J. Mater. Sci. Technol. ›› 2021, Vol. 66: 103-111.DOI: 10.1016/j.jmst.2020.06.026
• Research Article • Previous Articles Next Articles
Carlos Hernandeza, Santosh K. Guptab,c, Jose P. Zunigab, Jorge Vidald, Rene Galvand, Hector Guzmana, Lilian Chaveza, Karen Lozanoa,*(), Yuanbing Maoe,*(
)
Received:
2020-03-23
Accepted:
2020-06-29
Published:
2021-03-10
Online:
2021-04-01
Contact:
Karen Lozano,Yuanbing Mao
About author:
ymao17@iit.edu (Y. Mao).Carlos Hernandez, Santosh K. Gupta, Jose P. Zuniga, Jorge Vidal, Rene Galvan, Hector Guzman, Lilian Chavez, Karen Lozano, Yuanbing Mao. High pressure responsive luminescence of flexible Eu3+ doped PVDF fibrous mats[J]. J. Mater. Sci. Technol., 2021, 66: 103-111.
Sample | Diameter (μm) | Standard Deviation |
---|---|---|
PVDF (as control) | 2.87 | 0.8 |
EN-PF | 3.75 | 1.2 |
ES-PF | 2.56 | 0.7 |
Table 1 Fiber diameter and standard deviation of the PVDF, EN-PF and ES-PF fibers.
Sample | Diameter (μm) | Standard Deviation |
---|---|---|
PVDF (as control) | 2.87 | 0.8 |
EN-PF | 3.75 | 1.2 |
ES-PF | 2.56 | 0.7 |
Fig. 2. XPS plots of (a) survey scan of EN and ES, (b) survey scan of EN-PF and ES-PF, (c) Eu 3d core level of bulk EN/ES and EN-PF/ES-PF, and (d) O 1s core level of EN and ES.
Fig. 6. Absorbance ratios of (a) the α-phase peak at 763 cm-1 band to the β-phase peak at 1072 cm-1, (b) the β-phase band at 840 cm-1 to the β-phase peak at 1072 cm-1, and (c) relative β-phase fraction measured using the Lambert-Beer law.
Fig. 7. High pressure induced changes in emission spectra of (a) the EN-PF and (b) ruby samples. Variations of (c) asymmetry ratio and (d) color coordinate diagram of the EN-PF fibrous mats at different pressures. Emissions from the EN-PF flexible microfibers under (e) 254 nm UV lamp and (f) normal conditions.
Pressure (GPa) | x | y | Temperature (K) |
---|---|---|---|
0 | 0.659 | 0.340 | 2981 |
1.38 | 0.607 | 0.392 | 1730 |
2.76 | 0.595 | 0.405 | 1711 |
5.54 | 0.579 | 0.420 | 1771 |
14.05 | 0.580 | 0.419 | 1760 |
22.81 | 0.578 | 0.420 | 1775 |
25.79 | 0.572 | 0.427 | 1821 |
31.82 | 0.568 | 0.432 | 1858 |
53.87 | 0.566 | 0.434 | 1879 |
Pressure released | 0.566 | 0.433 | 1875 |
Table 2 Color coordinates and correlated color temperature of the EN-PF fibrous mats at various pressures.
Pressure (GPa) | x | y | Temperature (K) |
---|---|---|---|
0 | 0.659 | 0.340 | 2981 |
1.38 | 0.607 | 0.392 | 1730 |
2.76 | 0.595 | 0.405 | 1711 |
5.54 | 0.579 | 0.420 | 1771 |
14.05 | 0.580 | 0.419 | 1760 |
22.81 | 0.578 | 0.420 | 1775 |
25.79 | 0.572 | 0.427 | 1821 |
31.82 | 0.568 | 0.432 | 1858 |
53.87 | 0.566 | 0.434 | 1879 |
Pressure released | 0.566 | 0.433 | 1875 |
Fig. 8. High pressure induced changes in the emission spectra of (a) the ES-PF fibrous mats and (b) ruby samples. Variations of (c) asymmetry ratio and (d) color coordinate diagram of the ES-PF fibrous mats at different pressures.
Pressure (GPa) | x | y | Temperature (K) |
---|---|---|---|
0 | 0.586 | 0.413 | 1735 |
2.76 | 0.584 | 0.415 | 1741 |
5.54 | 0.576 | 0.423 | 1792 |
13.88 | 0.573 | 0.426 | 1813 |
22.60 | 0.571 | 0.428 | 1827 |
34.67 | 0.568 | 0.430 | 1852 |
47.16 | 0.548 | 0.450 | 2071 |
56.81 | 0.547 | 0.451 | 2082 |
Pressure released | 0.547 | 0.451 | 2131 |
Table 3 Color coordinates and correlated color temperature of the ES-PF fibrous mats at various pressures.
Pressure (GPa) | x | y | Temperature (K) |
---|---|---|---|
0 | 0.586 | 0.413 | 1735 |
2.76 | 0.584 | 0.415 | 1741 |
5.54 | 0.576 | 0.423 | 1792 |
13.88 | 0.573 | 0.426 | 1813 |
22.60 | 0.571 | 0.428 | 1827 |
34.67 | 0.568 | 0.430 | 1852 |
47.16 | 0.548 | 0.450 | 2071 |
56.81 | 0.547 | 0.451 | 2082 |
Pressure released | 0.547 | 0.451 | 2131 |
[1] |
M. Runowski, P. Woźny, N. Stopikowska, Q. Guo, S. Lis, ACS Appl. Mater. Interfaces 11 (2019) 4131-4138.
DOI URL PMID |
[2] |
M. Runowski, J. Marciniak, T. Grzyb, D. Przybylska, A. Shyichuk, B. Barszcz, A. Katrusiak, S. Lis, Nanoscale 9 (2017) 16030-16037.
DOI URL PMID |
[3] |
M. Runowski, A. Shyichuk, A. Tymiński, T. Grzyb, V. Lavín, S. Lis, ACS Appl. Mater. Interfaces 10 (2018) 17269-17279.
URL PMID |
[4] | M. Runowski, P. Woźny, V. Lavín, S. Lis, Sens. Actuator B-Chem. 273 (2018) 585-591. |
[5] |
S.K. Gupta, K. Sudarshan, A.K. Yadav, R. Gupta, D. Bhattacharyya, S.N. Jha, R.M. Kadam, Inorg. Chem. 57 (2018) 821-832.
DOI URL PMID |
[6] |
N. Jain, R. Paroha, R.K. Singh, S.K. Mishra, S.K. Chaurasiya, R.A. Singh, J. Singh, Sci. Rep. 9 (2019) 2472.
URL PMID |
[7] |
R. Mani, H. Jiang, S.K. Gupta, Z. Li, X. Duan, Inorg. Chem. 57 (2018) 935-950.
URL PMID |
[8] | B.G. Wybourne, L. Smentek, Optical Spectroscopy of Lanthanides, CRC Press, Taylor and Francis, Boca Raton, USA, 2007. |
[9] | K. Binnemans, Coord. Chem. Rev. 295 (2015) 1-45. |
[10] | S.K. Gupta, B. Rajeshwari, S.N. Achary, S.J. Patwe, A.K. Tyagi, V. Natarajan, R.M. Kadam, Eur. J. Inorg. Chem. 2015 ( 2015) 4429-4436. |
[11] |
S.K. Gupta, M. Sahu, P.S. Ghosh, D. Tyagi, M.K. Saxena, R.M. Kadam, Dalton Trans. 44 (2015) 18957-18969.
URL PMID |
[12] | M.P. Dandekar, S.G. Itankar, S.B. Kondawar, D.V. Nandanwar, P. Koinkar, Opt. Mater. 85 (2018) 483-490. |
[13] | J. Kai, M.C.F.C. Felinto, L.A.O. Nunes, O.L. Malta, H.F. Brito, J. Mater. Chem. 21 (2011) 3796-3802. |
[14] | M.H.V. Werts, R.T.F. Jukes, J.W. Verhoeven, Phys. Chem. Chem. Phys. 4 (2002) 1542-1548. |
[15] | E.B. Gibelli, J. Kai, E.E.S. Teotonio, O.L. Malta, M.C.F.C. Felinto, H.F. Brito, J. Photochem. Photobiol. A-Chem. 251 (2013) 154-159. |
[16] | Q.-D. Ling, D.-J. Liaw, C. Zhu, D.S.-H. Chan, E.-T. Kang, K.-G. Neoh, Prog. Polym. Sci. 33 (2008) 917-978. |
[17] | J. Inderherbergh, Ferroelectrics 115 (1991) 295-302. |
[18] | P. Martins, A.C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 39 (2014) 683-706. |
[19] | A. Itoh, Y. Takahashi, T. Furukawa, H. Yajima, Polym. J. 46 (2014) 207. |
[20] | K. Sarkar, C. Gomez, S. Zambrano, M. Ramirez, E. de Hoyos, H. Vasquez, K. Lozano, Mater. Today 13 (2010) 12-14. |
[21] | S. Liu, D.H. Reneker, Polymer 168 (2019) 155-158. |
[22] | G. Greczynski, L. Hultman, Prog. Mater. Sci. (2019), 100591. |
[23] |
H. Parangusan, D. Ponnamma, M.A.A. AlMaadeed, ACS Omega 4 (2019) 6312-6323.
DOI URL PMID |
[24] |
G. Greczynski, L. Hultman, ChemPhysChem 18 (2017) 1507-1512.
DOI URL PMID |
[25] | D. Miller, M. Biesinger, N. McIntyre, Surf. Interface Anal. 33 (2002) 299-305. |
[26] | N. Senthilkumar, K.J. Babu, G. Gnana kumar, A.R. Kim, D.J. Yoo, Ind. Eng. Chem. Res. 53 (2014) 10347-10357. |
[27] | M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H.J. Zhang, Y.C. Han, Chem. Mat. 14 (2002) 2224-2231. |
[28] | Y. Sui, H. Luo, M.-M. Xing, Y. Zhu, F.-X. Zeng, Ferroelectrics 520 (2017) 212-223. |
[29] | P. Costa, J. Silva, V. Sencadas, C.M. Costa, F. Van Hattum, J.G. Rocha, S. Lanceros-Méndez, Carbon 47 (2009) 2590-2599. |
[30] | A. Biswas, K. Henkel, D. Schmeißer, D. Mandal, Phase Transit. 90 (2017) 1205-1213. |
[31] |
J. Liu, X. Lu, C. Wu, Membranes 3 (2013) 389-405.
DOI URL PMID |
[32] | L. Yang, J. Qiu, H. Ji, K. Zhu, J. Wang, Compos. Part A Appl. Sci. Manuf. 65 (2014) 125-134. |
[33] | S.K. Gupta, M. Abdou, P.S. Ghosh, J.P. Zuniga, E. Manoharan, H. Kim, Y. Mao, J. Am. Ceram. Soc. 103 (2020) 235-248. |
[34] |
S.K. Gupta, M. Abdou, P.S. Ghosh, J.P. Zuniga, Y. Mao, ACS Omega 4 (2019) 2779-2791.
URL PMID |
[35] | G. Blasse, Chem. Mater. 1 (1989) 294-301. |
[36] | S.K. Gupta, M. Sahu, K. Krishnan, M.K. Saxena, V. Natarajan, S.V. Godbole, J. Mater. Chem. C 1 (2013) 7054-7063. |
[37] |
J.P. Zuniga, S.K. Gupta, M. Abdou, Y. Mao, ACS Omega 3 (2018) 7757-7770.
DOI URL PMID |
[38] | J. Hou, R. Zhou, J. Zhang, Z. Wang, Z. Zhang, Z. Ding, J. Phys. Chem. C 121 (2017) 14787-14794. |
[39] | R. Rao, T. Sakuntala, S.N. Achary, A.K. Tyagi, J. Appl. Phys. 106 (2009), 123517. |
[40] | G. Chen, R.G. Haire, J.R. Peterson, J. Phys. Chem. Solids 56 (1995) 1095-1100. |
[41] | J. Wang, A. Li, S. Xu, B. Li, C. Song, Y. Geng, N. Chu, J. He, W. Xu, J. Mater. Chem. C 6 (2018) 8958-8965. |
[42] | J. Barzowska, Z. Xia, D. Jankowski, D. Włodarczyk, K. Szczodrowski, C.-G. Ma, M.G. Brik, Y. Zhydachevskii, A. Suchocki, RSC Adv. 7 (2017) 275-284. |
[43] | K.L. Kelly, J. Opti. Soc. Am. 53 (1963) 999-1002. |
[44] | C.S. McCamy, Color Res. Appl. 17 (1992) 142-144. |
[45] |
K.L. Haas, K.J. Franz, Chem. Rev. 109 (2009) 4921-4960.
DOI URL PMID |
[1] | Xinzhi Wang, Yao Wang, Xinbo Zhang, Wei Ding, Longlong Li, Linjun Huang, Laurence A. Belfiore, Jianguo Tang. Highly sensitive color fine-tuning of diblock copolymeric nano-aggregates with tri-metallic cations, Eu(III), Tb(III), and Zn(II), for flexible photoluminescence films (FPFs) [J]. J. Mater. Sci. Technol., 2021, 65(0): 72-81. |
[2] | Yuriy G. Denisenko, Victor V. Atuchin, Maxim S. Molokeev, Naizheng Wang, Xingxing Jiang, Aleksandr S. Aleksandrovsky, Alexander S. Krylov, Aleksandr S. Oreshonkov, Alexander E. Sedykh, Svetlana S. Volkova, Zheshuai Lin, Oleg V. Andreev, Klaus Müller-Buschbaum. Negative thermal expansion in one-dimension of a new double sulfate AgHo(SO4)2 with isolated SO4 tetrahedra [J]. J. Mater. Sci. Technol., 2021, 76(0): 111-121. |
[3] | Jiashun Shi, Suchun Wang, Xin Cheng, Shiqiang Chen, Guangzhou Liu. Constructing zwitterionic nanofiber film for anti-adhesion of marine corrosive microorganisms [J]. J. Mater. Sci. Technol., 2021, 70(0): 145-155. |
[4] | Yongliang Li, Hua Yuan, Yanbing Chen, Xiaoyu Wei, Kunyan Sui, Yeqiang Tan. Application and exploration of nanofibrous strategy in electrode design [J]. J. Mater. Sci. Technol., 2021, 74(0): 189-202. |
[5] | Xiaobei Zang, Li Lingtong, Jiaxin Meng, Lijia Liu, Yuanyuan Pan, Qingguo Shao, Ning Cao. Enhanced zinc storage performance of mixed valent manganese oxide for flexible coaxial fiber zinc-ion battery by limited reduction control [J]. J. Mater. Sci. Technol., 2021, 74(0): 52-59. |
[6] | Lin Tang, Junliang Zhang, Yusheng Tang, Jie Kong, Tianxi Liu, Junwei Gu. Polymer matrix wave-transparent composites: A review [J]. J. Mater. Sci. Technol., 2021, 75(0): 225-251. |
[7] | Bhavana Joshi, Edmund Samuel, Yong-il Kim, Govindasami Periyasami, Mostafizur Rahaman, Sam S. Yoon. Bimetallic zeolitic imidazolate framework-derived substrate-free anode with superior cyclability for high-capacity lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 67(0): 116-126. |
[8] | Guoxiang Pan, Feng Cao, Yujian Zhang, Xinhui Xia. N-doped carbon nanofibers arrays as advanced electrodes for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 144-151. |
[9] | Rongan He, Haijuan Liu, Huimin Liu, Difa Xu, Liuyang Zhang. S-scheme photocatalyst Bi2O3/TiO2 nanofiber with improved photocatalytic performance [J]. J. Mater. Sci. Technol., 2020, 52(0): 145-151. |
[10] | Xianrui Xie, Yujie Chen, Xiaoyu Wang, Xiaoqing Xu, Yihong Shen, Atta ur Rehman Khan, Ali Aldalbahi, Allison E. Fetz, Gary L. Bowlin, Mohamed El-Newehy, Xiumei Mo. Electrospinning nanofiber scaffolds for soft and hard tissue regeneration [J]. J. Mater. Sci. Technol., 2020, 59(0): 243-261. |
[11] | Haoqiang Zhang, Lin Liu, Zhiliang Pei, Nanlin Shi, Jun Gong, Chao Sun. An effective strategy towards construction of CVD SiC fiber-reinforced superalloy matrix composite [J]. J. Mater. Sci. Technol., 2020, 49(0): 179-185. |
[12] | X.Y. Jiao, C.F. Liu, Z.P. Guo, G.D. Tong, S.L. Ma, Y. Bi, Y.F. Zhang, S.M. Xiong. The characterization of Fe-rich phases in a high-pressure die cast hypoeutectic aluminum-silicon alloy [J]. J. Mater. Sci. Technol., 2020, 51(0): 54-62. |
[13] | Zhaojun Mo, Qiujie Lu, Zhihong Hao, Zhexuan Zheng, Fu Qiu, Xiao Yang, Zhenyu Li, Lan Li. Effects of 1,9-dibromnonane on the structural, photophysical properties and stability of cesium lead bromide perovskite nanocrystals [J]. J. Mater. Sci. Technol., 2020, 43(0): 84-91. |
[14] | Liang Chen, Zhi Li, Gangyong Li, Minjie Zhou, Binhong He, Jie Ouyang, Wenyuan Xu, Wei Wang, Zhaohui Hou. A facile self-catalyzed CVD method to synthesize Fe3C/N-doped carbon nanofibers as lithium storage anode with improved rate capability and cyclability [J]. J. Mater. Sci. Technol., 2020, 44(0): 229-236. |
[15] | Tran Thang Q., Yoong Lee Jeremy Kong, Amutha Chinnappan, Loc Nguyen Huu, Tran T. Long, Dongxiao Ji, W.A.D.M. Jayathilaka, Kumar Vishnu Vijay, Seeram Ramakrishna. High-performance carbon fiber/gold/copper composite wires for lightweight electrical cables [J]. J. Mater. Sci. Technol., 2020, 42(0): 46-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||