. Atrens, Acta Mater. 52 (2004) 4727-4743.
DOI URL |
[7] |
H. She, W. Chu, D. Shu, J. Wang, B.D. Sun, Trans. Nonferrous Met. Soc. China 24 (2014) 2307-2313.
DOI URL |
[8] |
H.C. Fang, K.H. Chen, X. Chen, H. Chao, G.S. Peng, Corros. Sci. 51 (2009) 2872-2877.
DOI URL |
[9] |
S.P. Knight, N. Birbilis, B.C. Muddle, A.R. Trueman, S.P. Lynch, Corros. Sci. 52 (2010) 4073-4080.
DOI URL |
[10] |
S.P. Knight, K. Pohl, N.J.H. Holroyd, N. Birbilis, P.A. Rometsch, B.C. Muddle, R. Goswami, S.P. Lynch, Corros. Sci. 98 (2015) 50-62.
DOI URL |
[11] |
X.Y. Sun, B. Zhang, H.Q. Lin, Y. Zhou, L. Sun, J.Q. Wang, E.H. Han, W. Ke, Corros. Sci. 77 (2013) 103-112.
DOI URL |
[12] |
P.K. Rout, M.M. Ghosh, K.S. Ghosh, J. Mater. Eng. Perform. 24 (2015) 2792-2805.
DOI URL |
[13] |
Y.L. Wang, H.C. Jiang, Z.M. Li, D.S. Yan, D. Zhang, L.J. Rong, J. Mater. Sci. Technol. 34 (2018) 1250-1257.
DOI URL |
[14] |
S. Chen, K. Chen, P. Dong, S. Ye, L. Huang, J. Alloy. Compd. 581 (2013) 705-709.
DOI URL |
[15] |
D. Najjar, T. Magnin, T.J. Warner, Mater. Sci. Eng. A 238 (1997) 293-302.
DOI URL |
[16] |
R.K. Viswanadham, T.S. Sun, J.A.S. Green, Metall. Mater. Trans. A 11 (1980) 85-89.
DOI URL |
[17] |
F. Song, X. Zhang, S. Liu, Q. Tan, D. Li, Corros. Sci. 78 (2014) 276-286.
DOI URL |
[18] |
S. Zhang, O.Y. Kontsevoi, A.J. Freeman, G.B. Olson, Acta Mater. 59 (2011) 6155-6167.
DOI URL |
[19] |
R.G. Song, M.K. Tseng, B.J. Zhang, J. Liu, Z.H. Jin, K.S. Shin, Acta Mater. 44 (1996) 3241-3248.
DOI URL |
[20] | S. Zhang, O.Y. Kontsevoi, A.J. Freeman, G.B. Olson, Appl. Phys. Lett. 100 (2012) |
[21] |
H. Su, H. Toda, K. Shimizu, K. Uesugi, A. Takeuchi, Y. Watanabe, Acta Mater. 176 (2019) 96-108.
DOI URL |
[22] |
S. Li, H.G. Dong, P. Li, S. Chen, Corros. Sci. 131 (2018) 278-289.
DOI URL |
[23] |
T. Marlaud, B. Malki, C. Henon, A. Deschamps, B. Baroux, Corros. Sci. 53 (2011) 3139-3149.
DOI URL |
[24] |
Y.C. Lin, J.L. Zhang, M.S. Chen, Y. Zhou, X. Ma, J. Mater. Res. 31 (2016) 2493-2505.
DOI URL |
[25] |
Y.C. Lin, J.L. Zhang, M.S. Chen, J. Alloy. Compd. 684 (2016) 177-187.
DOI URL |
[26] |
W. Guo, J.Y. Guo, J.D. Wang, M. Yang, H. Li, X.Y. Wen, J.W. Zhang, Mater. Sci. Eng. A 634 (2015) 167-175.
DOI URL |
[27] |
D. Bakavos, P.B. Prangnell, B. Bes, F. Eberl, J.G. Grossmann, Mater. Sci. Forum 519-521 (2006) 333-338.
DOI URL |
[28] | Y.C. Lin, Y.Q. Jiang, J.L. Zhang, X.M. Chen, Adv. Eng. Mater. 20 (2018) |
[29] | D. Zhang, H.C. Jiang, Z.J. Cui, D.S. Yan, Y.Y. Song, L.J. Rong, J. Alloy. Compd. 862 (2021) |
[30] | Z.W. Du, T.T. Zhou, P.Y. Liu, H.X. Li, B.Z. Dong, C.Q. Chen, J. Mater. Sci. Technol. 21 (2005) 479-483. |
[31] |
H. Zhao, F. De Geuser, A.K. da Silva, A. Szczepaniak, B. Gault, D. Ponge, D. Raabe, Acta Mater. 156 (2018) 318-329.
DOI URL |
[32] |
X.S. Du, Y.J. Su, J.X. Li, L.J. Qiao, W.Y. Chu, Corros. Sci. 65 (2012) 278-287.
DOI URL |
[33] |
Z.M. Li, H.C. Jiang, Y.L. Wang, D. Zhang, D.S. Yan, L.J. Rong, J. Mater. Sci. Technol. 34 (2018) 1172-1179.
DOI URL |
[34] | T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, B. Baroux, Acta Mater. 58 (2010) 4 814-4 826. |
[35] | Y.L. Wang, Y.Y. Song, H.C. Jiang, Z.M. Li, D. Zhang, L.J. Rong, Nanoscale Res. Lett. 13 (2018) |
[36] |
X. Xu, J. Zheng, Z. Li, R. Luo, B. Chen, Mater. Sci. Eng. A 691 (2017) 60-70.
DOI URL |
[37] |
A. Kverneland, V. Hansen, R. Vincent, K. Gjønnes, J. Gjønnes, Ultramicroscopy 106 (2006) 492-502.
URL PMID |
[38] |
X.Y. Sun, B. Zhang, H.Q. Lin, Y. Zhou, L. Sun, J.Q. Wang, E.H. Han, W. Ke, Corros. Sci. 79 (2014) 1-4.
DOI URL |
[39] | Z. Zhang, C.T. Liu, M.K. Miller, X.-.L. Wang, Y. Wen, T. Fujita, A. Hirata, M. Chen, G. Chen, B.A. Chin, Sci. Rep. 3 (2013) |
[40] | J. Liu, R. Hu, J. Zheng, Y. Zhang, Z. Ding, W. Liu, Y. Zhu, G. Sha, J. Alloy. Compd. 821 (2020) |
[41] |
G.W. Zheng, H. Li, C. Lei, J. Fu, T.J. Bian, J.C. Yang, Mater. Sci. Eng. A 718 (2018) 157-164.
DOI URL |
[42] |
J. Xu, Y. Li, K. Ma, Y. Fu, E. Guo, Z. Chen, Q. Gu, Y. Han, T. Wang, Q. Li, Scr. Mater. 187 (2020) 142-147.
DOI URL |
[43] |
Y.P. Pang, D.K. Sun, Q.F. Gu, K.C. Chou, X.L. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
[44] |
J.C. Slater, J. Chem. Phys. 41 (1964) 3199-3204.
DOI URL |
[45] |
A.J. Ardell, S.V. Prikhodko, Acta Mater. 51 (2003) 5013-5019.
DOI URL |
[46] | G. Gottstein, Physical Foundations of Materials Science, 1st ed., Springer Verlag, Berlin, 2004. |
[47] | Y.C. Feng, M. Liu, Y.P. Shi, H. Ma, D.Z. Li, Y.Y. Li, L. Lu, X.Q. Chen, Prog. Nat. Sci. Mater. 29 (2019) 341-348. |
[48] |
Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[49] |
M.A. Krishnan, V.S. Raja, Corros. Sci. 109 (2016) 94-100.
DOI URL |
[50] |
B. Cai, B.L. Adams, T.W. Nelson, Acta Mater. 55 (2007) 1543-1553.
DOI URL |
[51] |
H. Jiang, R.G. Faulkner, Acta Mater. 44 (1996) 1857-1864.
DOI URL |
[52] |
H.C. Fang, H. Chao, K.H. Chen, J. Alloy. Compd. 622 (2015) 166-173.
DOI URL |
[53] |
Y. Zhao, X. Tong, X.H. Wei, S.S. Xu, S. Lan, X.L. Wang, Z.W. Zhang, Int. J. Plast. 116 (2019) 203-215.
DOI URL |
[54] |
H.C. Fang, F.H. Luo, K.H. Chen, Mater. Sci. Eng. A 684 (2017) 480-490.
DOI URL |
[55] |
A.K. Vasudévan, R.D. Doherty, Acta Metall. 35 (1987) 1193-1219.
DOI URL |
[1] | Haibo Zhang, Metin Örnek, Simanta Lahkar, Shuangxi Song, Xiaodong Wang, Richard A. Haber, Kolan Madhav Reddy. Enhanced densification and mechanical properties of β-boron by in-situ formed boron-rich oxide [J]. J. Mater. Sci. Technol., 2022, 99(0): 148-160. |
[2] | Xiaopeng Xiao, Dianzhong Li, Yiyi Li, Shanping Lu. Microstructural evolution and stress relaxation cracking mechanism for Super304H austenitic stainless steel weld metal [J]. J. Mater. Sci. Technol., 2022, 100(0): 82-90. |
[3] | Jia Chen, Min Guo, Min Yang, Lin Liu, Jun Zhang. Double minimum creep processing and mechanism for γʹ strengthened cobalt-based superalloy [J]. J. Mater. Sci. Technol., 2022, 112(0): 123-129. |
[4] | Changshu He, Ying Li, Jingxun Wei, Zhiqiang Zhang, Ni Tian, Gaowu Qin, Xiang Zhao. Enhancing the mechanical performance of Al-Zn-Mg alloy builds fabricated via underwater friction stir additive manufacturing and post-processing aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 26-36. |
[5] | Juan Li, Yaqun Xu, Wenlong Xiao, Chaoli Ma, Xu Huang. Development of Ti-Al-Ta-Nb-(Re) near-α high temperature titanium alloy: Microstructure, thermal stability and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 109(0): 1-11. |
[6] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
[7] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[8] | Hongmei Jin, Renguo Guan, Xianxiang Huang, Ying Fu, Jin Zhang, Xiaolin Chen, Yu Wang, Fei Gao, Di Tie. Understanding the precipitation mechanism of copper-bearing phases in Al-Mg-Si system during thermo-mechanical treatment [J]. J. Mater. Sci. Technol., 2022, 96(0): 226-232. |
[9] | Mingkun Jiang, Ying Han, Xiangyi Chen, Guoqing Zu, Weiwei Zhu, Xu Ran. Cu-rich nanoprecipitates modified using Al to simultaneously enhance the strength and ductility of ferritic stainless steel [J]. J. Mater. Sci. Technol., 2022, 121(0): 93-98. |
[10] | Qianying Guo, Zongqing Ma, Zhixia Qiao, Chong Li, Teng Zhang, Jun Li, Chenxi Liu, Yongchang Liu. A new type-γ′/γ′′ coprecipitation behavior and its evolution mechanism in wrought Ni-based ATI 718Plus superalloy [J]. J. Mater. Sci. Technol., 2022, 119(0): 98-110. |
[11] | Xiaodong Lin, Qunjia Peng, En-Hou Han, Wei Ke. Deformation and cracking behaviors of proton-irradiated 308L stainless steel weld metal strained in simulated PWR primary water [J]. J. Mater. Sci. Technol., 2022, 120(0): 36-52. |
[12] | Shicheng Li, Hongyan Liang, Chong Li, Yongchang Liu. Lattice mismatch in Ni3Al-based alloy for efficient oxygen evolution [J]. J. Mater. Sci. Technol., 2022, 106(0): 19-27. |
[13] | Xianglong Zhou, Tao Yuan, Tianyu Ma. Shortened processing duration of high-performance Sm-Co-Fe-Cu-Zr magnets by stress-aging [J]. J. Mater. Sci. Technol., 2022, 106(0): 70-76. |
[14] | Hongyu Zhang, Na Yan, Hongyan Liang, Yongchang Liu. Phase transformation and microstructure control of Ti2AlNb-based alloys: A review [J]. J. Mater. Sci. Technol., 2021, 80(0): 203-216. |
[15] | Pan Liu, Lulu Hu, Qinhao Zhang, Cuiping Yang, Zuosi Yu, Jianqing Zhang, Jiming Hu, Fahe Cao. Effect of aging treatment on microstructure and corrosion behavior of Al-Zn-Mg aluminum alloy in aqueous solutions with different aggressive ions [J]. J. Mater. Sci. Technol., 2021, 64(0): 85-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||