J. Mater. Sci. Technol. ›› 2018, Vol. 34 ›› Issue (10): 1805-1816.DOI: 10.1016/j.jmst.2018.02.007
• Orginal Article • Previous Articles Next Articles
Beining Dua, Ziyang Huac, Liyuan Shenga(), Chuanyong Cuib(
), Jinxia Yangb, Yufeng Zhenga, Xiaofeng Sunb
Received:
2017-11-03
Revised:
2018-01-05
Accepted:
2018-01-25
Online:
2018-10-05
Published:
2018-11-01
Beining Du, Ziyang Hu, Liyuan Sheng, Chuanyong Cui, Jinxia Yang, Yufeng Zheng, Xiaofeng Sun. Tensile, creep behavior and microstructure evolution of an as-cast Ni-based K417G polycrystalline superalloy[J]. J. Mater. Sci. Technol., 2018, 34(10): 1805-1816.
Cr | Co | Mo | V | Al | Ti | C | Zr | Ni | |
---|---|---|---|---|---|---|---|---|---|
0.018 | 9.00 | 10.00 | 3.00 | 0.75 | 5.25 | 4.40 | 0.18 | 0.07 | Balance |
Table 1 Nominal composition of K417G superalloy (wt%).
Cr | Co | Mo | V | Al | Ti | C | Zr | Ni | |
---|---|---|---|---|---|---|---|---|---|
0.018 | 9.00 | 10.00 | 3.00 | 0.75 | 5.25 | 4.40 | 0.18 | 0.07 | Balance |
Fig. 2. SEM images of the microstructure of as-cast K417G superalloy: (a) grain distribution; (b) MC carbide and γ/γ′ eutectic structure; (c) grain boundary microstructure; (d) γ′ phase; (e) EDS spectrum of MC carbide.
Fig. 4. Elements distribution near grain boundary: (a) SEM image of the grain boundary of K417G superalloy (b) O distribution; (c) S distribution; (d) C distribution; (e) Cr distribution; (f) Ti distribution.
Fig. 7. EBSD plane sweep scanning images near the tensile fracture surface: (a)-(c) All Euler image; (d)-(f) Local Misorientation image; (a), (d) 21 °C; (b), (e) 700 °C; (c), (f) 900 °C. (The misorientation increases from blue to red as the color bar).
Fig. 9. EBSD plane sweep scanning images near the creep fracture surface: (a)-(c) All Euler image; (d)-(f) Local Misorientation image; (a), (d) 760 °C/645 MPa; (b), (e) 900 °C/315 MPa; (c), (f) 950 °C/235 MPa.
Fig. 10. SEM and TEM images of the microstructure of as-cast K417G superalloy after tensile tests (a), (d) 21 °C; (b), (e) 700 °C; (c), (f) 900 °C; (g)-(i) TEM dark-field image and diffraction patterns of the grain boundary M23C6 carbide at the grain boundary of K417G superalloy after tensile at 900 °C.
Fig. 11. SEM and TEM images of the microstructure of as-cast K417G superalloy after creep tests (a), (d) 760 °C/645 MPa; (b), (e) 900 °C/315 MPa; (c), (f) 950 °C/235 MPa; (g)-(i) TEM bright-field image and diffraction patterns of the grain boundary M3B2 boride and M23C6 carbide at the grain boundary of K417G superalloy after creep at 900 °C/315 MPa and 950 °C/235 MPa.
Fig. 13. SEM images of γ' phase and TEM images of dislocation structures of K417G superalloy after creep at different conditions (a), (d) 760 °C/645 MPa; (b) 900 °C/315 MPa; (c), (e) 950 °C/235 MPa.
Test condition | MC carbide | Eutectic | γ' phase | Grain boundary microstructure | |
---|---|---|---|---|---|
Tensile | 21 °C | broken | broken | no rafting | no new phase |
700 °C | broken | broken | no rafting | no new phase | |
900 °C | broken | broken | no rafting | M23C6 | |
Creep | 760 °C/645 MPa | broken | broken | no rafting | no new phase |
900 °C/315 MPa | no broken decompose into M23C6 | broken | rafting | M23C6 and M3B2 | |
950 °C/235 MPa | no broken decompose into M23C6 | broken | serious rafting | M23C6 and M3B2 |
Table 2 Microstructure evolution of K417G superalloy after tensile and creep tests.
Test condition | MC carbide | Eutectic | γ' phase | Grain boundary microstructure | |
---|---|---|---|---|---|
Tensile | 21 °C | broken | broken | no rafting | no new phase |
700 °C | broken | broken | no rafting | no new phase | |
900 °C | broken | broken | no rafting | M23C6 | |
Creep | 760 °C/645 MPa | broken | broken | no rafting | no new phase |
900 °C/315 MPa | no broken decompose into M23C6 | broken | rafting | M23C6 and M3B2 | |
950 °C/235 MPa | no broken decompose into M23C6 | broken | serious rafting | M23C6 and M3B2 |
Average size (μm) | Distribution | |||
---|---|---|---|---|
At grain boundary | In grain interior | At grain boundary | In grain interior | |
MC carbide | 3.2 | 2.7 | 76% | 24% |
Eutectic | 15.3 | 10.4 | 77% | 23% |
Table 3 Average size and distribution of MC carbide and γ/γ′ eutectic structure in K417G superalloy.
Average size (μm) | Distribution | |||
---|---|---|---|---|
At grain boundary | In grain interior | At grain boundary | In grain interior | |
MC carbide | 3.2 | 2.7 | 76% | 24% |
Eutectic | 15.3 | 10.4 | 77% | 23% |
|
[1] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[2] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[3] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[4] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[5] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[6] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[7] | Quan-xin Shi, Cui-ju Wang, Kun-kun Deng, Kai-bo Nie, Yucheng Wu, Wei-min Gan, Wei Liang. Microstructure and mechanical behavior of Mg-5Zn matrix influenced by particle deformation zone [J]. J. Mater. Sci. Technol., 2021, 60(0): 8-20. |
[8] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[9] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[10] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[11] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[12] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[13] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[14] | Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi [J]. J. Mater. Sci. Technol., 2020, 42(0): 122-129. |
[15] | Qiang Zhu, Gang Chen, Chuanjie Wang, Lukuan Cheng, Heyong Qin, Peng Zhang. Microstructure evolution and mechanical property characterization of a nickel-based superalloy at the mesoscopic scale [J]. J. Mater. Sci. Technol., 2020, 47(0): 177-189. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||