J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (9): 2038-2047.DOI: 10.1016/j.jmst.2019.04.023
• Orginal Article • Previous Articles Next Articles
Jing Jinga, Jian Heabc*(), Hongbo Guoac*(
)
Received:
2019-02-17
Revised:
2019-03-27
Accepted:
2019-04-01
Online:
2019-09-20
Published:
2019-07-26
Contact:
He Jian,Guo Hongbo
About author:
1 These authors contributed equally to this work.
Jing Jing, Jian He, Hongbo Guo. Impact of Si addition on high-temperature oxidation behavior of NiAlHf alloys[J]. J. Mater. Sci. Technol., 2019, 35(9): 2038-2047.
Alloy | Ni | Al | Si | Hf |
---|---|---|---|---|
NiAlHf | 53.36 | 46.64 | — | —a |
NiAlHf-1Si | 51.96 | 46.99 | 0.98 | —a |
NiAlHf-3Si | 51.58 | 45.93 | 2.49 | —a |
NiAlHf-5Si | 49.80 | 45.27 | 4.93 | —a |
Table 1 Actual chemical compositions of as-annealed alloys identified by EPMA analysis (at.%).
Alloy | Ni | Al | Si | Hf |
---|---|---|---|---|
NiAlHf | 53.36 | 46.64 | — | —a |
NiAlHf-1Si | 51.96 | 46.99 | 0.98 | —a |
NiAlHf-3Si | 51.58 | 45.93 | 2.49 | —a |
NiAlHf-5Si | 49.80 | 45.27 | 4.93 | —a |
Fig. 2. Back-scattered electron surface images of the heat-treated alloys: (a) NiAlHf; (b) NiAlHf-1Si; (c) NiAlHf-3Si; (d) NiAlHf-5Si. The insets are the high magnification images in each alloy.
H | Ni | Al | Si | Hf |
---|---|---|---|---|
NiAlHf | 38.54 | 22.32 | — | 39.14 |
NiAlHf-1Si | 36.88 | — | 35.95 | 27.17 |
NiAlHf-3Si | 36.16 | — | 38.86 | 24.98 |
NiAlHf-5Si | 34.42 | — | 28.84 | 36.75 |
Table 2 Chemical compositions of white Hf-rich areas in Fig. 2 identified by EDS (at.%).
H | Ni | Al | Si | Hf |
---|---|---|---|---|
NiAlHf | 38.54 | 22.32 | — | 39.14 |
NiAlHf-1Si | 36.88 | — | 35.95 | 27.17 |
NiAlHf-3Si | 36.16 | — | 38.86 | 24.98 |
NiAlHf-5Si | 34.42 | — | 28.84 | 36.75 |
Fig. 3. Metallographic morphologies of heat-treated alloys: (a) NiAlHf; (b) NiAlHf-1Si; (c) NiAlHf-3Si; (d) NiAlHf-5Si. The insets are the high magnification images in each alloy.
Fig. 4. Oxidation kinetic curves of four alloys at 1200 °C during 100 h: (a) mass gain curves, in which solid/dotted lines denote weighing results with/without crucible respectively and the inset shows mass gain of the first hour; (b) fitted lines of square mass gain (with crucible) vs. time.
Fig. 6. SEM microstructure evolutions of four alloys: (a-c) NiAlHf; (d-f) NiAlHf-1Si; (g-i) NiAlHf-3Si; (j-l) NiAlHf-5Si. The insets denote higher magnification of dotted rectangular areas.
Fig. 7. Back-scattered electron patterns of alloy oxide scale surface (a, c, e, g) and cross section (b, d, f, h) after 100 h cyclic oxidation at 1200 °C for NiAlHf (a, b), NiAlHf-1Si (c, d), NiAlHf-3Si (e, f) and NiAlHf-5Si (g, h).
Area | O | Ni | Al | Si | Hf |
---|---|---|---|---|---|
1 | 57.82 | 1.52 | 36.11 | — | 4.55 |
2 | 53.14 | 4.05 | 30.82 | 1.21 | 10.78 |
3 | 57.99 | 2.37 | 15.98 | 2.72 | 20.93 |
Table 3 Chemical compositions of bright white areas in Fig. 7 identified by EDS (at.%).
Area | O | Ni | Al | Si | Hf |
---|---|---|---|---|---|
1 | 57.82 | 1.52 | 36.11 | — | 4.55 |
2 | 53.14 | 4.05 | 30.82 | 1.21 | 10.78 |
3 | 57.99 | 2.37 | 15.98 | 2.72 | 20.93 |
Fig. 8. Luminescence spectra of alloys after short-term oxidation at 1200 °C (a, c, e, g) and their corresponding surface morphologies after 30 min oxidation (b, d, f, h) for NiAlHf (a, b), NiAlHf-1Si (c, d), NiAlHf-3Si (e, f) and NiAlHf-5Si (g, h).
Fig. 9. TEM analysis of as-annealed NiAlHf-5Si: (a) TEM bright-field image; (b) EDS results of circles in (a); (c) low-magnification TEM bright-field image; (d) β-NiAl [012] zone axis SAED pattern from (c).
|
[1] | Seung Woo Lee, Bongho Lee, Chaekyung Baik, Tae-Yang Kim, Chanho Pak. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells [J]. J. Mater. Sci. Technol., 2021, 60(0): 105-112. |
[2] | Haoxuan Wang, Shouye Wang, Yejie Cao, Wen Liu, Yiguang Wang. Oxidation behaviors of (Hf0.25Zr0.25Ta0.25Nb0.25)C and (Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC at 1300-1500 °C [J]. J. Mater. Sci. Technol., 2021, 60(0): 147-155. |
[3] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[4] | Dan Zhang, Qi Han, Kun Yu, Xiaopeng Lu, Ying Liu, Ze Lu, Qiang Wang. Antibacterial activities against Porphyromonas gingivalis and biological characteristics of copper-bearing PEO coatings on magnesium [J]. J. Mater. Sci. Technol., 2021, 61(0): 33-45. |
[5] | Kunming Pan, Yanping Yang, Shizhong Wei, Honghui Wu, Zhili Dong, Yuan Wu, Shuize Wang, Laiqi Zhang, Junping Lin, Xinping Mao. Oxidation behavior of Mo-Si-B alloys at medium-to-high temperatures [J]. J. Mater. Sci. Technol., 2021, 60(0): 113-127. |
[6] | Yifei Xu, Lars P.H. Jeurgens, Peter Schützendübe, Shengli Zhu, Yuan Huang, Yongchang Liu, Zumin Wang. Effect of atomic structure on preferential oxidation of alloys: amorphous versus crystalline Cu-Zr [J]. J. Mater. Sci. Technol., 2020, 40(0): 128-134. |
[7] | Qi Wang, Wen Shi, Bo Zhu, Dang Sheng Su. An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin [J]. J. Mater. Sci. Technol., 2020, 40(0): 24-30. |
[8] | Yongchun Zhang, Gang He, Wenhao Wang, Bing Yang, Chong Zhang, Yufeng Xia. Aqueous-solution-driven HfGdOx gate dielectrics for low-voltage-operated α-InGaZnO transistors and inverter circuits [J]. J. Mater. Sci. Technol., 2020, 50(0): 1-12. |
[9] | H. Chen, A. Rushworth. Effects of oxide stringers on the β-phase depletion behaviour in thermally sprayed CoNiCrAlY coatings during isothermal oxidation [J]. J. Mater. Sci. Technol., 2020, 45(0): 108-116. |
[10] | Yucheng Ji, Chaofang Dong, Decheng Kong, Xiaogang Li. Design materials based on simulation results of silicon induced segregation at AlSi10Mg interface fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 46(0): 145-155. |
[11] | Fangqiang Ning, Jibo Tan, Xinqiang Wu. Effects of 405 stainless steel on crevice corrosion behavior of Alloy 690 in high-temperature pure water [J]. J. Mater. Sci. Technol., 2020, 47(0): 76-87. |
[12] | Changjin Xu, Yutong Wu, Song Li, Jun Zhou, Jing Chen, Min Jiang, Hongda Zhao, Gaowu Qin. Engineering the epitaxial interface of Pt-CeO2 by surface redox reaction guided nucleation for low temperature CO oxidation [J]. J. Mater. Sci. Technol., 2020, 40(0): 39-46. |
[13] | H. Liu, M.M. Xu, S. Li, Z.B. Bao, S.L. Zhu, F.H. Wang. Improving cyclic oxidation resistance of Ni3Al-based single crystal superalloy with low-diffusion platinum-modified aluminide coating [J]. J. Mater. Sci. Technol., 2020, 54(0): 132-143. |
[14] | Y.H. Gao, L.F. Cao, J. Kuang, J.Y. Zhang, G. Liu, J. Sun. Dual effect of Cu on the Al3Sc nanoprecipitate coarsening [J]. J. Mater. Sci. Technol., 2020, 37(0): 38-45. |
[15] | Dongjun Wang, Hao Li, Wei Zheng. Oxidation behaviors of TA15 titanium alloy and TiBw reinforced TA15 matrix composites prepared by spark plasma sintering [J]. J. Mater. Sci. Technol., 2020, 37(0): 46-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||