J. Mater. Sci. Technol. ›› 2022, Vol. 118: 181-189.DOI: 10.1016/j.jmst.2021.12.024
• Research Article • Previous Articles Next Articles
Jie Xionga, Hong-Yan Zenga,*(), Sheng Xua, Jin-Feng Pengb,*(
), Fang-Yuan Liua, Li-Hui Wanga
Received:
2021-11-26
Revised:
2021-12-28
Accepted:
2021-12-31
Published:
2022-08-10
Online:
2022-03-01
Contact:
Hong-Yan Zeng,Jin-Feng Peng
About author:
pengjinfeng@xtu.edu.cn (J.-F. Peng).Jie Xiong, Hong-Yan Zeng, Sheng Xu, Jin-Feng Peng, Fang-Yuan Liu, Li-Hui Wang. Enhancing the intrinsic properties of flower-like BiOI by S-doping toward excellent photocatalytic performances[J]. J. Mater. Sci. Technol., 2022, 118: 181-189.
Fig. 1. XRD (A, B) patterns of the pristine BiOI and S-BiOI; Raman spectra (C) of the pristine BiOI and S-BiOI1.25; FT-IR (D) patterns of the pristine BiOI and S-BiOI.
Empty Cell | I001/I102 | FWHM102* | Crystalline size(nm) | Crystallinty(%) |
---|---|---|---|---|
BiOI | 0.119 | 0.219 | 42.1 | 71.1 |
S-BiOI0.25 | 0.418 | 0.218 | 42.5 | 73.3 |
S-BiOI0.50 | 0.506 | 0.195 | 48.7 | 76.3 |
S-BiOI1.00 | 0.728 | 0.193 | 49.0 | 77.1 |
S-BiOI1.25 | 0.871 | 0.188 | 51.7 | 80.1 |
S-BiOI1.50 | 0.799 | 0.198 | 49.9 | 77.7 |
S-BiOI2.50 | 0.185 | 0.269 | 32.8 | 75.7 |
Table 1. Calculated lattice constants of the as-prepared materials using MDI Jade 6.0.
Empty Cell | I001/I102 | FWHM102* | Crystalline size(nm) | Crystallinty(%) |
---|---|---|---|---|
BiOI | 0.119 | 0.219 | 42.1 | 71.1 |
S-BiOI0.25 | 0.418 | 0.218 | 42.5 | 73.3 |
S-BiOI0.50 | 0.506 | 0.195 | 48.7 | 76.3 |
S-BiOI1.00 | 0.728 | 0.193 | 49.0 | 77.1 |
S-BiOI1.25 | 0.871 | 0.188 | 51.7 | 80.1 |
S-BiOI1.50 | 0.799 | 0.198 | 49.9 | 77.7 |
S-BiOI2.50 | 0.185 | 0.269 | 32.8 | 75.7 |
Fig. 3. SEM images (A) of the pristine BiOI and S-BiOI, and EDX mapping images (B) of the S-BiOI1.25; TEM and HRTEM images (C) of the pristine BiOI and S-BiOI1.25.
Fig. 4. UV-vis DRS spectra (A), corresponding Tauc plots (B) and N2 adsorption-desorption isotherms (C) of the pure BiOI and S-BiOI; PL spectra (D), Nyquist plots (E) and TPC responses (F) of the pristine BiOI and S-BiOI.
Fig. 5. Atomic crystal structure diagram (A), energy band structure (B) and calculated electronic density of states (C) of the pristine BiOI and S-BiOI.
Fig. 6. Cr(VI) reduction efficiency (A), corresponding kinetic fitting plots (B) and apparent rate constants (C) of the pristine BiOI and S-BiOI; Cr(VI) changes in the UV-vis spectra for Cr(VI) photoreduction over the S-BiOI1.25 at different time (D); Stability of the S-BiOI1.25 material (E); Cr 2p spectrum (F) of the spent S-BiOI1.25 after the Cr(VI) photoreduction.
[1] |
A. Batool, T.A. Saleh, Ecotoxicol. Environ. Saf. 189 (2020) 109924.
DOI URL |
[2] | A. Akhundi, A. Badiei, G.M. Ziarani, A. Habibi-Yangjeh, M.J. Muñoz-Batista, R. Luque, Mol. Catal. 488 (2020) 110902. |
[3] |
J. Xiong, H.Y. Zeng, C.R. Chen, G.F. Xiao, D.S. An, J. Alloy. Compd. 833 (2020) 154898.
DOI URL |
[4] |
C.C. Ho, J.S. Yu, S.W. Yang, V. Ya, H.A. Le, L.P. Cheng, C.W. Li, J. Water Process Eng. 42 (2021) 102191.
DOI URL |
[5] |
A. Habibi-Yangjeh, S. Asadzadeh-Khaneghah, S. Feizpoor, A. Rouhi, J. Colloid Interfaces Sci. 580 (2020) 503-514.
DOI URL |
[6] |
C.R. Chen, H.Y. Zeng, J. Xiong, S. Xu, D.S. An, Appl. Clay Sci. 192 (2020) 105627.
DOI URL |
[7] |
Y. Wang, C. Kang, K. Xiao, X. Wang, Sep. Purif. Technol. 241 (2020) 116703.
DOI URL |
[8] |
T. Wang, S. Liu, W. Mao, Y. Bai, K. Chiang, K. Shah, J. Paz-Ferreiro, J. Hazard. Mater. 389 (2020) 121827.
DOI URL |
[9] |
Q. Yuan, L. Chen, M. Xiong, J. He, S.L. Luo, C.T. Au, S.F. Yin, Chem. Eng. J. 255 (2014) 394-402.
DOI URL |
[10] |
J. Di, C. Chen, S.Z. Yang, S. Chen, M. Duan, J. Xiong, Z. Liu, Nat. Commun. 10 (2019) 1-7.
DOI URL |
[11] |
Y. Liu, J. Xu, M. Chen, Sep. Purif. Technol. 276 (2021) 119255.
DOI URL |
[12] |
M. Arumugam, Y. Yu, H.J. Jung, S. Yeon, H. Lee, J. Theerthagiri, M.Y. Choi, Environ. Res. 197 (2021) 111080.
DOI URL |
[13] | S. Ni, T. Zhou, H. Zhang, Y. Cao, P. Yang, A.C.S. Appl, Nano Mater. 1 (2018) 5128-5141. |
[14] |
G. Li, F. Qin, R. Wang, S. Xiao, H. Sun, R. Chen, J. Colloid Interfaces Sci. 409 (2013) 43-51.
DOI URL |
[15] |
A. Chatterjee, P. Kar, D. Wulferding, P. Lemmens, S.K. Pal, ACS Appl. Nano Mater. 3 (2020) 2733-2744.
DOI URL |
[16] |
L. Kang, C. Huang, J. Zhang, M. Zhang, N. Zhang, S. Liu, S.C. Jun, Chem. Eng. J. 390 (2020) 124643.
DOI URL |
[17] |
J. Di, C. Chen, C. Zhu, R. Long, H. Chen, X. Cao, Z. Liu, Adv. Energy Mater. 11 (2021) 2102389.
DOI URL |
[18] |
S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, J. Clean. Prod. 276 (2020) 124319.
DOI URL |
[19] | F. Dong, Y. Sun, M. Fu, Z. Wu, S.C. Lee, J. Hazard. Mater. 219 (2012) 26-34. |
[20] |
Z. Khazaee, A.R. Mahjoub, A.H.C. Khavar, V. Srivastava, M. Sillanpää, Sol. Energy 207 (2020) 1282-1299.
DOI URL |
[21] |
Y. Liu, Z. Hu, C.Y. Jimmy, Chemosphere 278 (2021) 130376.
DOI URL |
[22] |
Q. Wang, Z. Liu, D. Liu, W. Wang, Z. Zhao, F. Cui, G. Li, Chem. Eng. J. 360 (2019) 838-847.
DOI URL |
[23] |
A. Han, H. Zhang, G.K. Chuah, S. Jaenicke, Appl. Catal. B Environ. 219 (2017) 269-275.
DOI URL |
[24] |
Z. Cui, Y. Sun, Y. Zhou, Y. Zhang, F. Dong, Nanoscale 10 (2018) 16928-16934.
DOI URL |
[25] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
DOI PMID |
[26] |
Z. Song, X. Dong, J. Fang, C. Xiong, N. Wang, X. Tang, J. Hazard. Mater. 377 (2019) 371-380.
DOI URL |
[27] |
L. Zhang, W. Wang, D. Jiang, E. Gao, S. Sun, Nano Res. 8 (2015) 821-831.
DOI URL |
[28] |
Y. Huang, H. Li, W. Fan, F. Zhao, W. Qiu, H. Ji, Y. Tong, ACS Appl. Mater. Interfaces 8 (2016) 27859-27867.
DOI URL |
[29] |
F. Tian, H. Zhao, Z. Dai, G. Cheng, R. Chen, Ind. Eng. Chem. Res. 55 (2016) 4969-4978.
DOI URL |
[30] |
C. Liu, X.J. Wang, Dalton Trans. 45 (2016) 7720-7727.
DOI URL |
[31] |
W. Li, Q. Wang, L. Huang, Y. Li, Y. Xu, Y. Song, H. Li, RSC Adv. 5 (2015) 88832-88840.
DOI URL |
[32] |
A. Malathi, P. Arunachalam, A.N. Grace, J. Madhavan, A.M. Al-Mayouf, Appl. Surf. Sci. 412 (2017) 85-95.
DOI URL |
[33] | S. Wang, Y. Guan, L. Wang, W. Zhao, H. He, J. Xiao, C. Sun, Appl. Catal. B Environ. 168 (2015) 448-457. |
[34] |
H. Yu, J. Li, Y. Zhang, S. Yang, K. Han, F. Dong, H. Huang, Angew. Chem. Int. Ed. 58 (2019) 3880-3884.
DOI URL |
[35] |
J. Yang, H. Su, Y. Wu, D. Li, D. Zhang, H. Sun, S. Yin, Chem. Eng. J. 420 (2021) 127607.
DOI URL |
[36] |
B. Shao, X. Liu, Z. Liu, G. Zeng, Q. Liang, C. Liang, S. Gong, Chem. Eng. J. 368 (2019) 730-745.
DOI URL |
[37] |
J. Yang, H. Su, Y. Wu, D. Li, D. Zhang, H. Sun, S. Yin, Chem. Eng. J. 420 (2021) 127607.
DOI URL |
[38] |
J. Sun, J. Wen, G. Wu, Z. Zhang, X. Chen, G. Wang, M. Liu, Adv. Funct. Mater. 30 (2020) 2004108.
DOI URL |
[39] |
J. Wang, C. Cao, Y. Wang, Y. Wang, B. Sun, L. Zhu, Chem. Eng. J. 391 (2020) 123530.
DOI URL |
[40] |
J. Di, J. Xia, M. Ji, B. Wang, X. Li, Q. Zhang, H. Li, ACS Sustain. Chem. Eng. 4 (2016) 136-146.
DOI URL |
[41] |
M. Bharti, A. Singh, G. Saini, S. Saha, A. Bohra, Y. Kaneko, S.C. Gadkari, J. Power Sources 435 (2019) 226758.
DOI URL |
[42] | A. Stavrinadis, A.K. Rath, F.P.G. De Arquer, S.L. Diedenhofen, C. Magén, L. Martinez, G. Konstantatos, Nat. Commun. 4 (2013) 1-7. |
[43] |
Q. Li, Y. Guo, Y. Tian, W. Liu, K. Chu, J. Mater. Chem. A 8 (2020) 16195-16202.
DOI URL |
[44] |
N. Tian, H. Huang, S. Wang, T. Zhang, X. Du, Y. Zhang, Appl. Catal. B Environ. 267 (2020) 118697.
DOI URL |
[45] |
J. Tang, Y. Ge, J. Shen, M. Ye, Chem. Commun. 52 (2016) 1509-1512.
DOI URL |
[46] |
A. Moballegh, E.C. Dickey, Acta Mater. 86 (2015) 352-360.
DOI URL |
[47] |
Z. Gu, C. Hu, X. Fan, L. Xu, M. Wen, Q. Meng, W. Zheng, Acta Mater. 81 (2014) 315-325.
DOI URL |
[48] |
L. Ye, H. Wang, X. Jin, Y. Su, D. Wang, H. Xie, X. Liu, Sol. Energy Mater. Sol. C 144 (2016) 732-739.
DOI URL |
[49] |
H. Li, J. Liu, X. Liang, W. Hou, X. Tao, J. Mater. Chem. A 2 (2014) 8926-8932.
DOI URL |
[50] |
L. Zeng, F. Zhe, Y. Wang, Q. Zhang, X. Zhao, X. Hu, Y. He, J. Colloid Interfaces Sci. 539 (2019) 563-574.
DOI URL |
[51] |
X. Hao, X. Yu, H. Li, Z. Zhang, Y. Wang, J. Li, Appl. Surf. Sci. 528 (2020) 147015.
DOI URL |
[52] |
Y. Guan, J. Wu, X. Man, Q. Liu, Y. Qi, P. He, X. Qi, Chem. Eng. J. 396 (2020) 125234.
DOI URL |
[53] |
W.W. Dai, Z.Y. Zhao, Appl. Surf. Sci. 406 (2017) 8-20.
DOI URL |
[54] |
T. Li, Y. Gao, L. Zhang, X. Xing, X. Huang, F. Li, C. Hu, Appl. Catal. B Environ. 277 (2020) 119065.
DOI URL |
[1] | Huinan Zhao, Xinyi Guan, Feng Zhang, Yajing Huang, Dehua Xia, Lingling Hu, Xiaoyuan Ji, Ran Yin, Chun He. Rational design of a bismuth oxyiodide (Bi/BiO1-xI) catalyst for synergistic photothermal and photocatalytic inactivation of pathogenic bacteria in water [J]. J. Mater. Sci. Technol., 2022, 100(0): 110-119. |
[2] | Q. Zhang, F.W. Tang, Z. Zhao, Z.R. Nie, X.Y. Song. Surface modification of tungsten oxide by oxygen vacancies for hydrogen adsorption [J]. J. Mater. Sci. Technol., 2022, 117(0): 23-35. |
[3] | Yuan Zhang, Guoqi Tan, Mingyang Zhang, Qin Yu, Zengqian Liu, Yanyan Liu, Jian Zhang, Da Jiao, Faheng Wang, Longchao Zhuo, Zhefeng Zhang, Robert O. Ritchie. Bioinspired tungsten-copper composites with Bouligand-type architectures mimicking fish scales [J]. J. Mater. Sci. Technol., 2022, 96(0): 21-30. |
[4] | Muhammad Ismail, Umesh Chand, Chandreswar Mahata, Jamel Nebhen, Sungjun Kim. Demonstration of synaptic and resistive switching characteristics in W/TiO2/HfO2/TaN memristor crossbar array for bioinspired neuromorphic computing [J]. J. Mater. Sci. Technol., 2022, 96(0): 94-102. |
[5] | Thi Kim Anh Nguyen, Thanh-Truc Pham, Bolormaa Gendensuren, Eun-Suok Oh, Eun Woo Shin. Defect engineering of water-dispersible g-C3N4 photocatalysts by chemical oxidative etching of bulk g-C3N4 prepared in different calcination atmospheres [J]. J. Mater. Sci. Technol., 2022, 103(0): 232-243. |
[6] | Libo Wang, Xingang Fei, Liuyang Zhang, Jiaguo Yu, Bei Cheng, Yuhua Ma. Solar fuel generation over nature-inspired recyclable TiO2/g-C3N4 S-scheme hierarchical thin-film photocatalyst [J]. J. Mater. Sci. Technol., 2022, 112(0): 1-10. |
[7] | Rohit Kumar, Pankaj Raizada, Aftab Aslam Parwaz Khan, Van-Huy Nguyen, Quyet Van Le, Suresh Ghotekar, Rangabhashiyam Selvasembian, Vimal Gandhi, Archana Singh, Pardeep Singh. Recent progress in emerging BiPO4-based photocatalysts: Synthesis, properties, modification strategies, and photocatalytic applications [J]. J. Mater. Sci. Technol., 2022, 108(0): 208-225. |
[8] | Changyan Chen, Ting Jiang, Jianhua Hou, Tingting Zhang, Geshan Zhang, Yongcai Zhang, Xiaozhi Wang. Oxygen vacancies induced narrow band gap of BiOCl for efficient visible-light catalytic performance from double radicals [J]. J. Mater. Sci. Technol., 2022, 114(0): 240-248. |
[9] | Yang Zhao, Yameng Zhu, Jinpeng Zhu, Hailong Wang, Zhuang Ma, Lihong Gao, Yanbo Liu, Kaijun Yang, Yongchun Shu, Jilin He. Atomic-resolution investigation of structural transformation caused by oxygen vacancy in La0.9Sr0.1TiO3+δ titanate layer perovskite ceramics [J]. J. Mater. Sci. Technol., 2022, 104(0): 172-182. |
[10] | Wei Zhao, Tiantian She, Jingyi Zhang, Guoxiang Wang, Sujuan Zhang, Wei Wei, Gang Yang, Lili Zhang, Dehua Xia, Zhipeng Cheng, Haibao Huang, Dennis Y.C. Leung. A novel Z-scheme CeO2/g-C3N4 heterojunction photocatalyst for degradation of Bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism [J]. J. Mater. Sci. Technol., 2021, 85(0): 18-29. |
[11] | Hengming Huang, Kan Hu, Chen Xue, Zhiliang Wang, Zhenggang Fang, Ling Zhou, Menglong Sun, Zhongzi Xu, Jiahui Kou, Lianzhou Wang, Chunhua Lu. Metal-free π-conjugated hybrid g-C3N4 with tunable band structure for enhanced visible-light photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2021, 87(0): 207-215. |
[12] | Yogesh Kumar, Rohit Kumar, Pankaj Raizada, Aftab Aslam Parwaz Khan, Quyet Van Le, Pardeep Singh, Van-Huy Nguyen. Novel Z-Scheme ZnIn2S4-based photocatalysts for solar-driven environmental and energy applications: Progress and perspectives [J]. J. Mater. Sci. Technol., 2021, 87(0): 234-257. |
[13] | Zeming Gu, Qi Wang, Xiaoqin Sun, Lingwei Lu, Yuwei Zhang, Ran Wang, Shu Jin, Yinlin Shao, Jun Qian, Xiaoxiang Xu. SrTiO3-CaCr0.5Nb0.5O3 solid solutions as p-type photocatalysts for Z-scheme water splitting under visible light illumination [J]. J. Mater. Sci. Technol., 2021, 87(0): 46-53. |
[14] | Bing Leng, Xinglai Zhang, Shanshan Chen, Jing Li, Ziqing Sun, Zongyi Ma, Wenjin Yang, Bingchun Zhang, Ke Yang, Shu Guo. Highly efficient visible-light photocatalytic degradation and antibacterial activity by GaN:ZnO solid solution nanoparticles [J]. J. Mater. Sci. Technol., 2021, 94(0): 67-76. |
[15] | Chatchai Rodwihok, Korakot Charoensri, Duangmanee Wongratanaphisan, Won Mook Choi, Seung Hyun Hur, Hyun Jin Park, Jin Suk Chung. Improved photocatalytic activity of surface charge functionalized ZnO nanoparticles using aniline [J]. J. Mater. Sci. Technol., 2021, 76(0): 1-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||