Please wait a minute...
J. Mater. Sci. Technol.  2017, Vol. 33 Issue (4): 352-358    DOI: 10.1016/j.jmst.2016.09.012
Orginal Article Current Issue | Archive | Adv Search |
Phase Selection in Solidification of Undercooled Co-B Alloys
Wei X.X.1, Xu W.2, Kang J.L.1, Ferry M.2, Li J.F.1,*()
1 State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Australian Research Council Centre of Excellence for Design in Light Metals, School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A series Co-(18.5-20.7) at.% B melts encompassing the eutectic composition (Co81.5B18.5) were solidified at different degrees of undercooling. It is found that the metastable Co23B6 phase solidifies as a substitute for the stable Co3B phase in the alloy melts undercooled above a critical undercooling value of ~60 K. The Co23B6 and α-Co phases make up a metastable eutectic. The corresponding eutectic composition and temperature are Co80.4B19.6 and 1343 K, respectively. On exposure of the metastable Co23B6 phase at a given temperature above 1208 K, it does not decompose even after several hours. But it transforms by a eutectoid reaction to α-Co + Co3B at lower temperature.

Key words:  Undercooling      Rapid solidification      Metastable phase diagram      Structure evolution     
Received:  13 December 2015     
Corresponding Authors:  Li J.F.     E-mail:  jfli@sjtu.edu.cn

Cite this article: 

Wei X.X., Xu W., Kang J.L., Ferry M., Li J.F.. Phase Selection in Solidification of Undercooled Co-B Alloys. J. Mater. Sci. Technol., 2017, 33(4): 352-358.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2016.09.012     OR     https://www.jmst.org/EN/Y2017/V33/I4/352

Fig. 1.  Heating DSC curves of hypoeutectic, eutectic and hypereutectic alloy samples solidified at an undercooling below 5 K (heating rate = 20 K/min).
Fig. 2.  Microstructures of the bulk Co81.5B18.5 eutectic alloy solidified at undercooling of (a) 5 K, (b) 55 K, (c) 65 K and (d) 75 K. (e) XRD patterns of 55 K and 65 K undercooled samples and (f) cooling curves of four samples (Te is the equilibrium eutectic temperature and Tme the metastable eutectic temperature).
Fig. 3.  Microstructures of the bulk Co80.4B19.6 alloy solidified at an undercooling of (a) 20 K and (b) 68 K, and (c) their corresponding XRD patterns and (d) cooling curves (Tl is the equilibrium liquidus temperature, Te the equilibrium eutectic temperature and Tme the metastable eutectic temperature).
Fig. 4.  Microstructures of the bulk Co79.3B20.7 (Co23B6) alloy solidified at an undercooling of (a) 17 K and (b) 70 K, and (c) their corresponding XRD patterns and (d) cooling curves (Tl is the liquidus temperature, Te the equilibrium eutectic temperature and Tml the melting temperature of metastable Co23B6 phase).
Fig. 5.  (a) DSC curves of the Co81.5B18.5, Co80.4B19.6 and Co79.3B20.7 alloys consisting fully of metastable Co23B6 phase at a heating rate of 20 K/min, (b) DSC curves of the Co79.3B20.7 alloy consisting fully of metastable Co23B6 phase during isothermal annealing at various temperatures, (c) microstructure of the alloy isothermally annealed to the end of the decomposition and (d) the corresponding XRD patterns.
Fig. 6.  Co-rich region of the Co-B phase diagram. The solid lines correspond to the equilibrium diagram[21], while the dashed lines show the estimated metastable phase diagram. The symbols denote the phase constitution of typical bulk alloy samples solidified at different undercoolings.
[1] T. Zhang, F. Liu, H.F. Wang, G.C. Yang,Scr. Mater, 63(2010), pp. 43-46
[2] J.F. Li, W.Q. Jie, G.C. Yang, Y.H. Zhou,Acta Mater, 50(2002), pp. 1797-1807
[3] J.F. Li, Y.C. Liu, Y.L. Lu, G.C. Yang, Y.H. Zhou,J. Cryst. Growth, 192(1998), pp. 462-470
[4] J.F. Li, Y.H. Zhou, G.C. Yang,J. Cryst. Growth, 206(1999), pp. 141-146
[5] E.G. Castle, A.M. Mullis, R.F. Cochrane,Acta Mater, 77(2014), pp. 76-84
[6] J.F. Li, X.L. Li, L. Liu, S.Y. Lu,J. Mater. Res, 23(2008), pp. 2139-2148
[7] C. Yang, J. Gao, Y.K. Zhang, M. Kolbe, D.M. Herlach,Acta Mater, 59(2011), pp. 3915-3926
[8] X.X. Wei, X. Lin, W. Xu, Q.S. Huang, M. Ferry, J.F. Li, Y.H. Zhou,Acta Mater, 95(2015), pp. 44-56
[9] L. Liu, X.X. Wei, Q.S. Huang, J.F. Li, X.H. Cheng, Y.H. Zhou,J. Cryst. Growth, 358(2012), pp. 20-28
[10] K. Eckler, F. Gartner, H. Assadi, A.F. Norman, A.L. Greer, D.H. Herlach,Mater. Sci. Eng. A, 226-228(1997), pp. 410-414
[11] S.A. Moir, D.M. Herlach,Acta Mater, 45(1997), pp. 2827-2837
[12] C. Notthoff, B. Feuerbacher, H. Franz, D.M. Herlach, D. Holland-Moritz,Phys. Rev. Lett, 86(2001), pp. 1038-1041
[13] S.N. Ojha,Mater. Sci. Eng. A, 304-306(2001), pp. 114-118
[14] J.F. Xu, F. Liu, B. Dang,Metall. Mater. Trans. A, 44(2012), pp. 1401-1408
[15] F. Liu, J.G. Xu, D. Zhang, Z.Y. Jian,Metall. Mater. Trans. A, 45(2014), pp. 4810-4819
[16] L. Battezzati, C. Antonione, M. Baricco,J. Alloys Compd, 247(1997), pp. 164-171
[17] C.L. Yang, F. Liu, G.C. Yang, Y.Z. Chen, N. Liu, Y.H. Zhou,J. Alloys Compd, 441(2007), pp. 101-106
[18] C.L. Yang, F. Liu, G.C. Yang, Y.H. Zhou,J. Cryst. Growth, 311(2009), pp. 404-412
[19] C.L. Yang, G.C. Yang, F. Liu, Y.Z. Chen, N. Liu, D. Chen, Y.H. Zhou,Physica B, 373(2006), pp. 136-141
[20] P.R. Ohodnicki, N.C. Cates, D.E. Laughlin, M.E. McHenry, M. Widom, Phys. Rev. B, 78(2008), p. 144414
[21] P.K. Liao, K.E. Spear, T.B. Massalski, H. Okamoto (Eds.),Binary Alloy Phase Diagrams (2nd ed.), ASM International, Materials Park, OH (1990)
[22] J.-D. Schobel, H.H. Stadelmaier, Z. Metallkd, 54(1966), pp. 323-325
[23] M.F.X. Gigliotti, G.A. Colligan, G.L.F. Powell, Metall. Trans, 1(1970), pp. 891-897
[24] S.T. Bluni, M.R. Notis, A.R. Marder,Acta. Metall. Mater, 43(1995), pp. 1775-1782
[25] R.S. Barclay, P. Niessen, H.W. Kerr,J. Cryst. Growth, 20(1973), pp. 175-182
[26] Y.K. Zhang, J. Gao, M. Kolbe, S. Klein, C. Yang, H. Yasuda, D.M. Herlach, C.A. Gandin,Acta Mater, 61(2013), pp. 4861-4873
[27] Q. Wang, L.-M. Wang, M.Z. Ma, S. Binder, T. Volkmann, D.M. Herlach, J.S. Wang, Q.G. Xue, Y.J. Tian, R.P. Liu, Phys. Rev. B, 83(2011), p. 014202
[28] J. Wang, Y.X. He, J.H. Li, R. Hu, H.C. Kou,Mater. Chem. Phys, 149-150(2015), pp. 17-20
[1] Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. 材料科学与技术, 2020, 43(0): 208-219.
[2] Z.C. Luo, H.P. Wang. Primary dendrite growth kinetics and rapid solidification mechanism of highly undercooled Ti-Al alloys[J]. 材料科学与技术, 2020, 40(0): 47-53.
[3] Ze-Tian Liu, Bing-Yu Wang, Cheng Wang, Min Zha, Guo-Jun Liu, Zhi-Zheng Yang, Jin-Guo Wang, Jie-Hua Li, Hui-Yuan Wang. Microstructure and mechanical properties of Al-Mg-Si alloy fabricated by a short process based on sub-rapid solidification[J]. 材料科学与技术, 2020, 41(0): 178-186.
[4] Peng Li, Shuai Wang, Yueqing Xia, Xiaohu Hao, Honggang Dong. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy[J]. 材料科学与技术, 2020, 45(0): 59-69.
[5] Jixin Yang, Yiqiang Chen, Yongjiang Huang, Zhiliang Ning, Baokun Liu, Chao Guo, Jianfei Sun. Hierarchical microstructure of a titanium alloy fabricated by electron beam selective melting[J]. 材料科学与技术, 2020, 42(0): 1-9.
[6] Xin Zhang, Hongwei Li, Mei Zhan, Zebang Zheng, Jia Gao, Guangda Shao. Electron force-induced dislocations annihilation and regeneration of a superalloy through electrical in-situ transmission electron microscopy observations[J]. 材料科学与技术, 2020, 36(0): 79-83.
[7] Pengfei Gao, Mingwang Fu, Mei Zhan, Zhenni Lei, Yanxi Li. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review[J]. 材料科学与技术, 2020, 39(0): 56-73.
[8] Hao Yu, Wei Xu, Sybrand van der Zwaag. Microstructure and dislocation structure evolution during creep life of Ni-based single crystal superalloys[J]. 材料科学与技术, 2020, 45(0): 207-214.
[9] Xiaojun Sun, Jie He, Bin Chen, Lili Zhang, Hongxiang Jiang, Jiuzhou Zhao, Hongri Hao. Microstructure formation and electrical resistivity behavior of rapidly solidified Cu-Fe-Zr immiscible alloys[J]. 材料科学与技术, 2020, 44(0): 201-208.
[10] Qiang Zhu, Gang Chen, Chuanjie Wang, Lukuan Cheng, Heyong Qin, Peng Zhang. Microstructure evolution and mechanical property characterization of a nickel-based superalloy at the mesoscopic scale[J]. 材料科学与技术, 2020, 47(0): 177-189.
[11] XiTing Zhong, Lei Wang, LinKe Huang, Feng Liu. Transition of dynamic recrystallization mechanism during hot deformation of Incoloy 028 alloy[J]. 材料科学与技术, 2020, 42(0): 241-253.
[12] Chengyang Jiang, Lingyi Qian, Min Feng, He Liu, Zebin Bao, Minghui Chen, Shenglong Zhu, Fuhui Wang. Benefits of Zr addition to oxidation resistance of a single-phase (Ni,Pt)Al coating at 1373 K[J]. 材料科学与技术, 2019, 35(7): 1334-1344.
[13] L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, J.W. Qiao. Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy[J]. 材料科学与技术, 2019, 35(5): 917-925.
[14] Kang Yang, Wenya Li, Xueping Guo, Xiawei Yang, Yaxin Xu. Characterizations and anisotropy of cold-spraying additive-manufactured copper bulk[J]. 材料科学与技术, 2018, 34(9): 1570-1579.
[15] Zhishuai Xu, Yuting Dai, Yue Fang, Zhiping Luo, Ke Han, Changjiang Song, Qijie Zhai, Hongxing Zheng. High-temperature phase transition behavior and magnetocaloric effect in a sub-rapidly solidified La-Fe-Si plate produced by centrifugal casting[J]. 材料科学与技术, 2018, 34(8): 1337-1343.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.