J. Mater. Sci. Technol. ›› 2022, Vol. 118: 158-180.DOI: 10.1016/j.jmst.2021.11.053
• Review Article • Previous Articles Next Articles
Wenhui Yaoa,b,*(), Liang Wua,b,*(
), Jingfeng Wanga,b, Bin Jianga,b, Dingfei Zhanga,b, Maria Serdechnovac, Tatsiana Shulhac, Carsten Blawertc, Mikhail L. Zheludkevichc,d, Fusheng Pana,b,*(
)
Received:
2021-06-30
Revised:
2021-11-03
Accepted:
2021-11-03
Published:
2022-08-10
Online:
2022-02-19
Contact:
Wenhui Yao,Liang Wu,Fusheng Pan
About author:
fspan@cqu.edu.cn (F. Pan).Wenhui Yao, Liang Wu, Jingfeng Wang, Bin Jiang, Dingfei Zhang, Maria Serdechnova, Tatsiana Shulha, Carsten Blawert, Mikhail L. Zheludkevich, Fusheng Pan. Micro-arc oxidation of magnesium alloys: A review[J]. J. Mater. Sci. Technol., 2022, 118: 158-180.
Fig. 1. (a) Schematic diagram illustrating voltage vs. time curve under constant current mode on AZ31B alloy [69]. (b) Evolution of current density and voltage with time under constant voltage mode on AM50 alloy [2].
Fig. 2. OES spectra during different MAO process stages: (a) anodizing, (b) and (c) plasma discharge [71]. Evolution of discharge sparks at different MAO stages: (d) transition, (e)-(i) plasma discharge [78].
Electrolyte | Additive | Alloy | Main phase in MAO | Influence | Refs. |
---|---|---|---|---|---|
KOH | AZ31B | MgO | Electrical conductivity | [ | |
Aluminate | AZ31 | MgAl2O4 | Thickness and roughness | [ | |
Aluminate | Mg, AJ62, AM60B, AZ91D | MgAl2O4, MgO | Morphology and thickness | [ | |
Aluminate | PTFE | Mg-Zn-Y | MgO, MgAl2O4, PTFE | Morphology | [ |
Aluminate | WO3 | AZ31B | MgO, MgAl2O4, WO3 | Morphology and thickness | [ |
Silicate | AZ31 | Mg2SiO4 | Passive layer | [ | |
Silicate | Mg-Zn-Ca | Mg2SiO4 | Morphology and microstructure | [ | |
Silicate | AZ31 | MgSiO3, Mg2SiO4 | Passive layer | [ | |
Silicate | Mg-1Li-1Ca | Mg2Ca, MgSiO3, CaSiO3 | Morphology | [ | |
Silicate | KF | AZ31B, AZ80, ZK60 | MgF2, MgO, Mg3Al2(SiO4)3, MgxFy(SiO4)z | Morphology and thickness | [ |
Silicate | KF | Mg-Al-Zn-Mn | Mg(OH)2, MgO | Morphology and thickness | [ |
Silicate | KF | Mg-Al-Co | MgO, Mg2SiO4 | Morphology and thickness | [ |
Silicate | HMT | Mg | MgO, HMT | Morphology and thickness | [ |
Silicate | MAN | Mg | MgO, MAN | Morphology and thickness | [ |
Silicate | 8-HQ | AZ91 | Mg(HQ)2 | Electrolyte conductivity | [ |
Silicate | TiN | Mg-Pd | MgO, TiN, TiOxNy, TiO2 | Morphology | [ |
Silicate | WC | Mg-Pd | MgO, WC | Morphology | [ |
Silicate | Graphite | AZ91 | MgSiO3, Graphite | Thickness and compactness | [ |
Silicate | TiC | AZ91D | MgO, Mg2SiO4, TiC | Color, porosity, thickness | [ |
Silicate | WC | AZ31B | MgO, MgSiO3, Mg2SiO4 | Morphology, hardness | [ |
Silicate | PTFE | AZ91D | Mg2SiO4, PTFE | Morphology, thickness | [ |
Phosphate | AM50 | Mg3(PO4)2, MgO | Morphology and thickness | [ | |
Phosphate | Mg-Li-Ca | Ca3(PO4)2, MgO | Morphology and thickness | [ | |
Phosphate | AZ31 | MgO | Morphology and thickness | [ | |
Phosphate | Ca(OH)2 | CP Mg | Mg3(PO4)2 | Microstructure | [ |
Phosphate | AZ91 | AlPO4 | Thickness and roughness | [ | |
Phosphate | AZ31B | Mg3(PO4)2 | Passive layer | [ | |
Phosphate | K2ZrF6 | AZ31 | Mg3(PO4)2, MgF2, ZrO2 | Morphology | [ |
Phosphate | WC | AZ31B | MgO, Mg3(PO4)2, WC | Morphology and thickness | [ |
Phosphate | Graphene | AZ31 | Mg3(PO4)2, Graphene | Sealing | [ |
Aluminate + phosphate | AZ31 | MgAl2O4, Mg3(PO4)2 | Hardness and thickness | [ | |
Aluminate + phosphate | AZ31, AZ91 | MgO, MgAl2O4 | Thickness and roughness | [ | |
NaOH, H3BO3, Na2B4O7, | C6H5Na3O7, organic additive | AZ91D | MgO, MgAl2O4, MgSiO3, Al2O3. | Thickness, morphology, and roughness | [ |
Table 1. Effect of electrolyte on the property of MAO coatings.
Electrolyte | Additive | Alloy | Main phase in MAO | Influence | Refs. |
---|---|---|---|---|---|
KOH | AZ31B | MgO | Electrical conductivity | [ | |
Aluminate | AZ31 | MgAl2O4 | Thickness and roughness | [ | |
Aluminate | Mg, AJ62, AM60B, AZ91D | MgAl2O4, MgO | Morphology and thickness | [ | |
Aluminate | PTFE | Mg-Zn-Y | MgO, MgAl2O4, PTFE | Morphology | [ |
Aluminate | WO3 | AZ31B | MgO, MgAl2O4, WO3 | Morphology and thickness | [ |
Silicate | AZ31 | Mg2SiO4 | Passive layer | [ | |
Silicate | Mg-Zn-Ca | Mg2SiO4 | Morphology and microstructure | [ | |
Silicate | AZ31 | MgSiO3, Mg2SiO4 | Passive layer | [ | |
Silicate | Mg-1Li-1Ca | Mg2Ca, MgSiO3, CaSiO3 | Morphology | [ | |
Silicate | KF | AZ31B, AZ80, ZK60 | MgF2, MgO, Mg3Al2(SiO4)3, MgxFy(SiO4)z | Morphology and thickness | [ |
Silicate | KF | Mg-Al-Zn-Mn | Mg(OH)2, MgO | Morphology and thickness | [ |
Silicate | KF | Mg-Al-Co | MgO, Mg2SiO4 | Morphology and thickness | [ |
Silicate | HMT | Mg | MgO, HMT | Morphology and thickness | [ |
Silicate | MAN | Mg | MgO, MAN | Morphology and thickness | [ |
Silicate | 8-HQ | AZ91 | Mg(HQ)2 | Electrolyte conductivity | [ |
Silicate | TiN | Mg-Pd | MgO, TiN, TiOxNy, TiO2 | Morphology | [ |
Silicate | WC | Mg-Pd | MgO, WC | Morphology | [ |
Silicate | Graphite | AZ91 | MgSiO3, Graphite | Thickness and compactness | [ |
Silicate | TiC | AZ91D | MgO, Mg2SiO4, TiC | Color, porosity, thickness | [ |
Silicate | WC | AZ31B | MgO, MgSiO3, Mg2SiO4 | Morphology, hardness | [ |
Silicate | PTFE | AZ91D | Mg2SiO4, PTFE | Morphology, thickness | [ |
Phosphate | AM50 | Mg3(PO4)2, MgO | Morphology and thickness | [ | |
Phosphate | Mg-Li-Ca | Ca3(PO4)2, MgO | Morphology and thickness | [ | |
Phosphate | AZ31 | MgO | Morphology and thickness | [ | |
Phosphate | Ca(OH)2 | CP Mg | Mg3(PO4)2 | Microstructure | [ |
Phosphate | AZ91 | AlPO4 | Thickness and roughness | [ | |
Phosphate | AZ31B | Mg3(PO4)2 | Passive layer | [ | |
Phosphate | K2ZrF6 | AZ31 | Mg3(PO4)2, MgF2, ZrO2 | Morphology | [ |
Phosphate | WC | AZ31B | MgO, Mg3(PO4)2, WC | Morphology and thickness | [ |
Phosphate | Graphene | AZ31 | Mg3(PO4)2, Graphene | Sealing | [ |
Aluminate + phosphate | AZ31 | MgAl2O4, Mg3(PO4)2 | Hardness and thickness | [ | |
Aluminate + phosphate | AZ31, AZ91 | MgO, MgAl2O4 | Thickness and roughness | [ | |
NaOH, H3BO3, Na2B4O7, | C6H5Na3O7, organic additive | AZ91D | MgO, MgAl2O4, MgSiO3, Al2O3. | Thickness, morphology, and roughness | [ |
Fig. 7. Photographs of (a) anodic, (b) cathodic, and (c) and (d) both anodic and cathodic micro-discharges of AZ81 alloy at current density of 4 A dm-2 in electrolyte with pH of 12.1, 5.35, 8.2, and 9.15, respectively [101]. (e)-(k) Schematically illustrating mechanism of cathodic breakdown [102].
Fig. 8. (a) Voltage vs. time curve during MAO process on AZ31B alloy. (b)-(f) SEM images of MAO coatings formed with different KOH concentrations [105].
Fig. 9. Optical profilometry images of 3D surface morphology of MAO coatings formed in phosphate-based electrolyte (a) without additive, with (b) Na2SiO3, (c) NaAlO2, and (d) K2ZrF6 [111].
Fig. 11. Surface and cross-sectional morphologies of MAO coatings formed in electrolyte (a, d) without Na3PO4, and with (b, e) 5 g L-1 Na3PO4 and (c, f) 10 g L-1 Na3PO4 [115].
Alloy | Electrolyte | Main phase in MAO | Reference |
---|---|---|---|
CP Mg | Silicate, Na2B4O7 | SiO2, Mg2SiO4, Mg2B2O5 | [ |
CP Mg | Silicate | Mg2SiO4, MgO | [ |
CP Mg | Phosphate | Mg3(PO4)2 | [ |
AJ62 | Aluminate | MgAl2O4, MgO | [ |
AM50 | Phosphate | Mg3(PO4)2, MgO | [ |
AM60B | Aluminate | MgAl2O4, MgO | [ |
AZ31 | Aluminate, Na6P6O18 | Mg3(PO4)2, MgAl2O4, MgO | [ |
AZ31 | Phosphate | MgO | [ |
AZ31 | Aluminate, Na2WO4 | MgAl2O4, W18O40 | [ |
AZ31B | Silicate | Mg2SiO4, MgO, Mg3Al2(SiO4)3 | [ |
AZ61 | Silicate | Mg2SiO4, MgO | [ |
AZ80 | Silicate | Mg2SiO4, MgO | [ |
AZ91 | Aluminate, Na6P6O18 | MgAl2O4, MgO | [ |
AZ91 | Phosphate | MgO | [ |
AZ91D | NaOH, H3BO3, Na2B4O7 | MgO, MgAl2O4, MgSiO3, Al2O3 | [ |
AZ91D | Aluminate | MgAl2O4, MgO | [ |
EV31 | Silicate | Mg2SiO4, MgO | [ |
EV31A | Silicate, phosphate | Mg2SiO4, MgO, Mg3(PO4)2 | [ |
Mg-Al-Co | Silicate | MgO, Mg2SiO4 | [ |
Mg-Al-Zn-Mn | Silicate | MgO, Mg(OH)2 | [ |
Mg-Li-Ca | Phosphate | Mg3(PO4)2, MgO | [ |
Mg-Li-Ca | Silicate | Mg2Ca, MgSiO3, CaSiO3 | [ |
Mg-5Y-7Gd-1Nd-0.5Zr | Silicate, phosphate | Amorphous | [ |
Mg-Zn-Ca | Na5P3O10 | Mg3(PO4)2, MgO | [ |
Mg-Zn-Y | Aluminate | MgO, MgAl2O4 | [ |
YAl2p/LA143 | Silicate, Na2WO4 | MgO, Mg2SiO4, Li3Mg7 | [ |
WE43 | Phosphate | MgO | [ |
ZC71A | Silicate | Mg2SiO4, MgO | [ |
ZE41 | Silicate | Mg2SiO4, MgO | [ |
ZK60 | Silicate | Mg2SiO4, MgO | [ |
ZK60 | Aluminate, Phosphate | Mg3(PO4)2, MgAl2O4 | [ |
ZM21 | Silicate, Na2B4O7, K2TiF6 | Mg2SiO4, MgO, MgF2 | [ |
Table 2. Summary of main Mg alloys being treated by MAO.
Alloy | Electrolyte | Main phase in MAO | Reference |
---|---|---|---|
CP Mg | Silicate, Na2B4O7 | SiO2, Mg2SiO4, Mg2B2O5 | [ |
CP Mg | Silicate | Mg2SiO4, MgO | [ |
CP Mg | Phosphate | Mg3(PO4)2 | [ |
AJ62 | Aluminate | MgAl2O4, MgO | [ |
AM50 | Phosphate | Mg3(PO4)2, MgO | [ |
AM60B | Aluminate | MgAl2O4, MgO | [ |
AZ31 | Aluminate, Na6P6O18 | Mg3(PO4)2, MgAl2O4, MgO | [ |
AZ31 | Phosphate | MgO | [ |
AZ31 | Aluminate, Na2WO4 | MgAl2O4, W18O40 | [ |
AZ31B | Silicate | Mg2SiO4, MgO, Mg3Al2(SiO4)3 | [ |
AZ61 | Silicate | Mg2SiO4, MgO | [ |
AZ80 | Silicate | Mg2SiO4, MgO | [ |
AZ91 | Aluminate, Na6P6O18 | MgAl2O4, MgO | [ |
AZ91 | Phosphate | MgO | [ |
AZ91D | NaOH, H3BO3, Na2B4O7 | MgO, MgAl2O4, MgSiO3, Al2O3 | [ |
AZ91D | Aluminate | MgAl2O4, MgO | [ |
EV31 | Silicate | Mg2SiO4, MgO | [ |
EV31A | Silicate, phosphate | Mg2SiO4, MgO, Mg3(PO4)2 | [ |
Mg-Al-Co | Silicate | MgO, Mg2SiO4 | [ |
Mg-Al-Zn-Mn | Silicate | MgO, Mg(OH)2 | [ |
Mg-Li-Ca | Phosphate | Mg3(PO4)2, MgO | [ |
Mg-Li-Ca | Silicate | Mg2Ca, MgSiO3, CaSiO3 | [ |
Mg-5Y-7Gd-1Nd-0.5Zr | Silicate, phosphate | Amorphous | [ |
Mg-Zn-Ca | Na5P3O10 | Mg3(PO4)2, MgO | [ |
Mg-Zn-Y | Aluminate | MgO, MgAl2O4 | [ |
YAl2p/LA143 | Silicate, Na2WO4 | MgO, Mg2SiO4, Li3Mg7 | [ |
WE43 | Phosphate | MgO | [ |
ZC71A | Silicate | Mg2SiO4, MgO | [ |
ZE41 | Silicate | Mg2SiO4, MgO | [ |
ZK60 | Silicate | Mg2SiO4, MgO | [ |
ZK60 | Aluminate, Phosphate | Mg3(PO4)2, MgAl2O4 | [ |
ZM21 | Silicate, Na2B4O7, K2TiF6 | Mg2SiO4, MgO, MgF2 | [ |
Fig. 13. (a) Fluorescence images of cells after 60 min of incubation. (b) ALP activity of murine BASCs after 7 days of incubation in extracts. ZK60: bare ZK60 alloy; Si-ZK60: MAO-coated ZK60 alloy; Ti: Ti-6Al-4V alloy. *p<0.01 compared with the control; #p<0.01 compared with bare ZK60 [137].
Fig. 14. SEM images of (a) MAO coating and (b, c) MAO/Ta2O5 composite coating. Optical images of (d) AZ31 substrate, (e) MAO coating, and (f) MAO/Ta2O5 composite coating immersed in Hank's solution for 294 h [138].
Potential applications | Alloy | Electrolyte | Main phases in MAO | Reference |
---|---|---|---|---|
Implants | CP Mg | Na2SiO3, Na2B4O7 | Mg2SiO4, SiO2, Mg2B2O5 | [ |
Implants | CP Mg | Phosphate, Ca(OH)2 | MgO, CaP | [ |
Implants | CP Mg | Silicate, EDTA·2Na | MgO, Mg2SiO4 | [ |
Implants | CP Mg | Silicate, NaF | MgO, Mg(OH)2 | [ |
Implants | CP Mg | Silicate, NaF, PCL | MgO, MgF2, PCL | [ |
Implants | CP Mg | Silicate, HMT | MgO, Mg(OH)2 | [ |
Implants | CP Mg | Silicate, MAN | MgO, Mg(OH)2 | [ |
Implants | CP Mg | / | MgO | [ |
Implants | AZ31 | C3H7CaO6P | MgO, HA | [ |
Implants | AZ31 | Phosphate | MgO, Ta2O5 | [ |
Implants | AZ31 | Phytic acid | MgO | [ |
Implants | AZ31B | Silicate, phosphate | MgO, Mg3(PO4)2, MgSiO3 | [ |
Implants | AZ31B | C6H12N4, NH4HF2 | MgO, Ca(H2PO4)2 | [ |
Implants | AZ80 | Silicate, HA | MgO, HA | [ |
Implants | AZ91D | Silicate, phosphate, FHA, PLA | MgO, FHA, PLA | [ |
Implants | Mg-4Li-1Ca | Phosphate, C6H18O24P6 | MgO, Mg2Ca, Ca3(PO4)2 | [ |
Implants | Mg-1Li-1Ca | Silicate | MgO, Mg2Ca, MgSiO3, CaSiO3 | [ |
Implants | Mg-Zn-Ca | Silicate, HA | MgO, Mg2SiO4, HA | [ |
Implants | Mg-Zn-Zr-Ca | Silicate | MgO, MgSiO3, Mg2SiO4 | [ |
Implants | FACs/MA | Silicate | Mg17Al12, Mg2Si, Mg2SiO4, MgAl2O4 | [ |
Implants | WE42 | Silicate, PLLA | [ | |
Implants | ZK60 | Phosphate | MgO | [ |
Implants | ZK60 | Silicate | MgO, Mg2SiO4 | [ |
Antibacterial implants | Mg-3Zn-0.5Sr | Phosphate, CH3COOAg | Mg3(PO4)2, Ag2O/Ag2CO3 | [ |
Antibacterial implants | Mg-2Zn-1Gd-0.5Zr | Phosphate, CuO | MgO, Cu3(PO4)2 | [ |
Antibacterial implants | AZ31 | Na4SiO4, APM | MgO, MgSiO3, Mg2SiO4 | [ |
Bone fixation plate | AZ31 | / | MgO | [ |
Table 3. Summary of biomedical applications for MAO coatings.
Potential applications | Alloy | Electrolyte | Main phases in MAO | Reference |
---|---|---|---|---|
Implants | CP Mg | Na2SiO3, Na2B4O7 | Mg2SiO4, SiO2, Mg2B2O5 | [ |
Implants | CP Mg | Phosphate, Ca(OH)2 | MgO, CaP | [ |
Implants | CP Mg | Silicate, EDTA·2Na | MgO, Mg2SiO4 | [ |
Implants | CP Mg | Silicate, NaF | MgO, Mg(OH)2 | [ |
Implants | CP Mg | Silicate, NaF, PCL | MgO, MgF2, PCL | [ |
Implants | CP Mg | Silicate, HMT | MgO, Mg(OH)2 | [ |
Implants | CP Mg | Silicate, MAN | MgO, Mg(OH)2 | [ |
Implants | CP Mg | / | MgO | [ |
Implants | AZ31 | C3H7CaO6P | MgO, HA | [ |
Implants | AZ31 | Phosphate | MgO, Ta2O5 | [ |
Implants | AZ31 | Phytic acid | MgO | [ |
Implants | AZ31B | Silicate, phosphate | MgO, Mg3(PO4)2, MgSiO3 | [ |
Implants | AZ31B | C6H12N4, NH4HF2 | MgO, Ca(H2PO4)2 | [ |
Implants | AZ80 | Silicate, HA | MgO, HA | [ |
Implants | AZ91D | Silicate, phosphate, FHA, PLA | MgO, FHA, PLA | [ |
Implants | Mg-4Li-1Ca | Phosphate, C6H18O24P6 | MgO, Mg2Ca, Ca3(PO4)2 | [ |
Implants | Mg-1Li-1Ca | Silicate | MgO, Mg2Ca, MgSiO3, CaSiO3 | [ |
Implants | Mg-Zn-Ca | Silicate, HA | MgO, Mg2SiO4, HA | [ |
Implants | Mg-Zn-Zr-Ca | Silicate | MgO, MgSiO3, Mg2SiO4 | [ |
Implants | FACs/MA | Silicate | Mg17Al12, Mg2Si, Mg2SiO4, MgAl2O4 | [ |
Implants | WE42 | Silicate, PLLA | [ | |
Implants | ZK60 | Phosphate | MgO | [ |
Implants | ZK60 | Silicate | MgO, Mg2SiO4 | [ |
Antibacterial implants | Mg-3Zn-0.5Sr | Phosphate, CH3COOAg | Mg3(PO4)2, Ag2O/Ag2CO3 | [ |
Antibacterial implants | Mg-2Zn-1Gd-0.5Zr | Phosphate, CuO | MgO, Cu3(PO4)2 | [ |
Antibacterial implants | AZ31 | Na4SiO4, APM | MgO, MgSiO3, Mg2SiO4 | [ |
Bone fixation plate | AZ31 | / | MgO | [ |
Alloy | Electrolyte | Additive | Color | Reference |
---|---|---|---|---|
AZ31 | Aluminate | Na2WO4 (0-25 g L-1) | white to black | [ |
AZ31 | Silicate | CuSO4 (9-12 g L-1) | black | [ |
AZ31 | Silicate | N-16 inhibitor (0.1 g L-1) | white to grey | [ |
AZ31 | Silicate | C6H18O24P6 (6 g L-1) | dark brown | [ |
AZ80 | Silicate | Na2SnO3 (2-15 g L-1) | yellow | [ |
AZ80 | Silicate | K2TiF6 (0-10 g L-1) | white to grey | [ |
AZ91 | Silicate | KMnO4 (0-3 g L-1) | yellow | [ |
AZ91 | Silicate | 8-HQ (2-8 g L-1) | White to pink to yellow | [ |
AZ91 | Silicate | C76H52O46 (4 g L-1) | grey | [ |
AZ91 | Aluminate | Na3PO4 (0-10 g L-1) | bluish to dark grey | [ |
AZ91D | Silicate | K2Cr2O7 (2 g L-1) | green | [ |
AZ91D | Silicate | V2O5 (0-0.8 g L-1) | grey to brown | [ |
AZ91D | Silicate | TiC (5 g L-1) | white to grey | [ |
AZ91D | Silicate | KOH (1 g L-1) | white | [ |
AZ91D | Silicate | Cu(Ac)2 (0.5 g L-1) | red | [ |
AZ91D | Silicate | Na2WO4 (2 g L-1) | gray | [ |
AZ91D | Silicate | Na3VO4 (8 g L-1) | black | [ |
LZ91 | Phosphate, Silicate | Cu3PO4 (3-5 g L-1) | white to dark brown | [ |
LA81 | Silicate | CuSO4 (2.5 g L-1) | brown | [ |
Mg-Zn-Ca | Silicate | HA (5 g L-1) | white | [ |
Mg-Li | Silicate, phosphate | NH4VO3 (5-10 g L-1) | brow to black | [ |
Table 4. Summary of decoration applications for MAO coatings.
Alloy | Electrolyte | Additive | Color | Reference |
---|---|---|---|---|
AZ31 | Aluminate | Na2WO4 (0-25 g L-1) | white to black | [ |
AZ31 | Silicate | CuSO4 (9-12 g L-1) | black | [ |
AZ31 | Silicate | N-16 inhibitor (0.1 g L-1) | white to grey | [ |
AZ31 | Silicate | C6H18O24P6 (6 g L-1) | dark brown | [ |
AZ80 | Silicate | Na2SnO3 (2-15 g L-1) | yellow | [ |
AZ80 | Silicate | K2TiF6 (0-10 g L-1) | white to grey | [ |
AZ91 | Silicate | KMnO4 (0-3 g L-1) | yellow | [ |
AZ91 | Silicate | 8-HQ (2-8 g L-1) | White to pink to yellow | [ |
AZ91 | Silicate | C76H52O46 (4 g L-1) | grey | [ |
AZ91 | Aluminate | Na3PO4 (0-10 g L-1) | bluish to dark grey | [ |
AZ91D | Silicate | K2Cr2O7 (2 g L-1) | green | [ |
AZ91D | Silicate | V2O5 (0-0.8 g L-1) | grey to brown | [ |
AZ91D | Silicate | TiC (5 g L-1) | white to grey | [ |
AZ91D | Silicate | KOH (1 g L-1) | white | [ |
AZ91D | Silicate | Cu(Ac)2 (0.5 g L-1) | red | [ |
AZ91D | Silicate | Na2WO4 (2 g L-1) | gray | [ |
AZ91D | Silicate | Na3VO4 (8 g L-1) | black | [ |
LZ91 | Phosphate, Silicate | Cu3PO4 (3-5 g L-1) | white to dark brown | [ |
LA81 | Silicate | CuSO4 (2.5 g L-1) | brown | [ |
Mg-Zn-Ca | Silicate | HA (5 g L-1) | white | [ |
Mg-Li | Silicate, phosphate | NH4VO3 (5-10 g L-1) | brow to black | [ |
Fig. 16. Optical images of MAO coating developed in (a) base electrolyte, (b) 3% Cu3PO4, (c) 5% Cu3PO4, and (d) silicate-based electrolyte with different concentrations of KMnO4 [145,146].
Fig. 17. (a) Variation of temperature with time of MAO coating and Mg substrate [150]. Variation of (b) emittance and (c) reflectance of MAO coatings developed with different ZnSO4 concentration with wavelength [158].
Fig. 18. Thermal control performance of MAO coatings developed (a) with 3, 5, 7, 10 min in 10 g L-1 NH4VO3, (b) in 5, 8, 10 g L-1 NH4VO3 with 10 min [154].
Alloy | Electrolyte/additive | Concentration (g L-1) | Absorbance | Emissivity | Refs. |
---|---|---|---|---|---|
AZ31 | Na5P3O10/ZnSO4 | 30/0-6 | 0.44-0.92 | 0.68-0.88 | [ |
AZ31 | Na5P3O10/Zr(NO3)4 | 30/0-15 | 0.35-0.47 | 0.67-0.86 | [ |
AZ91 | Na2SiO3 | 10 | 0.42-0.45 | 0.74-0.88 | [ |
AZ91 | Na3PO4 | 10 | 0.38-0.50 | 0.73-0.85 | [ |
AZ91D | Na2SiO3/Ca(H2PO4)2 | 10/5 | 0.3-0.85 | [ | |
AZ91D | Na2SiO3/Na2WO4 | 10/2 | 0.76 | 0.86 | [ |
AZ91D | Na2SiO3/Na3VO4 | 10/8 | 0.91 | 0.87 | [ |
AZ91D | Na2SiO3/Cu(Ac)2 | 10/8 | 0.68 | 0.79 | [ |
Mg-Li | (NaPO3)6 | 8.25-16.5 | 0.33-0.46 | 0.71-0.85 | [ |
Mg-Li | Na2SiO3 | 10-20 | 0.35-0.43 | 0.67-0.85 | [ |
Mg-Li | NH4VO3 | 5-10 | 0.92-0.96 | 0.88-0.95 | [ |
Mg-4Li | Na2SiO3 | 7-20 | 0.36-0.39 | 0.78-0.81 | [ |
Mg-9Li | Na2SiO3 | 7-20 | 0.35-0.42 | 0.76-0.89 | [ |
Mg-5Y-7Gd-1Nd-0.5Zr | Na2SiO3/NH4VO3 | 22/3-10 | 0.77-0.95 | 0.87-0.94 | [ |
Table 5. Summary of thermal control for MAO coatings.
Alloy | Electrolyte/additive | Concentration (g L-1) | Absorbance | Emissivity | Refs. |
---|---|---|---|---|---|
AZ31 | Na5P3O10/ZnSO4 | 30/0-6 | 0.44-0.92 | 0.68-0.88 | [ |
AZ31 | Na5P3O10/Zr(NO3)4 | 30/0-15 | 0.35-0.47 | 0.67-0.86 | [ |
AZ91 | Na2SiO3 | 10 | 0.42-0.45 | 0.74-0.88 | [ |
AZ91 | Na3PO4 | 10 | 0.38-0.50 | 0.73-0.85 | [ |
AZ91D | Na2SiO3/Ca(H2PO4)2 | 10/5 | 0.3-0.85 | [ | |
AZ91D | Na2SiO3/Na2WO4 | 10/2 | 0.76 | 0.86 | [ |
AZ91D | Na2SiO3/Na3VO4 | 10/8 | 0.91 | 0.87 | [ |
AZ91D | Na2SiO3/Cu(Ac)2 | 10/8 | 0.68 | 0.79 | [ |
Mg-Li | (NaPO3)6 | 8.25-16.5 | 0.33-0.46 | 0.71-0.85 | [ |
Mg-Li | Na2SiO3 | 10-20 | 0.35-0.43 | 0.67-0.85 | [ |
Mg-Li | NH4VO3 | 5-10 | 0.92-0.96 | 0.88-0.95 | [ |
Mg-4Li | Na2SiO3 | 7-20 | 0.36-0.39 | 0.78-0.81 | [ |
Mg-9Li | Na2SiO3 | 7-20 | 0.35-0.42 | 0.76-0.89 | [ |
Mg-5Y-7Gd-1Nd-0.5Zr | Na2SiO3/NH4VO3 | 22/3-10 | 0.77-0.95 | 0.87-0.94 | [ |
Fig. 20. 3D topography of wear track on (a) AZ31B, and MAO coating formed with current of (b) 2 A, (c) 3 A, and (d) 4 A under load of 5 N. Wear depth of MAO coating under loads of (e) 5 N and (f) 10 N [169].
Alloy | Electrolyte | Method | Influencing property | Reference |
---|---|---|---|---|
AZ31 | Phosphate | NaAlO2 | Thickness, hardness, and porosity | [ |
AZ31 | Phosphate | Al2O3 | Porosity and thickness | [ |
AZ31 | Silicate | Graphene | Porosity and thickness | [ |
AZ31 | Silicate | SiC | Thickness and roughness | [ |
AZ31 | Aluminate | Si3N4 | Hardness and porosity | [ |
AZ31B | Phosphate | Graphene | Thickness, porosity | [ |
AZ31B | Phosphate | WC | Compactness | [ |
AZ31B | Silicate | Current | Thickness | [ |
AZ31B | Silicate | WC | Porosity and thickness | [ |
AZ80 | Silicate | Na2WO4 | Thickness and hardness | [ |
AZ91 | KOH | Na2HPO4 | Thickness | [ |
AZ91 | KOH | K2SnO3 | Thickness | [ |
AZ91 | Aluminate | Na3PO4 | Thickness, porosity | [ |
AZ91 | Aluminate | Na3PO4 | Thickness and roughness | [ |
AZ91 | Silicate | Graphite | Thickness, porosity | [ |
AZ91 | Silicate | Graphite | Porosity and thickness | [ |
AM50 | Phosphate | SiO2 | Porosity and thickness | [ |
AM50 | Phosphate | SiO2 | Porosity | [ |
AM60B | Aluminate | \ | Thickness and roughness | [ |
AJ62 | Aluminate | \ | Thickness, porosity | [ |
MA8 | Silicate | TiN | Hardness | [ |
MA8 | Silicate | SPTFE | Porosity and thickness | [ |
Mg-8Li-2Ca | Phosphate | Voltage | Thickness | [ |
Table 6. Summary of wear resistance for MAO coatings.
Alloy | Electrolyte | Method | Influencing property | Reference |
---|---|---|---|---|
AZ31 | Phosphate | NaAlO2 | Thickness, hardness, and porosity | [ |
AZ31 | Phosphate | Al2O3 | Porosity and thickness | [ |
AZ31 | Silicate | Graphene | Porosity and thickness | [ |
AZ31 | Silicate | SiC | Thickness and roughness | [ |
AZ31 | Aluminate | Si3N4 | Hardness and porosity | [ |
AZ31B | Phosphate | Graphene | Thickness, porosity | [ |
AZ31B | Phosphate | WC | Compactness | [ |
AZ31B | Silicate | Current | Thickness | [ |
AZ31B | Silicate | WC | Porosity and thickness | [ |
AZ80 | Silicate | Na2WO4 | Thickness and hardness | [ |
AZ91 | KOH | Na2HPO4 | Thickness | [ |
AZ91 | KOH | K2SnO3 | Thickness | [ |
AZ91 | Aluminate | Na3PO4 | Thickness, porosity | [ |
AZ91 | Aluminate | Na3PO4 | Thickness and roughness | [ |
AZ91 | Silicate | Graphite | Thickness, porosity | [ |
AZ91 | Silicate | Graphite | Porosity and thickness | [ |
AM50 | Phosphate | SiO2 | Porosity and thickness | [ |
AM50 | Phosphate | SiO2 | Porosity | [ |
AM60B | Aluminate | \ | Thickness and roughness | [ |
AJ62 | Aluminate | \ | Thickness, porosity | [ |
MA8 | Silicate | TiN | Hardness | [ |
MA8 | Silicate | SPTFE | Porosity and thickness | [ |
Mg-8Li-2Ca | Phosphate | Voltage | Thickness | [ |
Fig. 26. Optical images of MAO coating immersed in 3.5 wt.% NaCl solution for (a) 0 day, (b) 7 days, (c) 24 days, and (d) 28 days and MgFe-LDH/MAO coating immersed in 3.5 wt.% NaCl solution for (e) 0 day, (f) 7 days, (g) 24 days, and (h) 28 days [189].
Fig. 27. (a) Bode plots of |Z| vs. frequency, (b-d) Nyquist plots, (e) Bode plots of phase angle vs. frequency and (f) polarization curves. (g and h) Hydrogen evolution rates as a function of immersion time in 3.5 wt.% NaCl solution for 228 h [61].
Alloy | Electrolyte | Methods | Functions | Test solution | icorr (A cm-2) | Reference |
---|---|---|---|---|---|---|
CP Mg | (NaPO3)6 | Adding CeO2 | Self-sealing | Hank's solution | 1.87 × 10-7 | [ |
CP Mg | Silicate | NaF | Thickness and porosity | Hank's solution | [ | |
CP Mg | Silicate | HMT | Thickness and porosity | Hank's solution | [ | |
CP Mg | Silicate | MAN | Thickness and porosity | Hank's solution | [ | |
AM50 | Phosphate | SiO2 | Thickness and porosity | 0.5 wt.% NaCl | [ | |
AZ31 | Silicate | LDH | Sealing and absorbing Cl- | 3.5 wt.% NaCl | 4.23 × 10-10 | [ |
AZ31 | Silicate | N-16 inhibitor | Corrosion inhibition | 3.5 wt.% NaCl | 2.34 × 10-8 | [ |
AZ31 | Silicate | Irradiation | Re-melting | 3.5 wt.% NaCl | 4 × 10-9 | [ |
AZ31 | Silicate | MTMS | Sealing | 3.5 wt.% NaCl | 2.38 × 10-9 | [ |
AZ31 | Silicate, phosphate | LDH | Sealing and absorbing Cl- | 3.5 wt.% NaCl | [ | |
AZ31 | NaOH | PMTMS | Self-healing | 3.5 wt.% NaCl | 2.86 × 10-8 | [ |
AZ31 | NaOH | 8-HQ/SOl | Corrosion inhibition | 3.5 wt.% NaCl | [ | |
AZ31 | Phytic acid | Ta2O5 | Porosity | Hank's solution | 2.23 × 10-9 | [ |
AZ31B | Silicate | Frequency | Thickness and porosity | 3.5 wt.% NaCl | 4.8 × 10-7 | [ |
AZ31B | Silicate | WC | Thickness and porosity | 3.5 wt.% NaCl | 2.23 × 10-6 | [ |
AZ80 | Silicate | \ | Porosity | 3.5 wt.% NaCl | [ | |
AZ80 | Silicate | Current density | Porosity, thickness, hardness | 3.5 wt.% NaCl | 3.16 × 10-6 | [ |
AZ91 | Silicate | 8-HQ | Thickness and porosity | 3.5 wt.% NaCl | 2.2 × 10-6 | [ |
AZ91 | Silicate | \ | Thickness | 0.9 wt.% NaCl | [ | |
AZ91 | Aluminate | Na3PO4 | Thickness and porosity | 0.9 wt.% NaCl | [ | |
AZ91 | Phosphate | Sol-gel | Self-healing | 0.5 wt.% NaCl | [ | |
AZ91D | Silicate | PTFE | Thickness and porosity | 3.5 wt.% NaCl | 1.69 × 10-7 | [ |
AZ91D | Silicate | TiC | Porosity and compactness | 3.5 wt.% NaCl | 9.47 × 10-6 | [ |
AZ91D | Silicate | PEG6000 | Porosity and compactness | 3.5 wt.% NaCl | [ | |
AZ91D | Silicate | SDS | Porosity and compactness | 3.5 wt.% NaCl | [ | |
AZ91D | Silicate | Silane | Sealing | 3.5 wt.% NaCl | 4.2 × 10-10 | [ |
AZ91D | Silicate | V2O5 | Porosity and thickness | 3.5 wt.% NaCl | 2.13 × 10-7 | [ |
AZ91D | Phosphate | Graphite | Sealing | 3.5 wt.% NaCl | 4.8 × 10-7 | [ |
ZE41 | Silicate | Sol-gel | Sealing | 3 wt.% NaCl | [ | |
Mg-Li | Silicate | Current density | Porosity, thickness, hardness | 3.5 wt.% NaCl | 5.56 × 10-7 | [ |
Mg-Li | Silicate | SiC | Thickness and porosity | 3.5 wt.% NaCl | 2.84 × 10-5 | [ |
Mg-1Li-1Ca | Silicate | Mg2Ca | Thickness | Hank's solution | 4.73 × 10-7 | [ |
Mg-5Y-7Gd-1Nd-0.5Zr | Silicate | NH4VO3 | Thickness and porosity | 3.5 wt.% NaCl | 1.029 × 10-6 | [ |
Mg-4.71Zn-0.6Ca | Silicate | ECAP | Porosity | Hank's solution | 1.39 × 10-5 | [ |
Mg-8Li-2Ca | Phosphate | Voltage | Thickness and porosity | SBF solution | 1.27 × 10-6 | [ |
Table 7. Summary of corrosion resistance for MAO coatings.
Alloy | Electrolyte | Methods | Functions | Test solution | icorr (A cm-2) | Reference |
---|---|---|---|---|---|---|
CP Mg | (NaPO3)6 | Adding CeO2 | Self-sealing | Hank's solution | 1.87 × 10-7 | [ |
CP Mg | Silicate | NaF | Thickness and porosity | Hank's solution | [ | |
CP Mg | Silicate | HMT | Thickness and porosity | Hank's solution | [ | |
CP Mg | Silicate | MAN | Thickness and porosity | Hank's solution | [ | |
AM50 | Phosphate | SiO2 | Thickness and porosity | 0.5 wt.% NaCl | [ | |
AZ31 | Silicate | LDH | Sealing and absorbing Cl- | 3.5 wt.% NaCl | 4.23 × 10-10 | [ |
AZ31 | Silicate | N-16 inhibitor | Corrosion inhibition | 3.5 wt.% NaCl | 2.34 × 10-8 | [ |
AZ31 | Silicate | Irradiation | Re-melting | 3.5 wt.% NaCl | 4 × 10-9 | [ |
AZ31 | Silicate | MTMS | Sealing | 3.5 wt.% NaCl | 2.38 × 10-9 | [ |
AZ31 | Silicate, phosphate | LDH | Sealing and absorbing Cl- | 3.5 wt.% NaCl | [ | |
AZ31 | NaOH | PMTMS | Self-healing | 3.5 wt.% NaCl | 2.86 × 10-8 | [ |
AZ31 | NaOH | 8-HQ/SOl | Corrosion inhibition | 3.5 wt.% NaCl | [ | |
AZ31 | Phytic acid | Ta2O5 | Porosity | Hank's solution | 2.23 × 10-9 | [ |
AZ31B | Silicate | Frequency | Thickness and porosity | 3.5 wt.% NaCl | 4.8 × 10-7 | [ |
AZ31B | Silicate | WC | Thickness and porosity | 3.5 wt.% NaCl | 2.23 × 10-6 | [ |
AZ80 | Silicate | \ | Porosity | 3.5 wt.% NaCl | [ | |
AZ80 | Silicate | Current density | Porosity, thickness, hardness | 3.5 wt.% NaCl | 3.16 × 10-6 | [ |
AZ91 | Silicate | 8-HQ | Thickness and porosity | 3.5 wt.% NaCl | 2.2 × 10-6 | [ |
AZ91 | Silicate | \ | Thickness | 0.9 wt.% NaCl | [ | |
AZ91 | Aluminate | Na3PO4 | Thickness and porosity | 0.9 wt.% NaCl | [ | |
AZ91 | Phosphate | Sol-gel | Self-healing | 0.5 wt.% NaCl | [ | |
AZ91D | Silicate | PTFE | Thickness and porosity | 3.5 wt.% NaCl | 1.69 × 10-7 | [ |
AZ91D | Silicate | TiC | Porosity and compactness | 3.5 wt.% NaCl | 9.47 × 10-6 | [ |
AZ91D | Silicate | PEG6000 | Porosity and compactness | 3.5 wt.% NaCl | [ | |
AZ91D | Silicate | SDS | Porosity and compactness | 3.5 wt.% NaCl | [ | |
AZ91D | Silicate | Silane | Sealing | 3.5 wt.% NaCl | 4.2 × 10-10 | [ |
AZ91D | Silicate | V2O5 | Porosity and thickness | 3.5 wt.% NaCl | 2.13 × 10-7 | [ |
AZ91D | Phosphate | Graphite | Sealing | 3.5 wt.% NaCl | 4.8 × 10-7 | [ |
ZE41 | Silicate | Sol-gel | Sealing | 3 wt.% NaCl | [ | |
Mg-Li | Silicate | Current density | Porosity, thickness, hardness | 3.5 wt.% NaCl | 5.56 × 10-7 | [ |
Mg-Li | Silicate | SiC | Thickness and porosity | 3.5 wt.% NaCl | 2.84 × 10-5 | [ |
Mg-1Li-1Ca | Silicate | Mg2Ca | Thickness | Hank's solution | 4.73 × 10-7 | [ |
Mg-5Y-7Gd-1Nd-0.5Zr | Silicate | NH4VO3 | Thickness and porosity | 3.5 wt.% NaCl | 1.029 × 10-6 | [ |
Mg-4.71Zn-0.6Ca | Silicate | ECAP | Porosity | Hank's solution | 1.39 × 10-5 | [ |
Mg-8Li-2Ca | Phosphate | Voltage | Thickness and porosity | SBF solution | 1.27 × 10-6 | [ |
Company | Hardness (HV) | Thickness (µm) | Corrosion (salt spray/h) | Temperature (°C) | Resistance (MΩ) | Adhesion (MPa) | Homepage |
---|---|---|---|---|---|---|---|
DGHENGHE | 300-800 | 1-30 | > 500 | 2500 | - | 30-∼100 | http://henghe-china.com/picshow-210-991-1.html |
HUANIC | 1000-2500 | 1-300 | > 1000 | 2500 | > 100 | 30-100 | http://www.huanic.com/tf/jsfw/bmcl/whyh/ |
JIUYIN | 300-3000 | 10-300 | > 600 | > 100 | [ | ||
Keronite | ∼2000 | > 2000 | > 900 | exceptional | https://www.keronite.com/surface-technology/ | ||
MAO Environ. Prot. Technol. DG Co., Ltd | 1000-2500 | 1-300 | > 1000 | 2500 | > 100 | 30-100 | http://mao-dg.com/show_imgnews.asp?id=478&big_sortid=72 |
Magoxid | 500∼1500 | ∼150 | > 1000 | > 700 | https://mifa-surfacetreatment.eu/en/coatings/ | ||
RIZHAO WEIHU Techol. | 1000∼2000 | 10∼60 | 1100 | > 100 | http://weihujishu.com/index.php |
Table 8. Some examples of MAO coating on Mg alloy applied in industry.
Company | Hardness (HV) | Thickness (µm) | Corrosion (salt spray/h) | Temperature (°C) | Resistance (MΩ) | Adhesion (MPa) | Homepage |
---|---|---|---|---|---|---|---|
DGHENGHE | 300-800 | 1-30 | > 500 | 2500 | - | 30-∼100 | http://henghe-china.com/picshow-210-991-1.html |
HUANIC | 1000-2500 | 1-300 | > 1000 | 2500 | > 100 | 30-100 | http://www.huanic.com/tf/jsfw/bmcl/whyh/ |
JIUYIN | 300-3000 | 10-300 | > 600 | > 100 | [ | ||
Keronite | ∼2000 | > 2000 | > 900 | exceptional | https://www.keronite.com/surface-technology/ | ||
MAO Environ. Prot. Technol. DG Co., Ltd | 1000-2500 | 1-300 | > 1000 | 2500 | > 100 | 30-100 | http://mao-dg.com/show_imgnews.asp?id=478&big_sortid=72 |
Magoxid | 500∼1500 | ∼150 | > 1000 | > 700 | https://mifa-surfacetreatment.eu/en/coatings/ | ||
RIZHAO WEIHU Techol. | 1000∼2000 | 10∼60 | 1100 | > 100 | http://weihujishu.com/index.php |
[1] |
H. Pan, L. Wang, Y. Lin, F. Ge, K. Zhao, X. Wang, Z. Cui, J. Mater. Sci. Technol. 54 (2020) 1-13.
DOI URL |
[2] |
X. Ma, C. Blawert, D. Höche, K. Kainer, M. Zheludkevich, Electrochim. Acta 251 (2017) 461-474.
DOI URL |
[3] |
Y. Chen, L. Wu, W. Yao, Y. Chen, Z. Zhong, W. Ci, J. Wu, Z. Xie, Y. Yuan, F. Pan, Corros. Sci. 194 (2022) 109941.
DOI URL |
[4] |
M. Echeverry-Rendon, V. Duque, D. Quintero, M. Harmsen, F. Echeverria, Surf. Coat. Technol. 354 (2018) 28-37.
DOI URL |
[5] |
W. Yao, L. Wu, G. Huang, B. Jiang, A. Atrens, F. Pan, J. Mater. Sci. Technol. 52 (2020) 100-118.
DOI URL |
[6] |
J. Guo, L. Wang, S. Wang, J. Liang, Q. Xue, F. Yan, J. Mater. Sci. 44 (2009) 1998-2006.
DOI URL |
[7] |
X. Wang, Y. Wang, C. Wang, S. Xu, J. Rong, Z. Yang, J. Wang, H. Wang, J. Mater. Sci. Technol. 49 (2020) 117-125.
DOI URL |
[8] |
S. Najafi, R. Mahmudi, J. Magnes. Alloy 8 (2020) 1109-1119.
DOI URL |
[9] |
S. Chen, H. Song, M. Cheng, C. Zheng, S. Zhang, M. Lee, J. Mater. Sci. Technol. 67 (2021) 211-225.
DOI URL |
[10] |
Y. Chai, C. He, B. Jiang, J. Fu, Z. Jiang, Q. Yang, H. Sheng, G. Huang, D. Zhang, F. Pan, J. Mater. Sci. Technol. 37 (2020) 26-37.
DOI URL |
[11] |
Z. Ding, L. Cui, X. Chen, R. Zeng, S. Guan, S. Li, F. Zhang, Y. Zou, Q. Liu, J. Alloy Compd. 764 (2018) 250-260.
DOI URL |
[12] |
M. Kaseem, T. Hussain, Z. Rehman, Y. Ko, J. Alloy Compd. 853 (2021) 157036.
DOI URL |
[13] |
D. Mashtalyar, S. Sinebryukhov, I. Imshinetskiy, A. Gnedenkov, K. Nadaraia, A. Ustinov, S. Gnedenkov, Appl. Surf. Sci. 503 (2020) 144062.
DOI URL |
[14] | Y. Zhang, Y. Xu, C. Miao, X. Tu, J. Yu, J. Li, Int. J. Electrochem. Sci. 13 (2018) 7923-7929. |
[15] |
D. Han, J. Zhang, J. Huang, Y. Lian, G. He, J. Magnes. Alloys 8 (2020) 329-344.
DOI URL |
[16] |
H. Vatan, M. Adabi, Trans. Inst. Met. Finish. 95 (2017) 308-315.
DOI URL |
[17] |
X. Fan, C. Li, Y. Wang, Y. Huo, S. Li, R. Zeng, J. Mater. Sci. Technol. 49 (2020) 224-235.
DOI URL |
[18] | Y. Xue, X. Pang, B. Jiang, H. Jahed, D. Wang, Mater. Corros. 71 (2020) 992-1006. |
[19] |
C. Liu, T. Xu, Q. Shao, S. Huang, B. Jiang, J. Liang, H. Li, J. Alloy Compd. 784 (2019) 414-421.
DOI URL |
[20] |
R. Hussein, D. Northwood, X. Nie, Surf. Coat. Technol. 237 (2013) 357-368.
DOI URL |
[21] |
J. Chen, Z. Wang, S. Lu, Rare Met. 31 (2012) 172.
DOI URL |
[22] |
I. Hwang, D. Hwang, Y. Ko, D. Shin, Surf. Coat. Technol. 206 (2012) 3360-3365.
DOI URL |
[23] |
J. Chu, L. Tong, Z. Jiang, D. Zou, Q. Wang, S. Liu, H. Zhang, J. Magnes. Alloys 8 (2020) 1269-1280.
DOI URL |
[24] |
M. Guo, L. Cao, P. Lu, Y. Liu, X. Xu, J. Mater. Sci. Mater. Med. 22 (2011) 1735-1740.
DOI URL |
[25] |
D. Tsai, Y. Tsai, C. Chou, Surf. Coat. Technol. 366 (2019) 15-23.
DOI URL |
[26] |
L. Li, T.S.N. Narayanan, Y. Kim, Y. Kong, I. Park, T. Bae, M. Lee, Thin Solid Films 562 (2014) 561-567.
DOI URL |
[27] |
V. Yadav, M. Sankar, L. Pandey, J. Magnes. Alloys 8 (2020) 999-1015.
DOI URL |
[28] |
C. Yu, L. Cui, Y. Zhou, Z. Han, X. Chen, R. Zeng, Y. Zou, S. Li, F. Zhang, E. Han, S. Guan, Surf. Coat. Technol. 344 (2018) 1-11.
DOI URL |
[29] |
L. Guo, W. Wu, Y. Zhou, F. Zhang, R. Zeng, J. Zeng, J. Mater. Sci. Technol. 34 (2018) 1455-1466.
DOI URL |
[30] |
A. Rakoch, E. Monakhova, Z. Khabibullina, M. Serdechnova, C. Blawert, M. Zheludkevich, A. Gladkova, J. Magnes. Alloys 8 (2020) 587-600.
DOI URL |
[31] |
L. Wang, J. Jiang, H. Liu, B. Saleh, A. Ma, J. Magnes. Alloys 8 (2020) 1208-1220.
DOI URL |
[32] |
E. Petrova, M. Serdechnova, T. Shulha, S. Lamaka, D. Wieland, P. Karlova, C. Blawert, M. Starykevich, M. Zheludkevich, Sci. Rep. 10 (2020) 8645.
DOI PMID |
[33] | L. Chang, F. Cao, J. Cai, W. Liu, Z. Zhang, J. Zhang, Trans. Non Ferr. Met. Soc. China 21 (2011) 307-316. |
[34] |
X. Wang, H. Yan, R. Hang, H. Shi, L. Wang, J. Ma, X. Liu, X. Yao, J. Mater. Res. Technol. 11 (2021) 2354-2364.
DOI URL |
[35] |
C. Bai, J. Li, W. Ta, B. Li, Y. Han, Orthop. Surg. 9 (2017) 296-303.
DOI URL |
[36] |
M. Rahman, Y. Li, C. Wen, J. Magnes. Alloys 8 (2020) 929-943.
DOI URL |
[37] |
A. Mandelli, M. Bestetti, A. Da Forno, N. Lecis, S. Trasatti, M. Trueba, Surf. Coat. Technol. 205 (2011) 4459-4465.
DOI URL |
[38] |
L. Mu, Z. Ma, J. Wang, S. Yuan, M. Li, Coatings 10 (2020) 837.
DOI URL |
[39] |
Q. Xia, X. Li, Z. Yao, Z. Jiang, Surf. Coat. Technol. 409 (2021) 126874.
DOI URL |
[40] |
A. Atrens, Z. Shi, S. Mehreen, S. Johnston, G. Song, X. Chen, F. Pan, J. Magnes. Alloys 8 (2020) 989-998.
DOI URL |
[41] |
H. Tang, T. Wu, H. Wang, X. Jian, Y. Wu, J. Alloy Compd. 698 (2017) 643-653.
DOI URL |
[42] |
X. Lu, Y. Chen, C. Blawert, Y. Li, T. Zhang, F. Wang, K. Kainer, M. Zheludkevich, Coatings 8 (2018) 306.
DOI URL |
[43] |
C. Liu, J. Yuan, H. Li, B. Jiang, Metals 9 (2019) 1100.
DOI URL |
[44] |
M. Kannan, R. Walter, A. Yamamoto, H. Khakbaz, C. Blawert, RSC Adv. 8 (2018) 29189-29200.
DOI URL |
[45] |
X. Ly, S. Yang, N. Thanhhung, Surf. Coat. Technol. 395 (2020) 125923.
DOI URL |
[46] |
Z. Wang, J. Zhang, Y. Li, L. Bai, G. Zhang, Trans. Indian Ceram. Soc. 79 (2020) 59-66.
DOI URL |
[47] |
D. Tsai, Y. Tsai, C. Chou, Surf. Coat. Technol. 366 (2019) 15-23.
DOI URL |
[48] | C. Li, X. Fan, R. Zeng, L. Cui, S. Li, F. Zhang, Q. He, M. Kannan, H. Jiang, D. Chen, S. Guan, J. Mater. Sci. Technol. 35 (2019) 1088-1098. |
[49] |
Z. Li, Q. Yu, C. Zhang, Y. Liu, J. Liang, D. Wang, F. Zhou, Surf. Coat. Technol. 357 (2019) 515-525.
DOI URL |
[50] |
B. Marzbanrad, M. Razmpoosh, E. Toyserkani, H. Jahed, J. Magnes. Alloys 9 (2021) 1458-1469.
DOI URL |
[51] |
S. Stojadinović, N. Tadić, N. Radić, B. Grbić, R. Vasilić, Surf. Coat. Technol. 310 (2017) 98-105.
DOI URL |
[52] |
N. Singh, U. Batra, K. Kumar, A. Mahapatro, J. Magnes. Alloys 9 (2021) 627-646.
DOI URL |
[53] | W. Wang, X. Yang, Y. Wang, Y. Fan, J. Xu, RSC Adv. 11 (2021) 419-432. |
[54] |
J. Martin, P. Haraux, V. Ntomprougkidis, S. Migot, S. Bruyere, G. Henrion, Surf. Coat. Technol. 397 (2020) 125987.
DOI URL |
[55] |
T. Wu, C. Blawert, M. Zheludkevich, J. Mater. Sci. Technol. 50 (2020) 75-85.
DOI URL |
[56] |
M. Wang, X. Zuo, K. Li, K. Wang, G. Zhang, J. Mater. Res. 35 (2020) 1703-1714.
DOI URL |
[57] |
W. Yang, S. Wu, D. Xu, W. Gao, Y. Yao, Q. Guo, J. Chen, Ceram. Int. 46 (2020) 17112-17116.
DOI URL |
[58] |
Y. Xiong, Q. Hu, X. Hu, R. Song, Surf. Coat. Technol. 325 (2017) 239-247.
DOI URL |
[59] | C. Li, L. Gao, X. Fan, R. Zeng, D. Chen, K. Zhi, Bioact. Mater. 5 (2020) 364-376. |
[60] |
E. Liu, Y. Niu, S. Yu, L. Liu, K. Zhang, X. Bi, J. Liang, Surf. Coat. Technol. 391 (2020) 125693.
DOI URL |
[61] |
C. Li, X. Fan, L. Cui, R. Zeng, Corros. Sci. 168 (2020) 108570.
DOI URL |
[62] |
M. Molaei, K. Babaei, A. Fattah-alhosseini, J. Magnes. Alloys 9 (2021) 1164-1186.
DOI URL |
[63] |
X. Shi, Y. Wang, H. Li, S. Zhang, R. Zhao, G. Li, R. Zhang, Y. Sheng, S. Cao, Y. Zhao, L. Xu, Y. Zhao, J. Alloy Compd. 823 (2020) 153721.
DOI URL |
[64] | A. Yerokhin, L. Snizhko, N. Gurevina, A. Leyland, A. Pilkington, A. Matthews, Surf. Coat. Technol. 177 (2004) 779-783. |
[65] |
C. Wei, X. Tian, S. Yang, X. Wang, R. Fu, P. Chu, Surf. Coat. Technol. 201 (2007) 5021-5024.
DOI URL |
[66] |
A. Fattah-alhosseini, R. Chaharmahali, K. Babaei, J. Magnes. Alloys 8 (2020) 799-818.
DOI URL |
[67] |
D. Veys-Renaux, C.-E. Barchiche, E. Rocca, Surf. Coat. Technol. 251 (2014) 232-236.
DOI URL |
[68] |
E. Demirci, E. Arslan, K. Ezirmik, Ö. Baran, Y. Totik, İ. Efeoglu, Thin Solid Films 528 (2013) 116-122.
DOI URL |
[69] | B. Jiang, Y. Ge, Woodhead Publ. Ser. Met. Surf. Eng. (2013) 163-196. |
[70] |
V. Bordo, T. Ebel, Electrochim. Acta 354 (2020) 136490.
DOI URL |
[71] |
L. Wang, L. Chen, Z. Yan, W. Fu, Surf. Coat. Technol. 205 (2010) 1651-1658.
DOI URL |
[72] |
C. Liu, T. Xu, Q. Shao, S. Huang, B. Jiang, J. Liang, H. Li, J. Alloy Compd. 784 (2019) 414-421.
DOI URL |
[73] |
G. Liu, S. Tang, J. Hu, Y. Zhang, Y. Wang, F. Liu, J. Electrochem. Soc. 162 (2015) C426-C432.
DOI URL |
[74] |
J. Yang, X. Lu, C. Blawert, S. Di, M. Zheludkevich, Surf. Coat. Technol. 319 (2017) 359-369.
DOI URL |
[75] |
C. Liu, D. He, Q. Yan, Z. Huang, P. Liu, D. Li, G. Jiang, H. Ma, P. Nash, D. Shen, Surf. Coat. Technol. 280 (2015) 86-91.
DOI URL |
[76] |
C. Dunleavy, I. Golosnoy, J. Curran, T. Clyne, Surf. Coat. Technol. 203 (2009) 3410-3419.
DOI URL |
[77] |
F. Mécuson, T. Czerwiec, T. Belmonte, L. Dujardin, A. Viola, G. Henrion, Surf. Coat. Technol. 200 (2005) 804-808.
DOI URL |
[78] |
L. Wang, W. Fu, L. Chen, J. Alloy Compd. 509 (2011) 7652-7656.
DOI URL |
[79] | A. Rakoch, V. Khokhlov, V. Bautin, N. Lebedeva, Y. Magurova, I. Bardin, Prot. Met. 42 (2006) 173-184. |
[80] |
Z. Chen, C. Bao, Y. Jian, Q. Wang, F. Chen, J. Electrochem. Soc. 166 (2019) C571-C579.
DOI URL |
[81] |
H. Duan, K. Du, C. Yan, F. Wang, Electrochim. Acta 51 (2006) 2898-2908.
DOI URL |
[82] |
X. Han, X. Zhu, M. Lei, Surf. Coat. Technol. 206 (2011) 874-878.
DOI URL |
[83] |
W. Tu, Y. Cheng, X. Wang, T. Zhan, J. Han, Y. Cheng, J. Alloy Compd. 725 (2017) 199-216.
DOI URL |
[84] |
R. Hussein, X. Nie, D. Northwood, Electrochim. Acta 112 (2013) 111-119.
DOI URL |
[85] |
S. Troughton, T. Clyne, Surf. Coat. Technol. 352 (2018) 591-599.
DOI URL |
[86] | Z. Yin, W. Qi, R. Zeng, X. Chen, C. Gu, S. Guan, Y. Zheng, Alloys 8 (2020) 42-65. |
[87] |
X. Lu, M. Mohedano, C. Blawert, E. Matykina, R. Arrabal, K. Kainer, M. Zhe-ludkevich, Surf. Coat. Technol. 307 (2016) 1165-1182.
DOI URL |
[88] |
X. Chen, Y. Fan, IOP Conf. Ser.: Mater. Sci. Eng. 730 (2020) 012029.
DOI URL |
[89] |
L. Tonelli, L. Pezzato, P. Dolcet, M. Dabalà, C. Martini, Wear 404-405 (2018) 122-132.
DOI URL |
[90] |
H. Guo, M. An, H. Huo, S. Xu, L. Wu, Appl. Surf. Sci. 252 (2006) 7911-7916.
DOI URL |
[91] |
R. Arrabal, E. Matykina, T. Hashimoto, P. Skeldon, G.E. Thompson, Surf. Coat. Technol. 203 (2009) 2207-2220.
DOI URL |
[92] |
L. Zhao, C. Cui, Q. Wang, S. Bu, Corros. Sci. 52 (2010) 2228-2234.
DOI URL |
[93] |
D. Sreekanth, N. Rameshbabu, K. Venkateswarlu, C. Subrahmanyam, L. Kr-ishna, K. Rao, Surf. Coat. Technol. 222 (2013) 31-37.
DOI URL |
[94] |
A. Ghasemi, V. Raja, C. Blawert, W. Dietzel, K. Kainer, Surf. Coat. Technol. 202 (2008) 3513-3518.
DOI URL |
[95] | R. Hussein, D. Northwood, X. Nie, Mater. Sci. Appl. 5 (2014) 124-139. |
[96] | M. Pan, Y. Wang, T. Chen, J. Liu, L. Chen, S. Di, Adv. Mater. Res. 764 (2013) 21-25. |
[97] |
N. Azarian, S. Mohammad, M. Khoei, J. Magnes. Alloys 9 (2021) 1595-1603.
DOI URL |
[98] |
J. Curran, T. Clyne, Acta Mater. 54 (2006) 1985-1993.
DOI URL |
[99] |
A. Yerokhin, L. Snizhko, N. Gurevina, A. Leyland, A. Pilkington, A. Matthews, J. Phys. D Appl. Phys. 36 (2003) 2110.
DOI URL |
[100] |
W. Tu, Y. Cheng, X. Wang, T. Zhan, J. Han, Y. Cheng, J. Alloy Compd. 725 (2017) 199-216.
DOI URL |
[101] |
A. Rakoch, A. Gladkova, Z. Linn, D. Strekalina, Surf. Coat. Technol. 269 (2015) 138-144.
DOI URL |
[102] |
A. Nominé, J. Martin, G. Henrion, T. Belmonte, Surf. Coat. Technol. 269 (2015) 131-137.
DOI URL |
[103] |
A. Nominé, J. Martin, C. Noël, G. Henrion, T. Belmonte, I. Bardin, V. Kovalev, A. Rakoch, Appl. Phys. Lett. 104 (2014) 081603.
DOI URL |
[104] |
R. Zhang, Corros. Sci. 52 (2010) 1285-1290.
DOI URL |
[105] |
A. Fattah-alhosseini, M. Joni, J. Mater. Eng. Perform. 24 (2015) 3444-3452.
DOI URL |
[106] |
D. Sreekanth, N. Rameshbabu, K. Venkateswarlu, Ceram. Int. 38 (2012) 4607-4615.
DOI URL |
[107] |
X. Li, X. Liu, B. Luan, Appl. Surf. Sci. 257 (2011) 9135-9141.
DOI URL |
[108] |
P. Zhang, X. Nie, H. Hu, Y. Liu, Surf. Coat. Technol. 205 (2010) 1508-1514.
DOI URL |
[109] |
H. Gao, M. Zhang, X. Yang, P. Huang, K. Xu, Appl. Surf. Sci. 314 (2014) 447-452.
DOI URL |
[110] | J. Dou, Y. Chen, H. Yu, C. Chen, Surf. Eng. 0 (2017) 1-8. |
[111] | J. Zhuang, R. Song, H. Li, N. Xiang, J. Wuhan Univ. Technol. Mater. Sci. Ed. 33 (2018) 703-709. |
[112] | S. Lu, Z. Wang, J. Chen, X. Zhou, Trans. Non Ferr. Met. Soc. China 21 (2011) 929-935. |
[113] |
C. Liu, J. Yuan, H. Li, B. Jiang, Metals 9 (2019) 1100.
DOI URL |
[114] |
H. Li, S. Lu, W. Qin, L. Han, X. Wu, Acta Astronaut. 116 (2015) 126-131.
DOI URL |
[115] |
F. Muhaffel, H. Cimenoglu, Surf. Coat. Technol. 357 (2019) 822-832.
DOI URL |
[116] |
R. Zhang, S. Zhang, N. Yang, L. Yao, F. He, Y. Zhou, X. Xu, L. Chang, S. Bai, J. Alloy Compd. 539 (2012) 249-255.
DOI URL |
[117] | R. Kucukosman, E. Sukuroglu, Y. Totik, S. Sukuroglu, Surf. Interfaces 22 (2021) 100894. |
[118] |
H. Vatan, M. Adabi, Trans. Indian Inst. Met. 71 (2018) 1643-1652.
DOI URL |
[119] |
L. An, Y. Ma, L. Sun, Z. Wang, S. Wang, J. Magnes. Alloys 8 (2020) 523-536.
DOI URL |
[120] | S. Lee, L. Do, J. Lee, C. Chen, H. Peng, Int. J. Electrochem. Sci. 13 (2018) 2705-2717. |
[121] |
S. Wang, Y. Xia, L. Liu, N. Si, Ceram. Int. 40 (2014) 93-99.
DOI URL |
[122] | C. Xu, X. Yan, H. Yang, H. Yan, Int. J. Electrochem. Sci. 13 (2018) 3555-3565. |
[123] | Y. Yu, S. Kuang, J. Li, Miner. Met. Mater. Soc. 67 (2015) 2133-2144. |
[124] |
S. Durdu, A. Aytac, M. Usta, J. Alloy Compd. 509 (2011) 8601-8606.
DOI URL |
[125] | D. Zhao, Q. Yu, J. Ning, N. Liu, Indian J. Eng. Mater. Sci. 24 (2017) 313-320. |
[126] |
Z. Li, Y. Yuan, X. Jing, J. Alloy Compd. 541 (2012) 380-391.
DOI URL |
[127] |
J. Zhang, R. Song, N. Xiang, Y. Xiong, Q. Hu, Surf. Eng. 33 (2017) 744-752.
DOI URL |
[128] |
H. Hornberger, S. Virtanen, A. Boccaccini, Acta Biomater. 8 (2012) 2442-2455.
DOI PMID |
[129] |
P. Hou, P. Han, C. Zhao, H. Wu, J. Ni, S. Zhang, J. Liu, Y. Zhang, H. Xu, P. Cheng, S. Liu, Y. Zheng, X. Zhang, Y. Chai, Sci. Rep. 7 (2017) 41924.
DOI URL |
[130] |
L. Tian, Y. Sheng, L. Huang, D. Chow, W. Chau, N. Tang, T. Ngai, C. Wu, J. Lu, L. Qin, Biomaterials 180 (2018) 173-183.
DOI PMID |
[131] |
U. Riaz, I. Shabib, W. Haider, J. Biomed. Mater. Res. B Appl. Biomater. 107 (2019) 1970-1996.
DOI URL |
[132] |
R. Valiev, R. Islamgaliev, I. Alexandrov, Prog. Mater. Sci. 45 (2000) 103-189.
DOI URL |
[133] |
Y. Chen, J. Dou, Z. Pang, Z. Zheng, H. Yu, C. Chen, Surf. Eng. 37 (2021) 926-941.
DOI URL |
[134] |
J. Chen, Y. Zhang, M. Ibrahim, I. Etim, L. Tan, K. Yang, Colloids Surf. B 179 (2019) 77-86.
DOI URL |
[135] |
S. Aliasghari, A. Rogov, P. Skeldon, X. Zhou, A. Yerokhin, A. Aliabadi, M. Ghorbani, Surf. Coat. Technol. 393 (2020) 125838.
DOI URL |
[136] | Y. Xu, H. Meng, H. Yin, Z. Sun, J. Peng, X. Xu, Q. Guo, W. Xu, X. Yu, Z. Yuan, B. Xiao, C. Wang, Y. Wang, S. Liu, S. Lu, Z. Wang, A. Wang, Exp. Ther. Med. 15 (2018) 93-102. |
[137] |
X. Yang, M. Li, X. Lin, L. Tan, G. Lan, L. Li, Q. Yin, H. Xia, Y. Zhang, K. Yang, Surf. Coat. Technol. 233 (2013) 65-73.
DOI URL |
[138] | C. Li, C. Yu, R. Zeng, B. Zhang, L. Cui, J. Wan, Y. Xia, Bioact. Mater. 5 (2020) 34-43. |
[139] | T. Ji, L. Zeng, G. Zhang, in: Hunan Science and Technology, Academic Press, Changsha, 1994, p. 132. |
[140] |
Z. Wang, Y. Ma, Y. Wang, Metals 10 (2020) 1146.
DOI URL |
[141] | G. Wu, D. Zhao, X. Lin, J. Liu, X. Ji, Surf. Interfaces 20 (2020) 100513. |
[142] | W. Yang, J. Wang, D. Xu, J. Li, T. Chen, Surf. Coat. Technol. 283 (2015) 227-235. |
[143] |
S. Zhang, R. Zhang, W. Li, M. Li, G. Yang, Surf. Coat. Technol. 207 (2012) 170-176.
DOI URL |
[144] | W. Wang, F. Xie, X. Wu, Mater. Prot. 44 (2011) 45-47. |
[145] |
S. Lee, L. Do, Surf. Coat. Technol. 307 (2016) 781-789.
DOI URL |
[146] |
X. Yang, A. Ma, H. Liu, J. Jiang, Y. Li, J. Sun, Surf. Eng. 35 (2019) 334-342.
DOI URL |
[147] |
S. Wang, P. Liu, Pol. J. Chem. Technol. 18 (2016) 36-40.
DOI URL |
[148] |
L. Bai, B. Dong, G. Chen, T. Xin, J. Wu, X. Sun, Surf. Coat. Technol. 374 (2019) 402-408.
DOI URL |
[149] |
W. Yang, D Xu, X. Yao, J. Wang, J. Chen, J. Alloy Compd. 745 (2018) 609-616.
DOI URL |
[150] |
Y. Wang, Y. Zou, H. Tian, L. Guo, J. Ouyang, D. Jia, Y. Zhou, Surf. Coat. Technol. 294 (2016) 102-108.
DOI URL |
[151] |
Q. Xia, D. Zhang, D. Li, Z. Jiang, Z. Yao, Surf. Coat. Technol. 369 (2019) 252-256.
DOI URL |
[152] |
Z. Yao, P. Su, Q. Shen, P. Ju, C. Wu, Y. Zhai, Z. Jiang, Surf. Coat. Technol. 269 (2015) 273-278.
DOI URL |
[153] |
Y. Deng, R. Ye, G. Xu, J. Yang, Q. Pan, B. Peng, X. Cao, Y. Duan, Y. Wang, L. Lu, Z. Yin, Corros. Sci. 90 (2015) 359-374.
DOI URL |
[154] |
X. Li, Q. Xia, C. Chen, Z. Yao, Mater. Res. Express 6 (2019) 106428.
DOI URL |
[155] |
Q. Xia, J. Wang, G. Liu, H. Wei, D. Li, Z. Yao, Z. Jiang, Surf. Coat. Technol. 307 (2016) 1284-1290.
DOI URL |
[156] |
L. Wang, J. Zhou, J. Liang, J. Chen, Appl. Surf. Sci. 280 (2013) 151-155.
DOI URL |
[157] |
H. Li, S. Lu, X. Wu, W. Qin, Surf. Coat. Technol. 269 (2015) 220-227.
DOI URL |
[158] |
H. Li, S. Lu, W. Qin, X. Wu, Acta Astronaut. 136 (2017) 230-235.
DOI URL |
[159] |
Z. Yao, P. Ju, Q. Xia, J. Wang, P. Su, H. Wei, D. Li, Z. Jiang, Surf. Coat. Technol. 307 (2016) 1236-1240.
DOI URL |
[160] |
Z. Yao, Q. Xia, Q. Shen, Sol. Energy Mater. Sol. Cells 143 (2015) 236-241.
DOI URL |
[161] |
Z. Yao, Q. Xia, P. Ju, Sci. Rep. 6 (2016) 29563.
DOI URL |
[162] | K. Doherty, J. Carton, A. Norman, T. McCaul, B. Twomey, K. Stanton, Acta As-tronaut. 117 (2015) 430-439. |
[163] |
X. Wang, X. Lu, P. Ju, Y. Chen, T. Zhang, F. Wang, Surf. Coat. Technol. 393 (2020) 125709.
DOI URL |
[164] |
Q. Nguyen, Y. Sim, M. Gupta, C. Lim, Tribol. Int. 82 (2015) 464-471.
DOI URL |
[165] |
Q. Li, Q. Zhang, M. An, Materialia 4 (2018) 282-286.
DOI URL |
[166] | E. Ilanaganar, S. Anbuselvan, Mater, Today Proc. 5 (2018) 62. |
[167] |
J. Wang, S. Huang, M. He, P. Wangyang, Y. Lu, H. Huang, L. Xu, Ceram. Int. 44 (2018) 7656-7662.
DOI URL |
[168] |
S. Aktu ˘g, S. Durdu, I. Kutbay, M. Usta, Ceram. Int. 42 (2016) 1246-1253.
DOI URL |
[169] |
D. Zhang, Y. Ge, G. Liu, F. Gao, P. Li, Ceram. Int. 44 (2018) 16164-16172.
DOI URL |
[170] |
B. Qian, W. Miao, M. Qiu, F. Gao, D. Hu, J. Sun, R. Wu, B. Krit, S. Betsofen, Acta Metall. Sin. 32 (2019) 194-204.
DOI URL |
[171] |
Z. Li, Z. Chen, S. Feng, T. Zhao, W. Wang, Surf. Eng. 36 (2020) 817-826.
DOI |
[172] |
M. Erdil, F. Aydin, Fuller. Nanotub, Carbon Nanostruct. 29 (2021) 998-1008.
DOI URL |
[173] | R. Küçükosman, E. ¸S üküro ˘glu, Y. Totik, S. ¸S üküro ˘glu, Surf. Interfaces 22 (2021) 100894. |
[174] | S. Gnedenkov, S. Sinebryukhov, D. Mashtalyar, I. Imshinetskiy, A. Gnedenkov, A. Samokhin, Y. Tsvetkov, Vacuum 120 (2015) 107-114. |
[175] |
X. Lu, C. Blawert, Y. Huang, H. Ovri, M. Zheludkevich, K. Kainer, Electrochim. Acta 187 (2016) 20-33.
DOI URL |
[176] |
L. Yu, J. Cao, Y. Cheng, Surf. Coat. Technol. 276 (2015) 266-278.
DOI URL |
[177] | M. Asgari, M. Aliofkhazraei, G. Darband, A. Rouhaghdam. Surf. Coat. Technol. 309 (2017) 124-135. |
[178] |
H. NasiriVatan, R. Ebrahimi-Kahrizsangi, A. Kasiri, Tribol. Int. 98 (2016) 253-260.
DOI URL |
[179] |
K. Lee, K. Shin, N. Seung, B. Yoo, S. Hyuk, Surf. Coat. Technol. 205 (2011) 3779-3784.
DOI URL |
[180] |
B. Lou, Y. Lin, C. Tseng, Y. Lu, J. Duh, J. Lee, Surf. Coat. Technol. 332 (2017) 358-367.
DOI URL |
[181] |
Y. Wang, D. Wei, J. Yu, S. Di, J. Mater. Sci. Technol. 30 (2014) 984-990.
DOI |
[182] | S. Fischerauer, T. Kraus, X. Wu, S. Tangl, E. Sorantin, A. Hänzi, J. Loffler, P. Uggowitzer, A. Weinberg, ActaBiomater. 9(2013)5411-5420. |
[183] |
X. Lu, Y. Zuo, X. Zhao, Y. Tang, Corros. Sci. 60 (2012) 165-172.
DOI URL |
[184] |
X. Song, J. Lu, X. Yin, J. Jiang, J. Wang, J. Magnes. Alloys 1 (2013) 318-322.
DOI URL |
[185] |
Z. Zheng, M. Zhao, L. Tan, Y. Zhao, B. Xie, D. Yin, K. Yang, A. Atrens, Surf. Coat. Technol. 386 (2020) 125456.
DOI URL |
[186] |
M. Atapour, C. Blawert, M. Zheludkevich, Surf. Coat. Technol. 357 (2019) 626-637.
DOI URL |
[187] |
M. Toorani, M. Aliofkhazraei, A. Rouhaghdam, Surf. Coat. Technol. 352 (2018) 561-580.
DOI URL |
[188] |
Z. Rehman, M. Uzair, H. Lim, B. Koo, J. Alloy Compd. 726 (2017) 284-294.
DOI URL |
[189] |
J. Chen, S. Liang, D. Fu, W. Fan, W. Lin, W. Ren, L. Zou, X. Cui, J. Alloy Compd. 831 (2020) 154580.
DOI URL |
[190] |
L. Cui, S. Gao, P. Li, R. Zeng, F. Zhang, S. Li, E. Han, Corros. Sci. 118 (2017) 84-95.
DOI URL |
[191] |
Y. Wang, Y. Deng, Y. Shao, F. Wang, Surf. Eng. 30 (2014) 31-35.
DOI URL |
[192] |
D. Ivanou, K. Yasakau, S. Kallip, A. Lisenkov, M. Starykevich, S. Lamaka, M. Ferreira, M. Zheludkevich, RSC Adv. 6 (2016) 12553-12560.
DOI URL |
[193] |
R. Zhang, J. Liang, Q. Wang, Appl. Surf. Sci. 258 (2012) 4360-4364.
DOI URL |
[194] | A. Chirkunov, A. Rakoch, E. Monakhova, A. Gladkova, Z. Khabibullina, V. Ogorodnikova, M. Serdechnova, C. Blawert, Y. Kuznetsov, M. Zheludkevich, Int. J. Corros. Scale Inhib. 8 (2019) 1170-1188. |
[195] |
Y. Chen, X. Lu, S. Lamaka, P. Ju, C. Blawert, T. Zhang, F. Wang, M. Zheludkevich, Appl. Sur. Sci. 504 (2020) 144462.
DOI URL |
[196] |
H. Han, R. Wang, Y. Wu, X. Zhang, D. Wang, Z. Yang, Y. Su, D. Shen, P. Nash, J. Alloy Compd. 811 (2019) 152010.
DOI URL |
[197] | https://blog.keronite.com/corrosion-resistant-coatings-for-magnesium-alloys, accessed at 29.06. 2021 |
[198] | http://www.jywhyh.com/jsyy/, accessed at 29.06. 2021 |
[199] | https://www.aalberts-st.com/wp-content/uploads/2021/01/8433_12469_aalberts_a4_broschuere_kc_mc_eng_2021_web.pdf, accessed at 29.06. 2021 |
[200] | https://www.globalsources.com/si/AS/Shanxi-Yinguang/6008831051258/Homepage.htm, accessedat29.06. 2021 |
[201] | A. Yerokhin, A. Leyland, A. Matthews. Appl. Surf. Sci. 200 (2002) 172-184. |
[1] | Bo Hu, Zixin Li, Dejiang Li, Tao Ying, Xiaoqin Zeng, Wenjiang Ding. A hot tearing criterion based on solidification microstructure in cast alloys [J]. J. Mater. Sci. Technol., 2022, 105(0): 68-80. |
[2] | B.Q. Shi, L.Y. Zhao, X.L. Shang, B.H. Nie, D.C. Chen, C.Q. Li, Y.Q. Cheng. Reduction effect of final-pass heavy reduction rolling on the texture development, tensile property and stretch formability of ZWK100 alloy plates [J]. J. Mater. Sci. Technol., 2022, 111(0): 211-223. |
[3] | Ł. Maj, D. Wojtas, A. Jarzębska, M. Bieda, K. Trembecka-Wójciga, R. Chulist, W. Kozioł, A. Góral, A. Trelka, K. Janus, J. Kawałko, M. Kulczyk, F. Muhaffel, H. Çimenoğlu, K. Sztwiertnia. Titania coating formation on hydrostatically extruded pure titanium by micro-arc oxidation method [J]. J. Mater. Sci. Technol., 2022, 111(0): 224-235. |
[4] | Yulong Wu, Liang Wu, Mikhail L. Zheludkevich, Yanning Chen, Maria Serdechnova, Wenhui Yao, Carsten Blawert, Andrej Atrens, Fusheng Pan. MgAl-V2O74- LDHs/(PEI/MXene)10 composite film for magnesium alloy corrosion protection [J]. J. Mater. Sci. Technol., 2021, 91(0): 28-39. |
[5] | Zhong-Zheng Jin, Min Zha, Hai-Long Jia, Pin-Kui Ma, Si-Qing Wang, Jia-Wei Liang, Hui-Yuan Wang. Balancing the strength and ductility of Mg-6Zn-0.2Ca alloy via sub-rapid solidification combined with hard-plate rolling [J]. J. Mater. Sci. Technol., 2021, 81(0): 219-228. |
[6] | Xiaofei Cui, Wei Fu, Daqing Fang, Guangli Bi, Zijun Ren, Shengwu Guo, Suzhi Li, Xiangdong Ding, Jun Sun. Mechanical properties and deformation mechanisms of a novel fine-grained Mg-Gd-Y-Ag-Zr-Ce alloy with high strength-ductility synergy [J]. J. Mater. Sci. Technol., 2021, 66(0): 64-73. |
[7] | Yuhui Zhang, Yuling Liu, Shuhong Liu, Hai-Lin Chen, Qing Chen, Shiyi Wen, Yong Du. Assessment of atomic mobilities and simulation of precipitation evolution in Mg-X (X=Al, Zn, Sn) alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 70-82. |
[8] | Zixiang Yan, Qiang Yang, Fanzhi Meng, Rui Ma, Rirong Bao, Xiaojuan Liu, Jian Meng, Xin Qiu. Interfacial precipitation in {10 $\bar{1}$ 2} twin boundaries of a Mg-Gd-Zn-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 93(0): 103-109. |
[9] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Interface strengthening in dissimilar double-sided friction stir spot welding of AZ31/ZK60 magnesium alloys by adjustable probes [J]. J. Mater. Sci. Technol., 2021, 85(0): 158-168. |
[10] | Qianqian Jin, Xiaohong Shao, Shijian Zheng, Yangtao Zhou, Bo Zhang, Xiuliang Ma. Interfacial dislocations dominated lateral growth of long-period stacking ordered phase in Mg alloys [J]. J. Mater. Sci. Technol., 2021, 61(0): 114-118. |
[11] | Yong-Kang Li, Min Zha, Jian Rong, Hai-long Jia, Zhong-Zheng Jin, Hong-Min Zhang, Pin-Kui Ma, Hong Xu, Ting-Ting Feng, Hui-Yuan Wang. Effect of large thickness-reduction on microstructure evolution and tensile properties of Mg-9Al-1Zn alloy processed by hard-plate rolling [J]. J. Mater. Sci. Technol., 2021, 88(0): 215-225. |
[12] | Qun Luo, Yanlin Guo, Bin Liu, Yujun Feng, Jieyu Zhang, Qian Li, Kuochih Chou. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review [J]. J. Mater. Sci. Technol., 2020, 44(0): 171-190. |
[13] | Maryam Jamalian, David P.Field. Gradient microstructure and enhanced mechanical performance of magnesium alloy by severe impact loading [J]. J. Mater. Sci. Technol., 2020, 36(0): 45-49. |
[14] | Xiao-Yuan Wang, Yu-Fei Wang, Cheng Wang, Shun Xu, Jian Rong, Zhi-Zheng Yang, Jin-Guo Wang, Hui-Yuan Wang. A simultaneous improvement of both strength and ductility by Sn addition in as-extruded Mg-6Al-4Zn alloy [J]. J. Mater. Sci. Technol., 2020, 49(0): 117-125. |
[15] | Pengfei Zhang, Yunchang Xin, Ling Zhang, Shiwei Pan, Qing Liu. On the texture memory effect of a cross-rolled Mg-2Zn-2Gd plate after unidirectional rolling [J]. J. Mater. Sci. Technol., 2020, 41(0): 98-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||