J. Mater. Sci. Technol. ›› 2021, Vol. 88: 226-232.DOI: 10.1016/j.jmst.2021.01.058
Previous Articles Next Articles
Pengchuan Wanga, Sansan Shuaia,*(), Chenglin Huanga, Xin Liua, Yanan Fub, Jiang Wanga,*(
), Zhongming Rena,*(
)
Received:
2020-09-09
Revised:
2021-01-15
Accepted:
2021-01-20
Published:
2021-10-20
Online:
2021-03-17
Contact:
Sansan Shuai,Jiang Wang,Zhongming Ren
About author:
zmren@shu.edu.cn (Z. Ren).Pengchuan Wang, Sansan Shuai, Chenglin Huang, Xin Liu, Yanan Fu, Jiang Wang, Zhongming Ren. Revealing the influence of high magnetic field on the solute distribution during directional solidification of Al-Cu alloy[J]. J. Mater. Sci. Technol., 2021, 88: 226-232.
Fig. 1. Morphologies near the solid/liquid interface in the directional solidified Al-10 wt.%Cu (a1-d1) and Al-4 wt.%Cu (a2-d2) alloys under different MFs at a pulling rate of 1 μm s-1: (a) 0 T, (b) 1 T, (c) 3 T, (d) 5 T.
Fig. 2. 3D reconstruction images of the non-equilibrium eutectics of directional solidified Al-10 wt.%Cu (a1-d1) and Al-4 wt.%Cu (a2-d2) alloys under different MFs at a pulling rate of 1 μm s-1: (a) 0 T, (b) 1 T, (c) 3 T, (d) 5 T; (e) the variation of the volume fraction of non-equilibrium eutectics with different MF.
Fig. 3. Contour maps of Cu concentration in the transverse sections of directionally solidified Al-10 wt.%Cu (1) and Al-4 wt.%Cu (2) alloys under different MF at a pulling rate of 1 μm s-1: (a) 0 T; (b) 1 T; (c) 3 T; (d) 5 T; (e) Cu concentration versus solid fraction profiles in the transverse sections of directionally solidified Al-Cu alloy under different MF.
Fig. 4. (a) the Cu concentration in solid solution of directionally solidified Al-Cu alloy under different MF; (b) the microhardness of directionally solidified Al-Cu alloy under different MF.
Fig. 5. Relationship between effective partition coefficient and the MF intensity for Al-10 wt.%Cu and Al-4 wt.%Cu alloys during directional solidification.
Fig. 7. TEM bright field images of directionally solidified Al-4 wt.%Cu alloy under different MF: (a1) 0 T, (a2) 5 T; HRTEM images of Al-10 wt.%Cu alloy under different MF: (b1) 0 T, (b2) 5 T; TEM images with high magnification in the dual-beam diffraction of Al-10 wt.%Cu alloy under different MF: (c1) 0 T, (c2) 5 T.
[1] | W. Kurz, D.J. Fisher, Switzerland, 1986, pp. 13. |
[2] |
W.L.R. Santos, C. Brito, F. Bertelli, J.E. Spinelli, A. Garcia, J. Alloys. Compd. 647 (2015) 989-996.
DOI URL |
[3] |
D.Z. Li, X.Q. Chen, P.X. Fu, X.M. Ma, H.W. Liu, Y. Chen, Y.F. Cao, Y.K. Luan, Y.Y. Li, Nat. Commun. 5 (2014) 5572.
DOI URL |
[4] |
J.R. Sarazin, A. Hellawell, Metall. Trans. A 19 (1988) 1861-1871.
DOI URL |
[5] |
G. Yang, H.C. Kou, J.R. Yang, J.S. Li, H.Z. Fu, Acta Mater. 112 (2016) 121-131.
DOI URL |
[6] |
H. Yasuda, I. Ohnaka, K. Osamu, U. Kazuyuki, K. Kohji, ISIJ Int. 43 (2003) 942-949.
DOI URL |
[7] | Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, S. Valtierra, J. Mater. Sci. Technol. 38 (2003) 1203-1218. |
[8] | Y. Kojima, T. Aizawa, K. Higashi, S. Kamado, Mater. Sci. Forum 419 (2003) 715-720. |
[9] |
A. Joshi, C.R. Shastry, M. Levy, Metall. Trans. A 12 (1981) 1081-1088.
DOI URL |
[10] |
T.D. Shen, C.C. Koch, Acta Mater. 44 (1996) 753-761.
DOI URL |
[11] | H. Zhong, C.J. Li, J. Wang, Z.M. Ren, Y.B. Zhong, W.D. Xuan, Acta Metall. Sin. 52 (2016) 575-582, in Chinese. |
[12] |
S.Y. He, C.J. Li, R. Guo, W.D. Xuan, J. Wang, Z.M. Ren, J. Alloys. Compd. 800 (2019) 41-49.
DOI URL |
[13] |
X. Li, Y. Fautrelle, Z.M. Ren, A. Gagnoud, R. Moreau, Y.B. Zhong, C. Ealing, Acta Mater. 57 (2009) 1689-1701.
DOI URL |
[14] |
C.L. Huang, S.S. Shuai, P.C. Wang, X. Liu, J. Wang, Z.M. Ren, Scr. Mater. 187 (2020) 232-236.
DOI URL |
[15] |
S.S. Shuai, X. Lin, Y.H. Dong, L. Hou, H.L. Liao, J. Wang, Z.M. Ren, J. Mater, Sci. Technol 35 (2019) 1587-1592.
DOI URL |
[16] |
M.N. Gungo, Metall Trans A 20 (1989) 2529-2533.
DOI URL |
[17] | M.C. Flemings, D.R. Poirier, R.V. Barone, H.D. Brody, J Iron Steel Inst (London). 208 (1970) 371-381. |
[18] |
S. Richard, Metall. Mater. Trans. B 49 (2018) 3258-3279.
DOI URL |
[19] |
I.L. Ferreira, C.L. Santos, A. Garcia, V.R. Voller, Metall. Mater. Trans. B 35 (2004) 285-297.
DOI URL |
[20] |
T. Kraft, M. Rettenmayr, H.E. Exner, Model. Simul. Mat. Sci. Eng. 4 (1996) 161-177.
DOI URL |
[21] |
J. Li, J.C. Wang, G.C. Yang, J. Cryst. Growth 311 (2009) 1217-1222.
DOI URL |
[22] |
T. Kraft, A. Roósz, M. Rettenmayr, Scr. Mater. 35 (1996) 77-82.
DOI URL |
[23] |
W.V. Youdelis, D.R. Colton, J. Cahoon, Can. J. Phys. 42 (1964) 2217-2237.
DOI URL |
[24] |
R. Guo, C.J. Li, S.Y. He, J. Wang, W.D. Xuan, X. Li, Y.B. Zhong, Z.M. Ren, J. Appl. Phys. 57 (2018), 080301-080031.
DOI URL |
[25] |
S.Q. Hong, Q.Z. Hong, J.W. Mayer, Appl. Phys. Lett. 63 (1993) 2053-2055.
DOI URL |
[26] |
B. Sadigh, T.J. Lenosky, M. Caturla, A.A. Quong, L.X. Benedict, T.D.I. Rubia, Appl. Phys. Lett. 80 (2002) 4738-4740.
DOI URL |
[27] | C. Ahn, N. Bennett, S.T. Dunham, N.E.B. Cowern, Phys. Rev. B 79 (2009) 0732011-0732014. |
[28] |
X. Li, A. Gagnound, Y. Fautrelle, Z.M. Ren, G.H. Cao, R. Moreau, Y.D. Zhang, C. Esling, J. Cryst. Growth 324 (2011) 217-224.
DOI URL |
[29] |
M. Molotskii, V. Fleurov, Phys. Rev. Lett. 78 (1997) 2779-2782.
DOI URL |
[30] |
Y.S. Chen, H.Z. Lu, J.T. Liang, A. Rosenthal, H.W. Liu, G. Sneddon, I. McCarroll, Z.Z. Zhao, W. Li, A. Guo, J.M. Cairney, Science 367 (2020) 171-175.
DOI URL |
[31] |
P. Mascher, S. Dannefaer, D. Kerr, Can. J. Phys. 69 (2011) 298-306.
DOI URL |
[32] |
T. Ungár, E. Schafler, P. Hanák, S. Bernstorff, M. Zehetbauer, Mater. Sci. Eng. A 462 (2007) 398-401.
DOI URL |
[33] |
L.M. Fabietti, R. Trivedi, J. Cryst. Growth 173 (1997) 503-512.
DOI URL |
[34] | T.X. Zheng, B.F. Zhou, Y.B. Zhong, J. Wang, S.S. Shuai, Z.M. Ren, F. Debray, E. Beaugnon, Sci. Rep. 9 (2019) 1-9. |
[1] | Luyan Yang, Shuangming Li, Kai Fan, Yang Li, Yanhui Chen, Wei Li, Deli Kong, Pengfei Cao, Haibo Long, Ang Li. Twin crystal structured Al-10 wt.% Mg alloy over broad velocity conditions achieved by high thermal gradient directional solidification [J]. J. Mater. Sci. Technol., 2021, 71(0): 152-162. |
[2] | Peng Peng, Jinmian Yue, Anqiao Zhang, Xudong Zhang, Yuanli Xu. Analysis on fluid permeability of dendritic mushy zone during peritectic solidification in a temperature gradient [J]. J. Mater. Sci. Technol., 2021, 71(0): 169-176. |
[3] | Zhipeng Long, Qiuyue Jiang, Jiantao Wang, Long Hou, Xing Yu, Yves Fautrelle, Zhongming Ren, Xi Li. Nucleation kinetics of paramagnetic and diamagnetic metal melts under a high magnetic field [J]. J. Mater. Sci. Technol., 2021, 73(0): 165-170. |
[4] | Dong Zhao, Xiaoyang Wang, Ling Chang, Wenli Pei, Chun Wu, Fei Wang, Luran Zhang, Jianjun Wang, Qiang Wang. Synthesis of super-fine L10-FePt nanoparticles with high ordering degree by two-step sintering under high magnetic field [J]. J. Mater. Sci. Technol., 2021, 73(0): 178-185. |
[5] | Tongzhao Gong, Yun Chen, Shanshan Li, Yanfei Cao, Dianzhong Li, Xing-Qiu Chen, Guillaume Reinhart, Henri Nguyen-Thi. Revisiting dynamics and models of microsegregation during polycrystalline solidification of binary alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 155-167. |
[6] | Lei Luo, Liangshun Luo, Yanqing Su, Lin Su, Liang Wang, Jingjie Guo, Hengzhi Fu. Optimizing microstructure, shrinkage defects and mechanical performance of ZL205A alloys via coupling travelling magnetic fields with unidirectional solidification [J]. J. Mater. Sci. Technol., 2021, 74(0): 246-258. |
[7] | Lei Luo, Liangshun Luo, Robert O. Ritchie, Yanqing Su, Binbin Wang, Liang Wang, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Optimizing the microstructures and mechanical properties of Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification [J]. J. Mater. Sci. Technol., 2021, 61(0): 100-113. |
[8] | Weidan Ma, Jun Zhang, Haijun Su, Guangrao Fan, Min Guo, Lin Liu, Hengzhi Fu. Phase growth patterns for Al2O3/GdAlO3 eutectics over wide ranges of compositions and solidification rates [J]. J. Mater. Sci. Technol., 2021, 65(0): 89-98. |
[9] | Peng Peng, Anqiao Zhang, Jinmian Yue, Xudong Zhang, Yuanli Xu. Macrosegregation and thermosolutal convection-induced freckle formation in dendritic mushy zone of directionally solidified Sn-Ni peritectic alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 21-26. |
[10] | Lei Luo, Liangshun Luo, Yanqing Su, Lin Su, Liang Wang, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Reducing porosity and optimizing performance for Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification [J]. J. Mater. Sci. Technol., 2021, 79(0): 1-14. |
[11] | Haijun Su, Yuan Liu, Qun Ren, Zhonglin Shen, Haifang Liu, Di Zhao, Guangrao Fan, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Distribution control and formation mechanism of gas inclusions in directionally solidified Al2O3-Er3Al5O12-ZrO2 ternary eutectic ceramic by laser floating zone melting [J]. J. Mater. Sci. Technol., 2021, 66(0): 21-27. |
[12] | Ying Niu, Yue Wang, Long Hou, Lansong Ba, Yanchao Dai, Yves Fautrelle, Zongbin Li, Zhongming Ren, Xi Li. Effect of γ phase on mechanical behavior and detwinning evolution of directionally solidified Ni-Mn-Ga alloys under uniaxial compression [J]. J. Mater. Sci. Technol., 2021, 66(0): 91-96. |
[13] | Xiaotan Yuan, Tao Zhou, Weili Ren, Jianchao Peng, Tianxiang Zheng, Long Hou, Jianbo Yu, Zhongming Ren, Peter K. Liaw, Yunbo Zhong. Nondestructive effect of the cusp magnetic field on the dendritic microstructure during the directional solidification of Nickel-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 52-59. |
[14] | Shaodong Hu, Long Hou, Kang Wang, Zhongmiao Liao, Wen Zhu, Aihua Yi, Wenfang Li, Yves Fautrelle, Xi Li. Effect of transverse static magnetic field on radial microstructure of hypereutectic aluminum alloy during directional solidification [J]. J. Mater. Sci. Technol., 2021, 76(0): 207-214. |
[15] | Yubao Xiao, Tie Liu, Yuxin Tong, Meng Dong, Jinshan Li, Jun Wang, Qiang Wang. Microstructure evolution of peritectic Al-18 at.% Ni alloy directionally solidified in high magnetic fields [J]. J. Mater. Sci. Technol., 2021, 76(0): 51-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||