J. Mater. Sci. Technol. ›› 2018, Vol. 34 ›› Issue (4): 700-707.DOI: 10.1016/j.jmst.2017.09.009
Special Issue: 材料计算 2018
• Orginal Article • Previous Articles Next Articles
Gang Zhouab, Lihua Yea, Hao Wanga*(), Dongsheng Xua, Changgong Mengb, Rui Yanga
Received:
2017-06-26
Revised:
2017-08-05
Accepted:
2017-08-25
Online:
2018-04-20
Published:
2018-05-04
Contact:
Wang Hao
Gang Zhou, Lihua Ye, Hao Wang, Dongsheng Xu, Changgong Meng, Rui Yang. Energy paths of twin-related lattice reorientation in hexagonal metals via ab initio calculations[J]. J. Mater. Sci. Technol., 2018, 34(4): 700-707.
Symbol | Ecuf (eV) | k-points | a (nm) | c (nm) | c/a | E (meV) | |||
---|---|---|---|---|---|---|---|---|---|
Cal. | Exp. | Cal. | Exp. | Cal. | Exp. | ||||
Be | 450 | 23 × 23 × 23 | 0.2286 | 0.2266 | 0.3584 | 0.3567 | 1.568 | 1.574 | 51.51 |
Mg | 350 | 19 × 19 × 19 | 0.3209 | 0.3194 | 0.5211 | 0.5183 | 1.624 | 1.623 | 16.55 |
Sc | 550 | 11 × 11 × 11 | 0.3309 | 0.3320 | 0.5268 | 0.5162 | 1.592 | 1.555 | 48.47 |
Ti | 450 | 13 × 13 × 13 | 0.2950 | 0.2936 | 0.4684 | 0.4650 | 1.587 | 1.584 | 38.42 |
Co | 450 | 19 × 19 × 19 | 0.2507 | 0.2492 | 0.4069 | 0.4024 | 1.623 | 1.615 | 44.92 |
Y | 400 | 15 × 15 × 15 | 0.3648 | 0.3657 | 0.5732 | 0.5675 | 1.571 | 1.552 | 43.71 |
Zr | 450 | 11 × 11 × 11 | 0.3232 | 0.3235 | 0.5148 | 0.5168 | 1.593 | 1.597 | 36.09 |
Tc | 550 | 15 × 15 × 15 | 0.2738 | 0.2750 | 0.4394 | 0.4399 | 1.605 | 1.599 | 37.77 |
Ru | 400 | 13 × 13 × 13 | 0.2705 | 0.2716 | 0.4281 | 0.4279 | 1.583 | 1.576 | 163.96 |
Gd | 450 | 15 × 15 × 15 | 0.3634 | 0.3642 | 0.5781 | 0.5737 | 1.591 | 1.575 | 23.01 |
Tb | 450 | 15 × 15 × 15 | 0.3606 | 0.3631 | 0.5697 | 0.5680 | 1.580 | 1.564 | 28.54 |
Dy | 450 | 15 × 15 × 15 | 0.3592 | 0.3619 | 0.5650 | 0.5633 | 1.573 | 1.556 | 34.93 |
Ho | 450 | 15 × 15 × 15 | 0.3578 | 0.3605 | 0.5618 | 0.5593 | 1.570 | 1.552 | 41.54 |
Er | 450 | 15 × 15 × 15 | 0.3559 | 0.3586 | 0.5585 | 0.5559 | 1.569 | 1.550 | 47.54 |
Tm | 400 | 15 × 15 × 15 | 0.3538 | 0.3562 | 0.5554 | 0.5525 | 1.570 | 1.551 | 52.73 |
Lu | 450 | 13 × 13 × 13 | 0.3505 | 0.3524 | 0.5549 | 0.5480 | 1.583 | 1.555 | 57.35 |
Hf | 550 | 13 × 13 × 13 | 0.3195 | 0.3203 | 0.5051 | 0.5063 | 1.581 | 1.581 | 63.07 |
Re | 600 | 17 × 17 × 17 | 0.2761 | 0.2775 | 0.4458 | 0.4482 | 1.615 | 1.615 | 79.20 |
Os | 600 | 13 × 13 × 13 | 0.2735 | 0.2759 | 0.4391 | 0.4354 | 1.606 | 1.578 | 248.98 |
Table 1 Cutoff energies (Ecut) and k-point meshes used in the calculations, the calculated and experimental lattice constants (a and c) and c/a ratios of 19 hexagonal metals and reorientation energies per atom (E). Experimental lattice constants are taken from Ref. [29].
Symbol | Ecuf (eV) | k-points | a (nm) | c (nm) | c/a | E (meV) | |||
---|---|---|---|---|---|---|---|---|---|
Cal. | Exp. | Cal. | Exp. | Cal. | Exp. | ||||
Be | 450 | 23 × 23 × 23 | 0.2286 | 0.2266 | 0.3584 | 0.3567 | 1.568 | 1.574 | 51.51 |
Mg | 350 | 19 × 19 × 19 | 0.3209 | 0.3194 | 0.5211 | 0.5183 | 1.624 | 1.623 | 16.55 |
Sc | 550 | 11 × 11 × 11 | 0.3309 | 0.3320 | 0.5268 | 0.5162 | 1.592 | 1.555 | 48.47 |
Ti | 450 | 13 × 13 × 13 | 0.2950 | 0.2936 | 0.4684 | 0.4650 | 1.587 | 1.584 | 38.42 |
Co | 450 | 19 × 19 × 19 | 0.2507 | 0.2492 | 0.4069 | 0.4024 | 1.623 | 1.615 | 44.92 |
Y | 400 | 15 × 15 × 15 | 0.3648 | 0.3657 | 0.5732 | 0.5675 | 1.571 | 1.552 | 43.71 |
Zr | 450 | 11 × 11 × 11 | 0.3232 | 0.3235 | 0.5148 | 0.5168 | 1.593 | 1.597 | 36.09 |
Tc | 550 | 15 × 15 × 15 | 0.2738 | 0.2750 | 0.4394 | 0.4399 | 1.605 | 1.599 | 37.77 |
Ru | 400 | 13 × 13 × 13 | 0.2705 | 0.2716 | 0.4281 | 0.4279 | 1.583 | 1.576 | 163.96 |
Gd | 450 | 15 × 15 × 15 | 0.3634 | 0.3642 | 0.5781 | 0.5737 | 1.591 | 1.575 | 23.01 |
Tb | 450 | 15 × 15 × 15 | 0.3606 | 0.3631 | 0.5697 | 0.5680 | 1.580 | 1.564 | 28.54 |
Dy | 450 | 15 × 15 × 15 | 0.3592 | 0.3619 | 0.5650 | 0.5633 | 1.573 | 1.556 | 34.93 |
Ho | 450 | 15 × 15 × 15 | 0.3578 | 0.3605 | 0.5618 | 0.5593 | 1.570 | 1.552 | 41.54 |
Er | 450 | 15 × 15 × 15 | 0.3559 | 0.3586 | 0.5585 | 0.5559 | 1.569 | 1.550 | 47.54 |
Tm | 400 | 15 × 15 × 15 | 0.3538 | 0.3562 | 0.5554 | 0.5525 | 1.570 | 1.551 | 52.73 |
Lu | 450 | 13 × 13 × 13 | 0.3505 | 0.3524 | 0.5549 | 0.5480 | 1.583 | 1.555 | 57.35 |
Hf | 550 | 13 × 13 × 13 | 0.3195 | 0.3203 | 0.5051 | 0.5063 | 1.581 | 1.581 | 63.07 |
Re | 600 | 17 × 17 × 17 | 0.2761 | 0.2775 | 0.4458 | 0.4482 | 1.615 | 1.615 | 79.20 |
Os | 600 | 13 × 13 × 13 | 0.2735 | 0.2759 | 0.4391 | 0.4354 | 1.606 | 1.578 | 248.98 |
Fig. 1. Initial (a), saddle point (b), final (c) atomic configurations during the twin-related lattice reorientation. Lattices orientations are indicated. The reorientation process consists of expansion and contraction (double headed arrows), which is equivalent to pure shear, as well as individual atomic shuffles (blue and red arrows).
Fig. 4. Reorientation energy maps against relative shear and shuffle in Tc (a), Be (b), Y (c), Gd (d), Tb (e), Dy (f), Ho (g), Zr (h), Er (i), Sc (j), Hf (k), Lu (l) and Tm (m).
Fig. 6. Contour maps of shuffle energies at different relative shears in Co (a), Ru (b), Re (c) and Os (d). The solid violet curves denote level zero in each subfigure.
Fig. 7. Contour maps of shuffle energies at different relative shears in Tc (a), Be (b), Y (c), Gd (d), Tb (e), Dy (f), Ho (g), Zr (h), Er (i), Sc (j), Hf (k), Lu (l) and Tm (m). The solid violet curves denote level zero in each subfigure.
Fig. 8. Reorientation energy against Young’s modulus for hexagonal metals. The linear plotting and the Pearson correlation coeffcient (r) are indicated (the bigger the absolute value of r, the stronger the correlation).
Fig. 9. 3D charge density difference maps of initial and saddle point with isosurface values of 12 e nm-3 in pure Mg (a, b) and 45 e nm-3 in pure Ti (c, d). Yellow and cyan colors represent gaining and losing electrons, respectively.
|
[1] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
[2] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[3] | Hao Jin, Qing Jia, Quangang Xian, Ronghua Liu, Yuyou Cui, Dongsheng Xu, Rui Yang. Seeded growth of Ti-46Al-8Nb polysynthetically twinned crystals with an ultra-high elongation [J]. J. Mater. Sci. Technol., 2020, 54(0): 190-195. |
[4] | S.H. Lu, D. Wu, R.S. Chen, En-hou Han. Microstructure and texture optimization by static recrystallization originating from {10-12} extension twins in a Mg-Gd-Y alloy [J]. J. Mater. Sci. Technol., 2020, 59(0): 44-60. |
[5] | Wei Chen, Hande Wang, Y.C. Lin, Xiaoyong Zhang, Chao Chen, Yaping Lv, Kechao Zhou. The dynamic responses of lamellar and equiaxed near β-Ti alloys subjected to multi-pass cross rolling [J]. J. Mater. Sci. Technol., 2020, 43(0): 220-229. |
[6] | Long Zhang, Yi Wu, Shidong Feng, Wen Li, Hongwei Zhang, Huameng Fu, Hong Li, Zhengwang Zhu, Haifeng Zhang. Rejuvenated metallic glass strips produced via twin-roll casting [J]. J. Mater. Sci. Technol., 2020, 38(0): 73-79. |
[7] | Maryam Jamalian, David P.Field. Gradient microstructure and enhanced mechanical performance of magnesium alloy by severe impact loading [J]. J. Mater. Sci. Technol., 2020, 36(0): 45-49. |
[8] | Y.Z. Zhang, J.J. Wang, N.R. Tao. Tensile ductility and deformation mechanisms of a nanotwinned 316L austenitic stainless steel [J]. J. Mater. Sci. Technol., 2020, 36(0): 65-69. |
[9] | Hongyu Wu, Dong Zhang, Biaobiao Yang, Chao Chen, Yunping Li, Kechao Zhou, Liang Jiang, Ruiping Liu. Microstructural evolution and defect formation in a powder metallurgy nickel-based superalloy processed by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36(0): 7-17. |
[10] | Zhe Xue, Xinyu Zhang, Jiaqian Qin, Mingzhen Ma, Riping Liu. Controlling the strength of Zr (10 $\bar{1}$ 2) grain boundary by nonmetallic impurities doping: A DFT study [J]. J. Mater. Sci. Technol., 2020, 36(0): 140-148. |
[11] | Junyuan Bai, Xueyong Pang, Xiangying Meng, Hongbo Xie, Hucheng Pan, Yuping Ren, Min Jiang, Gaowu Qin. Anomalous crystal structure of γ″ phase in the Mg-RE-Zn(Ag) series alloys: Causality clarified by ab initio study [J]. J. Mater. Sci. Technol., 2020, 36(0): 167-175. |
[12] | Ke Yue, Jianrong Liu, Haijun Zhang, Hui Yu, Yuanyuan Song, Qingmiao Hu, Qingjiang Wang, Rui Yang. Precipitates and alloying elements distribution in near α titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2020, 36(0): 91-96. |
[13] | Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure [J]. J. Mater. Sci. Technol., 2020, 48(0): 114-122. |
[14] | Mei Rao, Guoqiang Luo, Jian Zhang, Yiyu Wang, Qiang Shen, Lianmeng Zhang. Effect of Ni content in Cu1-xNix coating on microstructure evolution and mechanical properties of W/Mo joint via low-temperature diffusion bonding [J]. J. Mater. Sci. Technol., 2020, 54(0): 171-180. |
[15] | Fu-Zhi Dai, Haiming Zhang, Huimin Xiang, Yanchun Zhou. Theoretical investigation on the stability, mechanical and thermal properties of the newly discovered MAB phase Cr4AlB4 [J]. J. Mater. Sci. Technol., 2020, 39(0): 161-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||