J. Mater. Sci. Technol. ›› 2021, Vol. 87: 234-257.DOI: 10.1016/j.jmst.2021.01.051
• Research Article • Previous Articles Next Articles
Yogesh Kumara,b, Rohit Kumara, Pankaj Raizadaa, Aftab Aslam Parwaz Khanc, Quyet Van Led,**(), Pardeep Singha,**(
), Van-Huy Nguyene,f,*
Received:
2020-12-08
Revised:
2021-01-13
Accepted:
2021-01-13
Published:
2021-10-10
Online:
2021-03-12
Contact:
Quyet Van Le,Pardeep Singh,Van-Huy Nguyen
About author:
pardeepchem@gmail.com (P. Singh),Yogesh Kumar, Rohit Kumar, Pankaj Raizada, Aftab Aslam Parwaz Khan, Quyet Van Le, Pardeep Singh, Van-Huy Nguyen. Novel Z-Scheme ZnIn2S4-based photocatalysts for solar-driven environmental and energy applications: Progress and perspectives[J]. J. Mater. Sci. Technol., 2021, 87: 234-257.
Fig. 1. (a) Basic mechanism of semiconductor photocatalysis (b) Bar graph depicting Scopus data from 2008 to Sept. 2020, using the keywords “ZnIn2S4+ photocatalysis”.
Fig. 2. Crystal structure of ZnIn2S4 polymorphs: (a) hexagonal; (b) cubic; (c) rhombohedral. Reprinted with permission from Elsevier (Licence No. 4,914,631,012,156) [53].
Fig. 3. (a) Growth mechanism of ZnIn2S4 in different morphologies with different templates; (b) Mechanism of MG adsorption on the surface of ZIS. Reproduced with permission from RSC (licence no. 1,065,197-1) [74].
Fig. 4. The density of states in ZnIn2S4 (a) hexagonal phase; (b) Cubic phase and the calculated band structure of ZnIn2S4 in (c) hexagonal phase (d) cubic phase. Reproduced with permission from RSC (Licence no. 1,065,200-1) [65].
Fig. 5. SEM image of ZnIn2S4 under different magnifications (a) low (b, c) high (d) Mechanism of microspheres of ZnIn2S4. Reprinted with permission from Ref. [76] Copyright 2008 American Chemical Society.
Fig. 6. SEM images of ZIS synthesised by microwave method at temperature (a) 100 °C (b) 120 °C (c) 140 °C (d) 160 °C (e) 180 °C (f) 195 °C. Reprinted with permission from Elsevier (Licence No. 4,914,681,325,601) [66].
Fig. 7. Schematic representation of charge transfers in conventional heterojunctions (a) Type-I (b) Type-II (c) Type-III (d) Reprinted with permission from Elsevier (Licence no. 4,923,610,251,257) [110].
Fig. 8. Schematic representation of charge transfers in (a) traditional Z-scheme (b) All solid-state Z-scheme (c) Direct Z-scheme. Reprinted with permission from Elsevier (Licence no. 4,923,610,251,257) [110].
Fig. 9. (a) Scheme for the fabrication of ZnIn2S4-Au-TiO2 by chemical deposition method; (b) Plot of hydrogen evolution with time for optimising ZnIn2S4 loading; (c) Rate of gases evolution with optimised photocatalyst; (d) Plot of H2 and O2 evolution with for optimising Au mass ratio; (e) Comparison of photocatalytic activity for optimised photocatalyst with various photocatalysts. Reprinted with permission from Elsevier (Licence No. 4,914,690,173,422) [130].
Fig. 10. (a) Photocatalytic activity for three cycles; (b) Proposed direct Z-scheme mechanism for water splitting over 0.5 %PtS-20 %ZIS/WO3-3.0 %MnO2 under visible light irradiation. Reprinted with permission from Elsevier (Licence No. 4,914,690,422,457) [119]; (c) Proposed direct Z-scheme mechanism for water splitting over ZIS/LaNiO3 under visible light irradiation. Reprinted with permission from Elsevier (Licence No. 4,914,701,316,108) [134].
Fig. 11. (a) Variation of PL intensity with irradiation time on dispersing ZnIn2S4/VS2 in terephthalic acid (b) Variation fluorescence intensity with time of bare ZnIn2S4 and ZnIn2S4/VS2 (c) Proposed direct Z-scheme mechanism for ZIS/VS2 under visible light irradiation. Reprinted with permission from John Wiley & Sons (Licence No. 4,914,741,383,204) [136]. (d) ESR spectra of DMPO adducts with TiO2, ZnIn2S4 and 5 ZTin (NH4)2C2O4 aqueous solution and standard ESR spectra of DMPO adducts with (·CO2-+ OH), O··H and ·CO2- in dotted line (e) Schematic illustration of the charge transfer pathway in ZT in two possible photocatalytic systems. Reprinted with permission from Elsevier (Licence No. 4,914,710,045,873) [137].
Fig. 12. (a) ESR spectra of DMPO-O·2- and (b) ESR spectra of DMPO-O·H adducts. (c) Schematic illustration of the charge transfer mechanism in WO3/ ZnIn2S4. Reprinted with permission from Elsevier (Licence No. 4,914,710,379,713) [138].
Fig. 13. (a) The effect of BQ, DMSO and AO on %DE of the photocatalyst (12.5 %wt-Bi2S3/ZnIn2S4; (b) Schematic of degradation mechanism of MB type-II and Z-scheme charge transfer. Reprinted with permission from Elsevier (Licence No. 4,914,710,607,793) [141].
Fig. 14. (a) The PL of bare WO3, ZIS and WO3/ZIS-0.7 (b)TRPL decay spectra of WO3, ZnIn2S4 and WO3/ ZnIn2S4-0.7 on excitation at 340 nm. Reprinted with permission from Elsevier (Licence No. 4,914,711,068,333) [143]. (c) Linear sweep voltammograms of the WO3, ZnIn2S4 and ZIS/WO3-3 modified by ITO in the dark and with 430 nm light. Reprinted with permission from Elsevier (Licence No. 4,914,711,384,918) [144]. (d) EIS Nyquist plot of the bare and composite photocatalysts. Reprinted with permission from Elsevier (Licence No. 4,914,720,550,185) [145].
Photocatalyst | Pollutant | Photocatalyst dose | Reaction conditions | Activity | Refs. |
---|---|---|---|---|---|
ZnIn2S4/RGO/BiVO4 | Formaldehyde | 1.5 g L-1 | Visible light | 22.2 mmol g-1 h-1 | [ |
WO2.72/ZnIn2S4 | Tetracycline hydrochloride (30 mL of 50 mg L-1) | 30 mg | 300W Xe lamp (λ > 400 nm); 60 min | 97.3 % | [ |
Bi2S3/ ZnIn2S4 | MB (100 mL of 40 ppm) | 50 mg | 30W Xe lamp; 300 min | 95.4 % | [ |
ZnIn2S4-g-C3N4/BiVO4 | CR (500 mL of 10 mg L-1) | 100 mg | 500W tungsten-halogen lamp | [ | |
MTZ (500 mL, 10 mg L-1) | |||||
BiVO4/ ZnIn2S4 | MO (15 mg L-1) | 0.2 g L-1 | LED visible light | 86 % (0.00997 min-1) | [ |
ZnIn2S4/Bi2WO6 | Metronidazole | 100 mg | 500W tungsten-halogen lamp | 56 % 0.00760 min-1 | [ |
(500 mL, 10 mg L-1) | |||||
TiO2/ ZnIn2S4 | Metronidazole | 10 mg | 350W Xe lamp (λ > 400 nm) | min-1 | [ |
(50 mL, 50 mg L-1) | |||||
ZnIn2S4 /TiO2 | MO (50 mL of 20 mg L-1) | 50 mg | 350W Xe lamp (λ ≥ 420 nm); 240 min | 97 % | [ |
Bi2MoO6/ZnIn2S4 | NO (400 ppm NO, 7% O2 and N2 balance gas mixture fed at rate of 100 mL min-1) | 100 mg | 350W Xe lamp; 80 min | 84.94 % | [ |
Table 1 Summary of ZnIn2S4 based Z-Scheme photocatalysts for organic pollutant degradation.
Photocatalyst | Pollutant | Photocatalyst dose | Reaction conditions | Activity | Refs. |
---|---|---|---|---|---|
ZnIn2S4/RGO/BiVO4 | Formaldehyde | 1.5 g L-1 | Visible light | 22.2 mmol g-1 h-1 | [ |
WO2.72/ZnIn2S4 | Tetracycline hydrochloride (30 mL of 50 mg L-1) | 30 mg | 300W Xe lamp (λ > 400 nm); 60 min | 97.3 % | [ |
Bi2S3/ ZnIn2S4 | MB (100 mL of 40 ppm) | 50 mg | 30W Xe lamp; 300 min | 95.4 % | [ |
ZnIn2S4-g-C3N4/BiVO4 | CR (500 mL of 10 mg L-1) | 100 mg | 500W tungsten-halogen lamp | [ | |
MTZ (500 mL, 10 mg L-1) | |||||
BiVO4/ ZnIn2S4 | MO (15 mg L-1) | 0.2 g L-1 | LED visible light | 86 % (0.00997 min-1) | [ |
ZnIn2S4/Bi2WO6 | Metronidazole | 100 mg | 500W tungsten-halogen lamp | 56 % 0.00760 min-1 | [ |
(500 mL, 10 mg L-1) | |||||
TiO2/ ZnIn2S4 | Metronidazole | 10 mg | 350W Xe lamp (λ > 400 nm) | min-1 | [ |
(50 mL, 50 mg L-1) | |||||
ZnIn2S4 /TiO2 | MO (50 mL of 20 mg L-1) | 50 mg | 350W Xe lamp (λ ≥ 420 nm); 240 min | 97 % | [ |
Bi2MoO6/ZnIn2S4 | NO (400 ppm NO, 7% O2 and N2 balance gas mixture fed at rate of 100 mL min-1) | 100 mg | 350W Xe lamp; 80 min | 84.94 % | [ |
Fig. 15. (a) PL spectra of bare ZnIn2S4 and 2.5 %wt-Bi2S3/ZnIn2S4 (b) Photocurrent density versus applied voltage under the dark and visible light irradiation of pure ZnIn2S4 and 12.5 %wt-Bi2S3/ ZnIn2S4 photoelectrodes. Reprinted with permission from Elsevier (Licence No. 4,914,710,607,793) [141].
Fig. 16. (a-c) Optimisation using degradation study with CR using various photocatalyst; (d) Degradation of MTZ using optimised photocatalyst; (e-h) Schematic illustration of the probable electron transfer mechanism. Reprinted with permission from Elsevier (Licence No. 4,914,720,733,162) [164].
Fig. 17. (a) Rate of hydrogen evolution for samples for two cycles; (b) PL spectra of samples; (c) EIS Nyquist plots of the bare and composite photocatalysts (d) proposed type-II mechanism of binary CN/ ZnIn2S4; and (e) Z-Scheme for CN/C/ ZnIn2S4 ternary nanocomposite. Reproduced with permission from RSC (licence no. 1,065,023-1) [131].
Fig. 18. (a) Amount of hydrogen evolved with irradiation time for bare and nanocomposites (b) comparison of the rate of hydrogen evolved for various samples (c) Photocurrent response with an irradiation time of WO3, ZnIn2S4 and WO3/ ZnIn2S4-2 (d) EIS Nyquist plots of WO3, ZnIn2S4and WO3/ ZnIn2S4-2 (e, f) Schematic illustration of H2 evolution over WO3/ZnIn2S4 via type-II and Z-scheme charge transfer. Reproduced with permission from RSC (licence no. 1,065,204-1) [174].
Photocatalyst | Co-catalyst | Sacrificial reagent | Light Source | Optimal H2 evolution or photocurrent | Enhancement factor to bare ZnIn2S4 | Refs. |
---|---|---|---|---|---|---|
ZnIn2S4/LaNiO3 | - | TEOA | 300W Xe lamp, λ > 420 nm | 1600 μmol g-1 h-1 | 3 | [ |
ZnIn2S4/VS2 | - | - | 300 W tungsten halogen lamp | ∼56 μA cm-2 | 18 | [ |
ZnIn2S4/Nb2O5 | Pt | TEOA | - | 6026 μmol g-1 h-1 | [ | |
WO3/ZnIn2S4 | Pt | Na2SO3/Na2S | 300 W xenon arc lamp λ ≥ 420 nm | 1945.88 μmol g-1 h-1 | 7.9 | [ |
2D/2D WO3/ZnIn2S4 | - | 0.35 M Na2S and 0.25 M Na2SO3 | 300 W xenon arc lamp λ ≥ 420 nm | 2202.9 μmol g-1 h-1 | 5.2 | [ |
UiO-66- (COOH)2/ZnIn2S4 | MoS2 | 0.50 M Na2SO3 and 0.70 M Na2S | 300W Xe | 18.794 mmol g-1 h-1 | 15 | [ |
PtS-ZnIn2S4/WO3-MnO2 | PtS, MnO2 | - | 300W Xe lamp | 5.94 × 2.5 μmol g-1 h-1 | - | [ |
2D/2D NiS/Vs-ZnIn2S4/WO3 | - | lactic acid | 300W Xe lamp, λ > 400 nm | 11.09 mmol g-1 h-1 | 29.6 | [ |
WO3/ZnIn2S4 | - | TEOA | 300W Xe lamp, λ > 400 nm | 3900 μmol g-1 h-1 | 5.13 | [ |
ZnIn2S4/Er3+:Y3Al5O12@ZnTiO3/CaIn2S4 | - | Acid Orange Ⅱ | 300 W Xe lamp | 358.2 mmol g-1 | - | [ |
ZnIn2S4-RGO-RuO2/BiVO4 | Pt | - | - | 649.3 μmol g-1 h-1 | - | [ |
ZnIn2S4-Au-TiO2 | - | NA | 300W Xe lamp | 186.3 μmol g-1 h-1 | - | [ |
g-C3N4/nanocarbon/ZnIn2S4 | - | 0.5 M Na2S and 0.5 M Na2SO3. | Four low power UV-LEDs (3 W, 420 nm) | 50.32 μmol h-1 | 3.4 | [ |
CdS/QDs/ZnIn2S4 | - | Lactic acid | 300W Xe lamp | 2107.5 μmol g-1 h-1 | 62 | [ |
Table 2 Summary of ZnIn2S4 based Z-Scheme photocatalysts for hydrogen evolution.
Photocatalyst | Co-catalyst | Sacrificial reagent | Light Source | Optimal H2 evolution or photocurrent | Enhancement factor to bare ZnIn2S4 | Refs. |
---|---|---|---|---|---|---|
ZnIn2S4/LaNiO3 | - | TEOA | 300W Xe lamp, λ > 420 nm | 1600 μmol g-1 h-1 | 3 | [ |
ZnIn2S4/VS2 | - | - | 300 W tungsten halogen lamp | ∼56 μA cm-2 | 18 | [ |
ZnIn2S4/Nb2O5 | Pt | TEOA | - | 6026 μmol g-1 h-1 | [ | |
WO3/ZnIn2S4 | Pt | Na2SO3/Na2S | 300 W xenon arc lamp λ ≥ 420 nm | 1945.88 μmol g-1 h-1 | 7.9 | [ |
2D/2D WO3/ZnIn2S4 | - | 0.35 M Na2S and 0.25 M Na2SO3 | 300 W xenon arc lamp λ ≥ 420 nm | 2202.9 μmol g-1 h-1 | 5.2 | [ |
UiO-66- (COOH)2/ZnIn2S4 | MoS2 | 0.50 M Na2SO3 and 0.70 M Na2S | 300W Xe | 18.794 mmol g-1 h-1 | 15 | [ |
PtS-ZnIn2S4/WO3-MnO2 | PtS, MnO2 | - | 300W Xe lamp | 5.94 × 2.5 μmol g-1 h-1 | - | [ |
2D/2D NiS/Vs-ZnIn2S4/WO3 | - | lactic acid | 300W Xe lamp, λ > 400 nm | 11.09 mmol g-1 h-1 | 29.6 | [ |
WO3/ZnIn2S4 | - | TEOA | 300W Xe lamp, λ > 400 nm | 3900 μmol g-1 h-1 | 5.13 | [ |
ZnIn2S4/Er3+:Y3Al5O12@ZnTiO3/CaIn2S4 | - | Acid Orange Ⅱ | 300 W Xe lamp | 358.2 mmol g-1 | - | [ |
ZnIn2S4-RGO-RuO2/BiVO4 | Pt | - | - | 649.3 μmol g-1 h-1 | - | [ |
ZnIn2S4-Au-TiO2 | - | NA | 300W Xe lamp | 186.3 μmol g-1 h-1 | - | [ |
g-C3N4/nanocarbon/ZnIn2S4 | - | 0.5 M Na2S and 0.5 M Na2SO3. | Four low power UV-LEDs (3 W, 420 nm) | 50.32 μmol h-1 | 3.4 | [ |
CdS/QDs/ZnIn2S4 | - | Lactic acid | 300W Xe lamp | 2107.5 μmol g-1 h-1 | 62 | [ |
[1] |
S. Natarajan, H.C. Bajaj, R.J. Tayade, J. Environ. Sci. 65 (2018) 201-222.
DOI URL |
[2] |
D. Fatta-Kassinos, S. Meric, A. Nikolaou, Anal. Bioanal. Chem. 399 (2011) 251-275.
DOI PMID |
[3] |
V.H. Nguyen, S.M. Smith, K. Wantala, Arabian J. Chem. 13 (2020) 8309-8337.
DOI URL |
[4] | J. Johnson, Chem. Eng. News 90 (2012) 27. |
[5] |
P. Raizada, A. Sudhaik, P. Singh, A. Hosseini-Bandegharaei, V.K. Gupta, S. Agarwal, Desalin. Water Treat. 171 (2019) 344-355.
DOI |
[6] |
V.H. Nguyen, L.A.P. Thi, Q. Van Le, P. Singh, P. Raizada, P. Kajitvichyanukul, Chemosphere 260 (2020), 127529.
DOI PMID |
[7] | H.T. Do, L.A. Phan Thi, N.H.D. Nguyen, C.W. Huang, Q.V. Le, V.H. Nguyen, J. Chem. Technol. Biotechnol. 95 (2020) 2569-2578. |
[8] | P. Singh, K. Sharma, V. Hasija, V. Sharma, S. Sharma, P. Raizada, M. Singh, A.K. Saini, A. Hosseini-Bandegharaei, V.K. Thakur, Mater. Today Chem. 14 (2019), 100186. |
[9] | P. Raizada, A. Sudhaik, S. Patial, V. Hasija, A.A. Parwaz Khan, P. Singh, S. Gautam, M. Kaur, V.-H. Nguyen, Arab. J. Chem. 13 (2020). |
[10] |
V. Dutta, P. Singh, P. Shandilya, S. Sharma, P. Raizada, A.K. Saini, V.K. Gupta, A. Hosseini-Bandegharaei, S. Agarwal, A. Rahmani-Sani, J. Environ. Chem. Eng. 7 (2019), 103132.
DOI URL |
[11] |
S. Sharma, V. Dutta, P. Raizada, A. Hosseini-Bandegharaei, P. Singh, V.H. Nguyen, Environ. Chem. Lett. 19 (2021) 271-306.
DOI URL |
[12] |
S. Krishnan, H. Rawindran, C.M. Sinnathambi, J.W. Lim, IOP Conf. Ser. Mater. Sci. Eng. 206 (2017), 012089.
DOI URL |
[13] |
K. Sharma, P. Raizada, A. Hosseini-Bandegharaei, P. Thakur, R. Kumar, V.K. Thakur, V.-H. Nguyen, S. Pardeep, Process Saf. Environ. Prot. 142 (2020) 63-75.
DOI URL |
[14] |
V.K. Gupta, D. Pathania, P. Singh, Int. J. Environ. Sci. Technol. 11 (2014) 2015-2024.
DOI URL |
[15] | B. Pare, P. Singh, S.B. Jonnalgadda, Jonnalgadda, Degradation and Mineralization of Victoria Blue B Dye in a Slurry Photoreactor Using Advanced Oxidation Process, 68 2009, pp. 724-729. |
[16] | M. Tabatabaei, K. Karimi, R. Kumar, I.S. Horváth, Biomed Res. Int. 2015 (2015) 1-2. |
[17] |
S. Ray, M. Takafuji, H. Ihara, RSC Adv. 3 (2013) 23664-23672.
DOI URL |
[18] |
A. Kumar, P. Raizada, P. Singh, A. Hosseini-Bandegharaei, V.K. Thakur, J. Photochem. Photobiol. Chem. 397 (2020), 112588.
DOI URL |
[19] | P. Raizada, S. Singh, Env. Sci. Eng. 4 (2017) 187-206. |
[20] | N. Chandel, S. Sharma, V. Dutta, P. Raizada, A. Hosseini-Bandegharaei, R. Kumar, V.K. Gupta, S. Agarwal, P. Singh, Desalin. Water Treat. 191 (2020) 381-399. |
[21] |
C.-H. Liao, C.-W. Huang, J.C.S. Wu, Catalysts 2 (2012) 490-516.
DOI URL |
[22] |
S. Patial, V. Hasija, P. Raizada, P. Singh, A.A.P. Khan Singh, A.M. Asiri, J. Environ. Chem. Eng. 8 (2020), 103791.
DOI URL |
[23] |
C. Ampelli, G. Centi, R. Passalacqua, S. Perathoner, Energy Environ. Sci. 3 (2010) 292-301.
DOI URL |
[24] |
M.R. Hoffmann, S.T. Martin, Wonyong. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995) 69-96.
DOI URL |
[25] |
J. Wang, D. Wang, X. Zhang, C. Zhao, M. Zhang, Z. Zhang, J. Wang, Int. J. Hydrog. Energy 44 (2019) 6592-6607.
DOI URL |
[26] |
R. Zhu, F. Tian, R. Yang, J. He, J. Zhong, B. Chen, Renew. Energy 139 (2019) 22-27.
DOI URL |
[27] |
S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar, J. Hazard. Mater. 170 (2009) 560-569.
DOI PMID |
[28] |
P. Raizada, P. Shandilya, P. Singh, P. Thakur, J. Taibah Univ. Sci. 11 (2017) 689-699.
DOI URL |
[29] | P. Raizada, B. Priya, P. Thakur, P. Singh, IJCA 55A (2016) 803-809. |
[30] |
P. Raizada, A. Sudhaik, P. Singh, P. Shandilya, P. Thakur, H. Jung, Arab. J. Chem. 13 (2020) 3196-3209.
DOI URL |
[31] |
Y. Qu, X. Duan, Chem. Soc. Rev. 42 (2013) 2568-2580.
DOI URL |
[32] | V. Sonu, S. Dutta, P. Sharma, A. Raizada, V. Hosseini-Bandegharaei, P. Kumar Gupta, J. Singh, Saudi Chem. Soc. 23 (2019) 1119-1136. |
[33] |
M. Mousavi, A. Habibi-Yangjeh, S.R. Pouran, J. Mater. Sci. Mater. Electron. 29 (2018) 1719-1747.
DOI URL |
[34] |
R. Kumar, A. Sudhaik, P. Raizada, A. Hosseini-Bandegharaei, V.K. Thakur, A. Saini, V. Saini, P. Singh, J. Environ. Chem. Eng. 8 (2020), 104291.
DOI URL |
[35] |
I. Ibrahim, H.N. Lim, R.M. Zawawi, A.A. Tajudin, Y.H. Ng, H. Guo, N.M. Huang, J. Mater. Chem. B. 6 (2018) 4551-4568.
DOI URL |
[36] | B.S. Kalanoor, H. Seo, S.S. Kalanur, Mater. Sci. Energy Technol. 1 (2018) 49-62. |
[37] |
J. Low, B. Dai, T. Tong, C. Jiang, J. Yu, Adv. Mater. 31 (2019), 1802981.
DOI URL |
[38] |
A.A. Vaipolin, Yu.A. Nikolaev, V.Yu. Rud’, Yu.V. Rud’, E.I. Terukov, N. Fernelius, Semiconductors 37 (2003) 178-182.
DOI URL |
[39] |
J. Shen, J. Zai, Y. Yuan, X. Qian, Int. J. Hydrog. Energy 37 (2012) 16986-16993.
DOI URL |
[40] | Z. Lei, W. You, M. Liu, G. Zhou, T. Takata, M. Hara, K. Domen, C. Li, Chem. Commun. (2003) 2142-2143. |
[41] |
J. Lee, H. Kim, T. Lee, W. Jang, K.H. Lee, A. Soon, Chem. Mater. 31 (2019) 9148-9155.
DOI URL |
[42] |
Y. Pan, X. Yuan, L. Jiang, H. Yu, J. Zhang, H. Wang, R. Guan, G. Zeng, Chem. Eng. J. 354 (2018) 407-431.
DOI URL |
[43] |
S. Peng, P. Zhu, V. Thavasi, S.G. Mhaisalkar, S. Ramakrishna, Nanoscale 3 (2011) 2602-2608.
DOI URL |
[44] |
Y. Ding, Y. Gao, Z. Li, Appl. Surf. Sci. 462 (2018) 255-262.
DOI URL |
[45] |
L. Ye, Z. Li, Appl. Catal. B Environ. 160-161 (2014) 552-557.
DOI URL |
[46] |
B. Gao, S. Dong, J. Liu, L. Liu, Q. Feng, N. Tan, T. Liu, L. Bo, L. Wang, Chem. Eng. J. 304 (2016) 826-840.
DOI URL |
[47] |
T. Liu, L. Wang, C. Sun, X. Liu, R. Miao, Y. Lv, Chem. Eng. J. 358 (2019) 1296-1304.
DOI URL |
[48] |
Y. Li, J. Cai, M. Hao, Z. Li, Green Chem. 21 (2019) 2345-2351.
DOI URL |
[49] |
X. Liu, Q. Zhang, D. Ma, Sol. RRL 5 (2021), 2000397.
DOI URL |
[50] |
Q. Xu, L. Zhang, J. Yu, S. Wageh, A.A. Al-Ghamdi, M. Jaroniec, Mater. Today 21 (2018) 1042-1063.
DOI URL |
[51] |
T. Di, Q. Xu, W. Ho, H. Tang, Q. Xiang, J. Yu, ChemCatChem 11 (2019) 1394-1411.
DOI URL |
[52] | H. Haeuseler, S.K. Srivastava, Z. Für, Krist. -Cryst. Mater. 215 (2000) 205-221. |
[53] |
S. Shen, P. Guo, L. Zhao, Y. Du, L. Guo, J. Solid State Chem. 184 (2011) 2250-2256.
DOI URL |
[54] |
J. Lee, H. Kim, T. Lee, W. Jang, K.H. Lee, A. Soon, Chem. Mater. 31 (2019) 9148-9155.
DOI URL |
[55] | K.J. Range, W. Becker, A. Weiss, Z. Naturforschung Part B-Chem. Biochem. Biophys. Biol. Verwandten Geb. (1969) 811. |
[56] |
S. Shen, L. Zhao, Z. Zhou, L. Guo, J. Phys. Chem. C 112 (2008) 16148-16155.
DOI URL |
[57] |
X. Jiao, Z. Chen, X. Li, Y. Sun, S. Gao, W. Yan, C. Wang, Q. Zhang, Y. Lin, Y. Luo, Y. Xie, J. Am. Chem. Soc. 139 (2017) 7586-7594.
DOI URL |
[58] | A.N. Georgobiani, Z.P. Ilyukhina, I.M. Tiginyanu, Sov. Phys. - Semicond. 16 (1982) 231-232. |
[59] |
N. Romeo, A. Dallaturca, R. Braglia, G. Sberveglieri, Appl. Phys. Lett. 22 (1973) 21-22.
DOI URL |
[60] |
W.-S. Seo, R. Otsuka, H. Okuno, M. Ohta, K. Koumoto, J. Mater. Res. 14 (1999) 4176-4181.
DOI URL |
[61] |
Z. Chen, D. Li, W. Zhang, Y. Shao, T. Chen, M. Sun, X. Fu, J. Phys. Chem. C 113 (2009) 4433-4440.
DOI URL |
[62] |
F. Fang, L. Chen, Y.-B. Chen, L.-M. Wu, J. Phys. Chem. C 114 (2010) 2393-2397.
DOI URL |
[63] |
S. Shen, L. Zhao, L. Guo, Int. J. Hydrog. Energy. 33 (2008) 4501-4510.
DOI URL |
[64] |
Y. Chen, S. Hu, W. Liu, X. Chen, L. Wu, X. Wang, P. Liu, Z. Li, Dalton Trans. 40 (2011) 2607-2613.
DOI URL |
[65] |
J. Chen, F. Xin, X. Yin, T. Xiang, Y. Wang, RSC Adv. 5 (2014) 3833-3839.
DOI URL |
[66] |
Z. Chen, D. Li, G. Xiao, Y. He, Y.-J. Xu, J. Solid State Chem. 186 (2012) 247-254.
DOI URL |
[67] |
X. Gou, F. Cheng, Y. Shi, L. Zhang, S. Peng, J. Chen, P. Shen, J. Am. Chem. Soc. 128 (2006) 7222-7229.
DOI URL |
[68] |
H. Xia, G. Yang, J. Mater. Chem. 22 (2012) 18664-18670.
DOI URL |
[69] |
S. Chattopadhyay, M.K. Mishra, G. De, Dalton Trans. 45 (2016) 5111-5121.
DOI PMID |
[70] |
M.A. Hughes, Y. Fedorenko, B. Gholipour, J. Yao, T. Lee, R.M. Gwilliam, K.P. Homewood, S. Hinder, S.H. Hewak, S. Elliott, R.J. Curry, Nat. Commun. 5 (2014) 5346.
DOI PMID |
[71] |
S. Gorai, S. Chaudhuri, Mater. Sci. Eng. B. 126 (2006) 97-101.
DOI URL |
[72] |
Y. Liu, J. Goebl, Y. Yin, Chem. Soc. Rev. 42 (2013) 2610-2653.
DOI URL |
[73] |
Y. Zhai, Y. Dou, X. Liu, S.S. Park, C.-S. Ha, D. Zhao, Carbon 49 (2011) 545-555.
DOI URL |
[74] |
A.A. Khan, A. Chowdhury, S. Kumari, S. Hussain, J. Mater. Chem. A 8 (2020) 1986-2000.
DOI URL |
[75] |
P. Li, S. Ouyang, G. Xi, T. Kako, J. Ye, J. Phys. Chem. C 116 (2012) 7621-7628.
DOI URL |
[76] |
Y. Guo, X. Quan, N. Lu, H. Zhao, S. Chen, Environ. Sci. Technol. 41 (2007) 4422-4427.
DOI URL |
[77] |
T. Omata, K. Nose, S. Otsuka-Yao-Matsuo, J. Appl. Phys. 105 (2009), 073106.
DOI URL |
[78] |
H. Yu, X. Quan, Y. Zhang, N. Ma, S. Chen, H. Zhao, Langmuir 24 (2008) 7599-7604.
DOI URL |
[79] |
W.A. Shand, J. Cryst. Growth 5 (1969) 203-205.
DOI URL |
[80] |
M. Ebadi, M. Ramezani, Z. Zarghami, J. Clust. Sci. 27 (2016) 341-350.
DOI URL |
[81] |
N.S. Chaudhari, S.S. Warule, B.B. Kale, RSC Adv. 4 (2014) 12182.
DOI URL |
[82] |
Z. Chen, D. Li, W. Zhang, C. Chen, W. Li, M. Sun, Y. He, X. Fu, Inorg. Chem. 47 (2008) 9766-9772.
DOI URL |
[83] |
A.-L. Wang, L. Chen, J.-X. Zhang, W.-C. Sun, P. Guo, C.-Y. Ren, J. Mater. Sci. 52 (2017) 2413-2421.
DOI URL |
[84] |
B. Chai, T. Peng, P. Zeng, X. Zhang, X. Liu, J. Phys. Chem. C 115 (2011) 6149-6155.
DOI URL |
[85] |
N.S. Chaudhari, A.P. Bhirud, R.S. Sonawane, L.K. Nikam, S.S. Warule, V.H. Rane, B.B. Kale, Green Chem. 13 (2011) 2500-2506.
DOI URL |
[86] |
G. Wang, G. Chen, Y. Yu, X. Zhou, Y. Teng, RSC Adv. 3 (2013) 18579.
DOI URL |
[87] |
S. Shen, L. Zhao, L. Guo, J. Morphology, Phys. Chem. Solids. 69 (2008) 2426-2432.
DOI URL |
[88] |
X. Hu, J.C. Yu, J. Gong, Q. Li, Cryst. Growth Des. 7 (2007) 2444-2448.
DOI URL |
[89] |
M. Salavati-Niasari, M. Ranjbar, M. Sabet, J. Inorg. Organomet. Polym. Mater. 23 (2013) 452-457.
DOI URL |
[90] |
I.B. Assaker, M. Gannouni, A. Lamouchi, R. Chtourou, Superlattices Microstruct. 75 (2014) 159-170.
DOI URL |
[91] |
K.-W. Cheng, C.-J. Liang, Sol. Energy Mater. Sol. Cells 94 (2010) 1137-1145.
DOI URL |
[92] |
O. Vigil, O. Calzadilla, D. Seuret, J. Vidal, F. Leccabue, Sol. Energy Mater. 10 (1984) 139-143.
DOI URL |
[93] |
M. Li, J. Su, L. Guo, Int. J. Hydrog. Energy 33 (2008) 2891-2896.
DOI URL |
[94] |
E. Grilli, M. Guzzi, E. Camerlenghi, F. Pio, Phys. Status Solidi A 90 (1985) 691-701.
DOI URL |
[95] |
L. Yuan, M.-Q. Yang, Y.-J. Xu, J. Mater. Chem. A 2 (2014) 14401-14412.
DOI URL |
[96] |
S. Zhang, M. Du, Z. Xing, Z. Li, K. Pan, W. Zhou, Appl. Catal. B Environ. 262 (2020), 118202.
DOI URL |
[97] |
L. Ye, Z. Li, ChemCatChem 6 (2014) 2540-2543.
DOI URL |
[98] |
G. Mamba, A. Mishra, Catalysts 6 (2016) 79.
DOI URL |
[99] |
D. Crandles, E. Fortin, J. Phys. Appl. Phys. 19 (1986) 1751-1758.
DOI URL |
[100] |
N. Chandel, K. Sharma, A. Sudhaik, P. Raizada, A. Hosseini-Bandegharaei, V.K. Thakur, P. Singh, Arab. J. Chem. 13 (2020) 4324-4340.
DOI URL |
[101] |
P. Raizada, P. Thakur, A. Sudhaik, P. Singh, V.K. Thakur, A. Hosseini-Bandegharaei, Arab. J. Chem. 13 (2020) 4538-4552.
DOI URL |
[102] |
K. Sharma, V. Dutta, S. Sharma, P. Raizada, A. Hosseini-Bandegharaei, P. Thakur, P. Singh, J. Ind. Eng. Chem. 78 (2019) 1-20.
DOI |
[103] |
J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Adv. Mater. 29 (2017), 1601694.
DOI URL |
[104] | V. Sonu, S. Dutta, P. Sharma, A. Raizada, V. Hosseini-Bandegharaei, P. Kumar Gupta, J. Singh, Saudi Chem. Soc. 23 (2019) 1119-1136. |
[105] |
Y.-J. Yuan, J.-R. Tu, Z.-J. Ye, D.-Q. Chen, B. Hu, Y.-W. Huang, T.-T. Chen, D.-P. Cao, Z.-T. Yu, Z.-G. Zou, Appl. Catal. B Environ. 188 (2016) 13-22.
DOI URL |
[106] |
G. Swain, S. Sultana, K. Parida, Inorg. Chem. 58 (2019) 9941-9955.
DOI URL |
[107] |
Y. Xiao, Z. Peng, W. Zhang, Y. Jiang, L. Ni, Appl. Surf. Sci. 494 (2019) 519-531.
DOI |
[108] |
Z. Bai, X. Yan, Z. Kang, Y. Hu, X. Zhang, Y. Zhang, Nano Energy 14 (2015) 392-400.
DOI URL |
[109] |
G. Yang, D. Chen, H. Ding, J. Feng, J.Z. Zhang, Y. Zhu, S. Hamid, D.W. Bahnemann, Appl. Catal. B Environ. 219 (2017) 611-618.
DOI URL |
[110] | A. Kumar, P. Raizada, P. Singh, R.V. Saini, A.K. Saini, A. Hosseini-Bandegharaei, Chem. Eng. J. (2019), 123496. |
[111] |
Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Nanoscale 5 (2013) 8326-8339.
DOI URL |
[112] | A.J. Bard, J. Photochem. 10 (1979) 59-75. |
[113] |
H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, Nat. Mater. 5 (2006) 782-786.
DOI URL |
[114] |
M. Grätzel, Nature 414 (2001) 338-344.
DOI URL |
[115] | X. Wang, G. Liu, Z.-G. Chen, F. Li, L. Wang, G.Q. Lu, H.-M. Cheng, Chem. Commun. (2009) 3452-3454. |
[116] |
J. Yu, S. Wang, J. Low, W. Xiao, Phys. Chem. Chem. Phys. 15 (2013) 16883-16890.
DOI URL |
[117] |
J. Low, C. Jiang, B. Cheng, S. Wageh, A.A. Al-Ghamdi, J. Yu, Small Methods 1 (2017) 1700080.
DOI URL |
[118] |
J. Liu, B. Cheng, J. Yu, Phys. Chem. Chem. Phys. 18 (2016) 31175-31183.
DOI URL |
[119] |
Y. Ding, D. Wei, R. He, R. Yuan, T. Xie, Z. Li, Appl. Catal. B Environ. 258 (2019), 117948.
DOI URL |
[120] |
K. Sayama, R. Yoshida, H. Kusama, K. Okabe, Y. Abe, H. Arakawa, Chem. Phys. Lett. 277 (1997) 387-391.
DOI URL |
[121] |
H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, Chem. Lett. 33 (2004) 1348-1349.
DOI URL |
[122] |
M. Higashi, R. Abe, A. Ishikawa, T. Takata, B. Ohtani, K. Domen, Chem. Lett. 37 (2007) 138-139.
DOI URL |
[123] |
X. Wang, S. Li, Y. Ma, H. Yu, J. Yu, J. Phys. Chem. C 115 (2011) 14648-14655.
DOI URL |
[124] |
M. Wang, Q. Han, L. Li, L. Tang, H. Li, Y. Zhou, Z. Zou, Nanotechnology 28 (2017), 274002.
DOI URL |
[125] |
H.J. Yun, H. Lee, N.D. Kim, D.M. Lee, S. Yu, J. Yi, ACS Nano 5 (2011) 4084-4090.
DOI URL |
[126] |
A. Iwase, Y.H. Ng, Y. Ishiguro, A. Kudo, R. Amal, J. Am. Chem. Soc. 133 (2011) 11054-11057.
DOI URL |
[127] |
Y. Wen Teh, Y. Wei Goh, X. Ying Kong, B.-J. Ng, S.-T. Yong, S.-P. Chai, ChemCatChem 11 (2019) 6431-6438.
DOI URL |
[128] |
X. Wu, J. Zhao, L. Wang, M. Han, M. Zhang, H. Wang, H. Huang, Y. Liu, Z. Kang, Appl. Catal. B Environ. 206 (2017) 501-509.
DOI URL |
[129] |
W.-K. Jo, N.C.S. Selvam, Chem. Eng. J. 317 (2017) 913-924.
DOI URL |
[130] |
G. Yang, H. Ding, D. Chen, J. Feng, Q. Hao, Y. Zhu, Appl. Catal. B Environ. 234 (2018) 260-267.
DOI URL |
[131] |
F. Shi, L. Chen, M. Chen, D. Jiang, Chem. Commun. 51 (2015) 17144-17147.
DOI URL |
[132] |
J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B Environ. 243 (2019) 556-565.
DOI URL |
[133] |
Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem 6 (2020) 1543-1559.
DOI URL |
[134] |
Z. Wang, B. Su, J. Xu, Y. Hou, Z. Ding, Int. J. Hydrog. Energy 45 (2020) 4113-4121.
DOI URL |
[135] |
A. Khan, M. Danish, U. Alam, S. Zafar, M. Muneer, ACS Omega 5 (2020) 8188-8199.
DOI URL |
[136] |
G. Gogoi, C.T. Moi, A.S. Patra, D. Gogoi, P.N. Rao, M. Qureshi, Chem. - Asian J. 14 (2019) 4607-4615.
DOI URL |
[137] |
Q. Li, Y. Xia, C. Yang, K. Lv, M. Lei, M. Li, Chem. Eng. J. 349 (2018) 287-296.
DOI URL |
[138] |
W. Chen, L. Chang, S.-B. Ren, Z.-C. He, G.-B. Huang, X.-H. Liu, J. Hazard. Mater. 384 (2020), 121308.
DOI PMID |
[139] |
S. Meng, Y. Cui, H. Wang, X. Zheng, X. Fu, S. Chen, Dalton Trans. 47 (2018) 12671-12683.
DOI URL |
[140] | P. Huo, C. Liu, D. Wu, J. Guan, J. Li, H. Wang, Q. Tang, X. Li, Y. Yan, S. Yuan, J. Ind. Eng. Chem. 57 (2018) 125-133. |
[141] |
A. Chachvalvutikul, W. Pudkon, T. Luangwanta, T. Thongtem, S. Thongtem, S. Kittiwachana, S. Kaowphong, Mater. Res. Bull. 111 (2019) 53-60.
DOI |
[142] |
K. Ozawa, S. Yamamoto, R. Yukawa, R.-Y. Liu, N. Terashima, Y. Natsui, H. Kato, K. Mase, I. Matsuda, J. Phys. Chem. C 122 (2018) 9562-9569.
DOI URL |
[143] |
L. Ye, Z. Wen, Int. J. Hydrog. Energy 44 (2019) 3751-3759.
DOI URL |
[144] |
B. Zhang, H. Wang, J. Xi, F. Zhao, B. Zeng, Sens. Actuators B Chem. 298 (2019), 126835.
DOI URL |
[145] |
F. Mu, Q. Cai, H. Hu, J. Wang, Y. Wang, S. Zhou, Y. Kong, Chem. Eng. J. 384 (2020), 123352.
DOI URL |
[146] |
Y. Yu, Y. Huang, Y. Yu, Y. Shi, B. Zhang, Nano Energy 43 (2018) 236-243.
DOI URL |
[147] |
Y. Huang, Y. Liu, D. Zhu, Y. Xin, B. Zhang, J. Mater. Chem. A. 4 (2016) 13626-13635.
DOI URL |
[148] |
A. Nikokavoura, C. Trapalis, Appl. Surf. Sci. 391 (2017) 149-174.
DOI URL |
[149] |
S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.-X. Guo, J. Tang, Energy Environ.Sci. 8 (2015) 731-759.
DOI URL |
[150] |
W. Yu, S. Zhang, J. Chen, P. Xia, M.H. Richter, L. Chen, W. Xu, J. Jin, S. Chen, T. Peng, J. Mater. Chem. A 6 (2018) 15668-15674.
DOI URL |
[151] |
H. Wang, Y. Wu, M. Feng, W. Tu, T. Xiao, T. Xiong, H. Ang, X. Yuan, J.W. Chew, Water Res. 144 (2018) 215-225.
DOI PMID |
[152] |
V.K. Sharma, M. Feng, J. Hazard. Mater. 372 (2019) 3-16.
DOI URL |
[153] |
R.P. Schwarzenbach, B.I. Escher, K. Fenner, T.B. Hofstetter, C.A. Johnson, U. von Gunten, B. Wehrli, Science 313 (2006) 1072-1077.
PMID |
[154] |
Q. Zhang, S. Bolisetty, Y. Cao, S. Handschin, J. Adamcik, Q. Peng, R. Mezzenga, Angew. Chem. Int. Ed. 58 (2019) 6012-6016.
DOI URL |
[155] |
C. Grandclément, I. Seyssiecq, A. Piram, P. Wong-Wah-Chung, G. Vanot, N. Tiliacos, N. Roche, P. Doumenq, Water Res. 111 (2017) 297-317.
DOI PMID |
[156] |
K. Ma, W. Chen, T. Jiao, X. Jin, Y. Sang, D. Yang, J. Zhou, M. Liu, P. Duan, Chem. Sci. 10 (2019) 6821-6827.
DOI URL |
[157] |
Y. Hou, M. Qiu, M.G. Kim, P. Liu, G. Nam, T. Zhang, X. Zhuang, B. Yang, J. Cho, M. Chen, C. Yuan, L. Lei, X. Feng, Nat. Commun. 10 (2019) 1392.
DOI PMID |
[158] |
M. Gmurek, M. Olak-Kucharczyk, S. Ledakowicz, Chem. Eng. J. 310 (2017) 437-456.
DOI URL |
[159] |
M.-M. Fang, J.-X. Shao, X.-G. Huang, J.-Y. Wang, W. Chen, J. Mater. Sci. Technol. 56 (2020) 133-142.
DOI URL |
[160] | J. Liu, J. Zhang, D. Wang, D. Li, J. Ke, S. Wang, S. Liu, H. Xiao, R. Wang, ACS Sustain. Chem. Eng. 7 (2019) 12428-12438. |
[161] |
J. Ke, M. Adnan Younis, Y. Kong, H. Zhou, J. Liu, L. Lei, Y. Hou, Nano-Micro Lett. 10 (2018) 69.
DOI URL |
[162] |
A.-W. Xu, Y. Gao, H.-Q. Liu, J. Catal. 207 (2002) 151-157.
DOI URL |
[163] |
I.B. Assaker, M. Gannouni, J.B. Naceur, M.A. Almessiere, A.L. Al-Otaibi, T. Ghrib, S. Shen, R. Chtourou, Appl. Surf. Sci. 351 (2015) 927-934.
DOI URL |
[164] |
W.-K. Jo, T.S. Natarajan, J. Colloid. Interf. Sci. 482 (2016) 58-72.
DOI URL |
[165] |
D. Yuan, M. Sun, S. Tang, Y. Zhang, Z. Wang, J. Qi, Y. Rao, Q. Zhang, Chin. Chem. Lett. 31 (2020) 547-550.
DOI URL |
[166] |
W.-K. Jo, J.Y. Lee, T.S. Natarajan, Phys. Chem. Chem. Phys. 18 (2016) 1000-1016.
DOI URL |
[167] |
Y. Xia, Q. Li, K. Lv, M. Li, Appl. Surf. Sci. 398 (2017) 81-88.
DOI URL |
[168] |
S. Chen, S. Li, L. Xiong, G. Wang, Chem. Phys. Lett. 706 (2018) 68-75.
DOI URL |
[169] |
S. Wan, Q. Zhong, M. Ou, S. Zhang, J. Mater. Sci. 52 (2017) 11453-11466.
DOI URL |
[170] |
X. Ning, W. Li, Y. Meng, D. Qin, J. Chen, X. Mao, Z. Xue, D. Shan, S. Devaramani, X. Lu, Small 14 (2018), 1703989.
DOI URL |
[171] |
X. Ning, L. Ma, S. Zhang, D. Qin, D. Shan, Y. Hu, X. Lu, J. Phys. Chem. C. 120 (2016) 919-926.
DOI URL |
[172] |
A. Meng, B. Zhu, B. Zhong, L. Zhang, B. Cheng, Appl. Surf. Sci. 422 (2017) 518-527.
DOI URL |
[173] |
R. Abe, J. Photochem. Photobiol. C Photochem. Rev. 11 (2010) 179-209.
DOI URL |
[174] |
P. Tan, A. Zhu, L. Qiao, W. Zeng, Y. Ma, H. Dong, J. Xie, J. Pan, Inorg. Chem. Front. 6 (2019) 929-939.
DOI URL |
[175] |
J. Hu, C. Chen, Y. Zheng, G. Zhang, C. Guo, C.M. Li, Small 16 (2020), 2002988.
DOI URL |
[176] | Y. Wang, D. Chen, Y. Hu, L. Qin, J. Liang, X. Sun, Y. Huang, Energy Fuels 4 (2020) 1681-1692. |
[177] |
Y. Wang, X. Kong, M. Jiang, F. Zhang, X. Lei, Inorg. Chem. Front. 7 (2020) 437-446.
DOI URL |
[178] |
Z. Li, J. Hou, B. Zhang, S. Cao, Y. Wu, Z. Gao, X. Nie, L. Sun, Nano Energy 59 (2019) 537-544.
DOI URL |
[179] |
Y. Fan, R. Yang, J. Zhong, R. Zhu, ChemistrySelect 4 (2019) 8815-8821.
DOI URL |
[180] |
W. Chen, R.-Q. Yan, J.-Q. Zhu, G.-B. Huang, Z. Chen, Appl. Surf. Sci. 504 (2020), 144406.
DOI URL |
[181] | D. Pathania, P. Singh, Adv. Mater. Agric. Food Environ. Saf. (2014) 243-263. |
[182] |
A. Rahmani-Sani, P. Singh, P. Raizada, E.C. Lima, I. Anastopoulos, D.A. Giannakoudakis, S. Sivamani, T.A. Dontsova, A. Hosseini-Bandegharaei, Bioresour. Technol. 297 (2020), 122452.
DOI URL |
[183] |
C. Li, H. Che, Y. Yan, C. Liu, H. Dong, Chem. Eng. J. 398 (2020), 125523.
DOI URL |
[184] |
F. Xu, J. Zhang, B. Zhu, J. Yu, J. Xu, Appl. Catal. B Environ. 230 (2018) 194-202.
DOI URL |
[185] |
G. Zhang, X. Zhu, D. Chen, N. Li, Q. Xu, H. Li, J. He, H. Xu, J. Lu, Environ. Sci. Nano 7 (2020) 676-687.
DOI URL |
[1] | Mengting Cao, Fengli Yang, Quan Zhang, Juhua Zhang, Lu Zhang, Lingfeng Li, Xiaohao Wang, Wei-Lin Dai. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2021, 76(0): 189-199. |
[2] | Chang Feng, Zhuoyuan Chen, Jiangping Jing, Mengmeng Sun, Jing Tian, Guiying Lu, Li Ma, Xiangbo Li, Jian Hou. Significantly enhanced photocatalytic hydrogen production performance of g-C3N4/CNTs/CdZnS with carbon nanotubes as the electron mediators [J]. J. Mater. Sci. Technol., 2021, 80(0): 75-83. |
[3] | Dong-Eun Lee, Satyanarayana Moru, Wan-Kuen Jo, Surendar Tonda. Porous g-C3N4-encapsulated TiO2 hollow sphere as a high-performance Z-scheme hybrid for solar-induced photocatalytic abatement of environmentally toxic pharmaceuticals [J]. J. Mater. Sci. Technol., 2021, 82(0): 21-32. |
[4] | Er-Xun Han, Yuan-Yuan Li, Qi-Hao Wang, Wei-Qing Huang, Leng Luo, Wangyu Hu, Gui-Fang Huang. Chlorine doped graphitic carbon nitride nanorings as an efficient photoresponsive catalyst for water oxidation and organic decomposition [J]. J. Mater. Sci. Technol., 2019, 35(10): 2288-2296. |
[5] | Wang Songcan,Yun Jung-Ho,Luo Bin,Butburee Teera,Peerakiatkhajohn Piangjai,Thaweesak Supphasin,Xiao Mu,Wang Lianzhou. Recent Progress on Visible Light Responsive Heterojunctions for Photocatalytic Applications [J]. J. Mater. Sci. Technol., 2017, 33(1): 1-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||