J. Mater. Sci. Technol. ›› 2017, Vol. 33 ›› Issue (7): 616-622.DOI: 10.1016/j.jmst.2017.04.015
• Orginal Article • Previous Articles Next Articles
Yang Huabinga, Gao Tonga, Wang Haichaoa, Nie Jinfengb, Liu Xiangfaa*()
Received:
2017-01-20
Revised:
2017-03-10
Accepted:
2017-04-06
Online:
2017-07-20
Published:
2017-08-29
Contact:
Liu Xiangfa
Yang Huabing, Gao Tong, Wang Haichao, Nie Jinfeng, Liu Xiangfa. Influence of C/Ti stoichiometry in TiCx on the grain refinement efficiency of Al-Ti-C master alloy[J]. J. Mater. Sci. Technol., 2017, 33(7): 616-622.
Fig. 1. (a) XRD patterns of Al-5Ti-mC (m = 0.1, 0.5, 0.8, 1 and 1.25 wt%) master alloys; (b, c) microstructures of Al-5Ti-0.5C and Al-5Ti-1.25C, respectively; (d, e) EDS analyses of spectrum 1 and 2 in (b).
Fig. 2. (a) Typical morphology of synthesized TiCx; (b) lattice structure of TiCx crystal (face-centered cubic); (c) XRD patterns of extracted TiCx particles from Al-5Ti-mC; (d) lattice parameter and x value in TiCx as a function of m value in Al-5Ti-mC master alloys.
Tests | Addition level of refiners | The equivalent amount | |
---|---|---|---|
TiCx | Free Ti | ||
No. 1 | 0 | 0 | 0 |
No. 2 | 0.30% Al-5Ti-0.1C | 0.002% | 0.013% |
No. 3 | 0.063% Al-5Ti-0.5C + 0.23% Al-5Ti | 0.002% | 0.013% |
No. 4 | 0.041% Al-5Ti-0.8C + 0.25% Al-5Ti | 0.002% | 0.013% |
No. 5 | 0.034% Al-5Ti-1C + 0.26% Al-5Ti | 0.002% | 0.013% |
No. 6 | 0.033% Al-5Ti-1.25C + 0.26% Al-5Ti | 0.002% | 0.013% |
Table 1 Type and addition level of refiners of six group of grain refinement tests.
Tests | Addition level of refiners | The equivalent amount | |
---|---|---|---|
TiCx | Free Ti | ||
No. 1 | 0 | 0 | 0 |
No. 2 | 0.30% Al-5Ti-0.1C | 0.002% | 0.013% |
No. 3 | 0.063% Al-5Ti-0.5C + 0.23% Al-5Ti | 0.002% | 0.013% |
No. 4 | 0.041% Al-5Ti-0.8C + 0.25% Al-5Ti | 0.002% | 0.013% |
No. 5 | 0.034% Al-5Ti-1C + 0.26% Al-5Ti | 0.002% | 0.013% |
No. 6 | 0.033% Al-5Ti-1.25C + 0.26% Al-5Ti | 0.002% | 0.013% |
Fig. 3. α-Al grain macrostructures of commercial pure Al before and after refined by different master alloys at 720 °C holding for 5 min before solidification in KBI mould: (a) unrefined; (b-f) with simultaneous addition of a certain amount of Al-5Ti-mC, m = 0.1, 0.5, 0.8, 1 and 1.25 wt%, respectively and Al-5Ti to ensure the addition level of TiCx and free Ti are the same.
Holding time | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 |
---|---|---|---|---|---|---|
5 min (d5) | 4200 | 235 | 266 | 328 | 841 | 671 |
60 min (d60) | 4180 | 343 | 428 | 574 | 1598 | 1241 |
Table 2 Average α-Al grain size of six groups of refinement tests (Table 1) after the addition of refiners for 5 min (d5) and 60 min (d60), respectively.
Holding time | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 |
---|---|---|---|---|---|---|
5 min (d5) | 4200 | 235 | 266 | 328 | 841 | 671 |
60 min (d60) | 4180 | 343 | 428 | 574 | 1598 | 1241 |
Fig. 7. Linear scanning analysis for high purity Al (99.99%) refined by 5% Al-5Ti-1.5C: (a) secondary electron image of microstructure; (b-d) results of Al, C, Ti elements, respectively.
TiCx | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 |
---|---|---|---|---|---|
δ (%) | 6.31 | 6.34 | 6.38 | 6.39 | 6.38 |
Table 3 Lattice disregistry between α-Al and TiCx in Al-5Ti-mC, m = 0.1, 0.5, 0.8, 1, 1.25, respectively (used in Table 1).
TiCx | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 |
---|---|---|---|---|---|
δ (%) | 6.31 | 6.34 | 6.38 | 6.39 | 6.38 |
|
[1] | L.Y. Zhao, H. Yan, R.S. Chen, En-Hou Han. Orientations of nuclei during static recrystallization in a cold-rolled Mg-Zn-Gd alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 162-167. |
[2] | Ruifeng Dong, Jinshan Li, Hongchao Kou, Jiangkun Fan, Yuhong Zhao, Hua Hou, Li Wu. ω-Assisted refinement of α phase and its effect on the tensile properties of a near β titanium alloy [J]. J. Mater. Sci. Technol., 2020, 44(0): 24-30. |
[3] | Qinghang Wang, Bin Jiang, Aitao Tang, Jie Fu, Zhongtao Jiang, Haoran Sheng, Dingfei Zhang, Guangsheng Huang, Fusheng Pan. Unveiling annealing texture formation and static recrystallization kinetics of hot-rolled Mg-Al-Zn-Mn-Ca alloy [J]. J. Mater. Sci. Technol., 2020, 43(0): 104-118. |
[4] | Bingqiang Wei, Song Ni, Yong Liu, Xiaozhou Liao, Min Song. Phase transformation and structural evolution in a Ti-5at.% Al alloy induced by cold-rolling [J]. J. Mater. Sci. Technol., 2020, 49(0): 211-223. |
[5] | S.J. Tsianikas, Y. Chen, Z. Xie. Deciphering deformation mechanisms of hierarchical dual-phase CrCoNi coatings [J]. J. Mater. Sci. Technol., 2020, 39(0): 183-189. |
[6] | S.J. Tsianikas, Y. Chen, Z. Xie. Deciphering deformation mechanisms of hierarchical dual-phase CrCoNi coatings [J]. J. Mater. Sci. Technol., 2020, 39(0): 7-13. |
[7] | Changjin Xu, Yutong Wu, Song Li, Jun Zhou, Jing Chen, Min Jiang, Hongda Zhao, Gaowu Qin. Engineering the epitaxial interface of Pt-CeO2 by surface redox reaction guided nucleation for low temperature CO oxidation [J]. J. Mater. Sci. Technol., 2020, 40(0): 39-46. |
[8] | Hao Jin, Qing Jia, Quangang Xian, Ronghua Liu, Yuyou Cui, Dongsheng Xu, Rui Yang. Seeded growth of Ti-46Al-8Nb polysynthetically twinned crystals with an ultra-high elongation [J]. J. Mater. Sci. Technol., 2020, 54(0): 190-195. |
[9] | Y.H. Gao, L.F. Cao, J. Kuang, J.Y. Zhang, G. Liu, J. Sun. Dual effect of Cu on the Al3Sc nanoprecipitate coarsening [J]. J. Mater. Sci. Technol., 2020, 37(0): 38-45. |
[10] | Yinli Peng, Nan Wang. Effect of phase-separated patterns on the formation of core-shell structure [J]. J. Mater. Sci. Technol., 2020, 38(0): 64-72. |
[11] | Jianlu Pei, Yefan Li, Chong Li, Zumin Wang, Yongchang Liu, Huijun Li. Microstructure-dependent oxidation behavior of Ni-Al single-crystal alloys [J]. J. Mater. Sci. Technol., 2020, 52(0): 162-171. |
[12] | Dan Jia, Wenru Sun, Dongsheng Xu, Fang Liu. Dynamic recrystallization behavior of GH4169G alloy during hot compressive deformation [J]. J. Mater. Sci. Technol., 2019, 35(9): 1851-1859. |
[13] | Zhangping Hu, Yifei Xu, Yuanyuan Chen, Peter Schützendübeb, Jiangyong Wang, Yuan Huang, Yongchang Liu, Zumin Wang. Anomalous formation of micrometer-thick amorphous oxide surficial layers during high-temperature oxidation of ZrAl2 [J]. J. Mater. Sci. Technol., 2019, 35(7): 1479-1484. |
[14] | X.H. Zeng, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructural evolution of aluminum alloy during friction stir welding under different tool rotation rates and cooling conditions [J]. J. Mater. Sci. Technol., 2019, 35(6): 972-981. |
[15] | Wen Zhang, Lili Tan, Dingrui Ni, Junxiu Chen, Ying-Chao Zhao, Long Liu, Cijun Shuai, Ke Yang, Andrej Atrens, Ming-Chun Zhao. Effect of grain refinement and crystallographic texture produced by friction stir processing on the biodegradation behavior of a Mg-Nd-Zn alloy [J]. J. Mater. Sci. Technol., 2019, 35(5): 777-783. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||