J. Mater. Sci. Technol. ›› 2016, Vol. 32 ›› Issue (11): 1179-1191.DOI: 10.1016/j.jmst.2016.09.002
• Orginal Article • Previous Articles Next Articles
Mahbubur Rahman M.1,*(),Jiang Zhong-Tao1,*(
),Yin Chun-Yang2,Siang Chuah Lee3,Lee Hooi-Ling4,Amri Amun5,Goh Bee-Min6,J. Wood Barry7,Creagh Chris8,Mondinos Nicholas1,Altarawneh Mohmmednoor8,Z. Dlugogorski Bogdan8
Received:
2015-12-19
Accepted:
2016-04-08
Online:
2016-11-20
Published:
2017-02-16
Contact:
Mahbubur Rahman M.,Jiang Zhong-Tao
Mahbubur Rahman M.,Jiang Zhong-Tao,Yin Chun-Yang,Siang Chuah Lee,Lee Hooi-Ling,Amri Amun,Goh Bee-Min,J. Wood Barry,Creagh Chris,Mondinos Nicholas,Altarawneh Mohmmednoor,Z. Dlugogorski Bogdan. Structural Thermal Stability of Graphene Oxide-Doped Copper-Cobalt Oxide Coatings as a Solar Selective Surface[J]. J. Mater. Sci. Technol., 2016, 32(11): 1179-1191.
Fig. 1. Synchrotron radiation X-ray diffraction data of (a) CuxCoyOz coatings, and (b) CuxCoyOz thin film coatings with 1.5 wt.% of graphene oxide at room temperature, 100 °C, 200 °C, and 300 °C acquired at the powder diffraction beamline at Australian Synchrotron, Melbourne.
2θ Position at room temperature | 2θ Position at 100 °C | 2θ Position at 200 °C | 2θ Position at 300 °C | Crystal structure | Miller index | Space group | JCPDS reference |
---|---|---|---|---|---|---|---|
20.11 (A) | 20.09 | 20.08 | 20.08 | Monoclinic/CuO | (200) | Cc(9) | 89-5899 |
20.48 (B) | 20.44 | 20.46 | 20.47 | (111) | |||
36.76 (F) | 33.75 | 33.77 | 33.76 | (022) | |||
41.59 (J) | 41.56 | 41.56 | 41.58 | (222) | |||
20.11 (A) | 20.11 | 20.10 | 20.09 | Cubic/CoCo2O4 | (222) | Fd-3m(227) | 78-1980 |
23.28 (C) | 23.28 | 23.26 | 23.26 | (400) | |||
33.76 (F) | 33.75 | 33.77 | 33.76 | (440) | |||
39.15 (G) | 39.16 | 39.14 | 39.13 | (622) | |||
20.11 (A) | 20.10 | 20.09 | 20.10 | Hexagonal/CoO | (101) | P63mc(186) | 89-2803 |
33.16 (E) | 33.13 | 33.15 | 33.14 | (103) | |||
39.91 (H) | 39.90 | 39.89 | 39.89 | (202) | |||
40.98 (I) | 40.96 | 40.97 | 40.97 | (104) | |||
23.84 (D) | 23.84 | 23.85 | 23.83 | Rhombohedral/CoCuO2 | (221) | R-3m(166) | 74-1855 |
33.76 (F) | 33.75 | 33.75 | 33.75 | (444) | |||
39.91 (H) | 39.90 | 39.88 | 39.89 | (020) | |||
41.59 (J) | 41.58 | 41.57 | 41.59 | (131) | |||
39.15 (G) | 39.14 | 39.13 | 39.13 | (316) |
Table 1. 2θ Positions, crystal phases, Miller indices and space groups of sol-gel derived CuxCoyOz coatings as observed from synchrotron radiation XRD studies
2θ Position at room temperature | 2θ Position at 100 °C | 2θ Position at 200 °C | 2θ Position at 300 °C | Crystal structure | Miller index | Space group | JCPDS reference |
---|---|---|---|---|---|---|---|
20.11 (A) | 20.09 | 20.08 | 20.08 | Monoclinic/CuO | (200) | Cc(9) | 89-5899 |
20.48 (B) | 20.44 | 20.46 | 20.47 | (111) | |||
36.76 (F) | 33.75 | 33.77 | 33.76 | (022) | |||
41.59 (J) | 41.56 | 41.56 | 41.58 | (222) | |||
20.11 (A) | 20.11 | 20.10 | 20.09 | Cubic/CoCo2O4 | (222) | Fd-3m(227) | 78-1980 |
23.28 (C) | 23.28 | 23.26 | 23.26 | (400) | |||
33.76 (F) | 33.75 | 33.77 | 33.76 | (440) | |||
39.15 (G) | 39.16 | 39.14 | 39.13 | (622) | |||
20.11 (A) | 20.10 | 20.09 | 20.10 | Hexagonal/CoO | (101) | P63mc(186) | 89-2803 |
33.16 (E) | 33.13 | 33.15 | 33.14 | (103) | |||
39.91 (H) | 39.90 | 39.89 | 39.89 | (202) | |||
40.98 (I) | 40.96 | 40.97 | 40.97 | (104) | |||
23.84 (D) | 23.84 | 23.85 | 23.83 | Rhombohedral/CoCuO2 | (221) | R-3m(166) | 74-1855 |
33.76 (F) | 33.75 | 33.75 | 33.75 | (444) | |||
39.91 (H) | 39.90 | 39.88 | 39.89 | (020) | |||
41.59 (J) | 41.58 | 41.57 | 41.59 | (131) | |||
39.15 (G) | 39.14 | 39.13 | 39.13 | (316) |
2θ Position at room temperature | 2θ Position at 100 °C | 2θ Position at 200 °C | 2θ Position at 300 °C | Crystal structure | Miller index | Space group | JCPDS reference |
---|---|---|---|---|---|---|---|
20.10 (A) | 20.09 | 20.08 | 20.08 | Monoclinic/CuO | (200) | Cc(9) | 89-5899 |
20.48 (B) | 20.45 | 20.46 | 20.47 | (111) | |||
33.74 (F) | 33.73 | 33.74 | 33.74 | (022) | |||
41.57 (J) | 41.56 | 41.56 | 41.57 | (222) | |||
20.11 (A) | 20.11 | 20.10 | 20.09 | Cubic/CoCo2O3 | (222) | Fd-3m(227) | 78-1980 |
23.28 (C) | 23.28 | 23.26 | 23.26 | (400) | |||
33.76 (F) | 33.75 | 33.77 | 33.76 | (440) | |||
39.15 (G) | 39.16 | 39.14 | 39.13 | (622) | |||
20.11 (A) | 20.10 | 20.09 | 20.10 | Hexagonal/CoO | (101) | P63mc(186) | 89-2803 |
33.16 (E) | 33.13 | 33.15 | 33.14 | (103) | |||
39.91 (H) | 39.90 | 39.89 | 39.89 | (202) | |||
40.98 (I) | 40.96 | 40.97 | 40.97 | (104) | |||
23.84 (D) | 23.82 | 23.83 | 23.83 | Rhombohedral/CoCuO2 | (221) | R-3m(166) | 74-1855 |
33.74 (F) | 33.73 | 33.73 | 33.74 | (444) | |||
39.90 (H) | 39.90 | 39.89 | 39.89 | (020) | |||
41.57 (J) | 41.57 | 41.57 | 41.56 | (131) | |||
20.48 (B) | 20.84 | 20.47 | 20.47 | Orthorhombic/CoCu2O3 | (301) | Pmmn(59) | 76-0442 |
23.84 (D) | 23.83 | 23.84 | 23.83 | (020) | |||
33.74 (F) | 33.74 | 33.73 | 33.74 | (302) | |||
39.10 (G) | 39.10 | 39.10 | 39.09 | (620) |
Table 2. 2θ Positions, crystal phases, Miller indices and space groups of sol-gel derived (CuxCoyOz + 1.5 wt.% GO) coatings as observed from synchrotron radiation XRD studies
2θ Position at room temperature | 2θ Position at 100 °C | 2θ Position at 200 °C | 2θ Position at 300 °C | Crystal structure | Miller index | Space group | JCPDS reference |
---|---|---|---|---|---|---|---|
20.10 (A) | 20.09 | 20.08 | 20.08 | Monoclinic/CuO | (200) | Cc(9) | 89-5899 |
20.48 (B) | 20.45 | 20.46 | 20.47 | (111) | |||
33.74 (F) | 33.73 | 33.74 | 33.74 | (022) | |||
41.57 (J) | 41.56 | 41.56 | 41.57 | (222) | |||
20.11 (A) | 20.11 | 20.10 | 20.09 | Cubic/CoCo2O3 | (222) | Fd-3m(227) | 78-1980 |
23.28 (C) | 23.28 | 23.26 | 23.26 | (400) | |||
33.76 (F) | 33.75 | 33.77 | 33.76 | (440) | |||
39.15 (G) | 39.16 | 39.14 | 39.13 | (622) | |||
20.11 (A) | 20.10 | 20.09 | 20.10 | Hexagonal/CoO | (101) | P63mc(186) | 89-2803 |
33.16 (E) | 33.13 | 33.15 | 33.14 | (103) | |||
39.91 (H) | 39.90 | 39.89 | 39.89 | (202) | |||
40.98 (I) | 40.96 | 40.97 | 40.97 | (104) | |||
23.84 (D) | 23.82 | 23.83 | 23.83 | Rhombohedral/CoCuO2 | (221) | R-3m(166) | 74-1855 |
33.74 (F) | 33.73 | 33.73 | 33.74 | (444) | |||
39.90 (H) | 39.90 | 39.89 | 39.89 | (020) | |||
41.57 (J) | 41.57 | 41.57 | 41.56 | (131) | |||
20.48 (B) | 20.84 | 20.47 | 20.47 | Orthorhombic/CoCu2O3 | (301) | Pmmn(59) | 76-0442 |
23.84 (D) | 23.83 | 23.84 | 23.83 | (020) | |||
33.74 (F) | 33.74 | 33.73 | 33.74 | (302) | |||
39.10 (G) | 39.10 | 39.10 | 39.09 | (620) |
Samples | Elements | Atomic percentages (at.%) of elements -------------------------------- | |
---|---|---|---|
Before etching | After etching | ||
CuxCoyOz | Cu | 12.54 | 28.66 |
Co | 11.67 | 33.51 | |
O | 43.11 | 33.82 | |
C | 32.67 | 4.01 | |
CuxCoyOz + 0.1 wt.% GO | Cu | 14.46 | 30.57 |
Co | 20.58 | 35.45 | |
O | 40.92 | 28.66 | |
C | 24.04 | 5.32 | |
CuxCoyOz + 0.5 wt.% GO | Cu | 19.13 | 29.87 |
Co | 20.27 | 34.66 | |
O | 36.08 | 30.09 | |
C | 24.52 | 5.38 | |
CuxCoyOz + 1.0 wt.% GO | Cu | 12.96 | 30.35 |
Co | 15.75 | 36.71 | |
O | 40.55 | 27.41 | |
C | 30.74 | 5.54 | |
CuxCoyOz + 1.5 wt.% GO | Cu | 14.41 | 28.47 |
Co | 17.83 | 30.02 | |
O | 39.03 | 35.19 | |
C | 28.73 | 6.32 |
Table 3. Atomic compositions of CuxCoyOz thin film coatings with and without graphene oxide addition before and after etching as estimated via XPS measurements
Samples | Elements | Atomic percentages (at.%) of elements -------------------------------- | |
---|---|---|---|
Before etching | After etching | ||
CuxCoyOz | Cu | 12.54 | 28.66 |
Co | 11.67 | 33.51 | |
O | 43.11 | 33.82 | |
C | 32.67 | 4.01 | |
CuxCoyOz + 0.1 wt.% GO | Cu | 14.46 | 30.57 |
Co | 20.58 | 35.45 | |
O | 40.92 | 28.66 | |
C | 24.04 | 5.32 | |
CuxCoyOz + 0.5 wt.% GO | Cu | 19.13 | 29.87 |
Co | 20.27 | 34.66 | |
O | 36.08 | 30.09 | |
C | 24.52 | 5.38 | |
CuxCoyOz + 1.0 wt.% GO | Cu | 12.96 | 30.35 |
Co | 15.75 | 36.71 | |
O | 40.55 | 27.41 | |
C | 30.74 | 5.54 | |
CuxCoyOz + 1.5 wt.% GO | Cu | 14.41 | 28.47 |
Co | 17.83 | 30.02 | |
O | 39.03 | 35.19 | |
C | 28.73 | 6.32 |
Fig. 2. Decoupling of XPS spectra of Cu2p3/2 peak of CuCoO thin film coatings: (a) CuxCoyOz, (b) CuxCoyOz + 0.1 wt.% GO, (c) CuxCoyOz + 0.5 wt.% GO, (d) CuxCoyOz + 1 wt.% GO, (e) CuxCoyOz + 1.5 wt.% GO.
Fig. 3. Decoupling of XPS spectra of Co2p3/2 peak of CuCoO thin film coatings: (a) CuxCoyOz, (b) CuxCoyOz + 0.1 wt.% GO, (c) CuxCoyOz + 0.5 wt.% GO, (d) CuxCoyOz + 1 wt.% GO, (e) CuxCoyOz + 1.5 wt.% GO.
Fig. 4. Decoupling of XPS spectra of O1s peak of CuCoO thin film coatings: (a) CuxCoyOz, (b) CuxCoyOz + 0.1 wt.% GO, (c) CuxCoyOz + 0.5 wt.% GO, (d) CuxCoyOz + 1 wt.% GO, (e) CuxCoyOz + 1.5 wt.% GO.
Fig. 5. Decoupling of XPS spectra of C1s peak of CuCoO thin film coatings: (a) CuxCoyOz, (b) CuxCoyOz + 0.1 wt.% GO, (c) CuxCoyOz + 0.5 wt.% GO, (d) CuxCoyOz + 1 wt.% GO, (e) CuxCoyOz + 1.5 wt.% GO.
Samples | Photoelectron lines | Bonding states | BE (eV) | FWHM (eV) | Percentage of the component (%) |
---|---|---|---|---|---|
CuxCoyOz | Cu2p3/2 | Metal Cu+ ions (Cu2O bonds) | 932.52(i) | 1.70 | 268.86 |
Metal Cu2+ ions (CuO bonds) | 934.55(ii) | 2.00 | 31.14 | ||
Co2p3/2 | Co3O4 | 779.40(i) | 2.00 | 24.54 | |
Co2O3 | 781.15(ii) | 3.26 | 37.34 | ||
Co2p3/2 sat. | Co3O4/Co2O3 | 785.96(iii) | 5.96 | 38.12 | |
O1s | Metal oxides (Cu/Co oxides) | 529.26(i) | 1.00 | 54.33 | |
Metal oxides (Cu/Co oxides) | 529.81(ii) | 1.30 | 28.07 | ||
Surface oxygen/C-O/O-C-O bonds | 531.37(iii) | 1.30 | 17.60 | ||
C1s | C-C/C-H bonds | 284.40(i) | 1.30 | 60.25 | |
C-OH/C-O-C bonds | 286.28(ii) | 1.25 | 23.01 | ||
C-O/O-C-O bonds | 288.14(iii) | 1.30 | 16.74 | ||
CuxCoyOz + 0.1 wt.% GO | Cu2p3/2 | Metal Cu+ ions (Cu2O bonds) | 932.53(i) | 1.80 | 74.03 |
Metal Cu2+ ions (CuO bonds) | 934.45(ii) | 2.20 | 25.97 | ||
Co2p3/2 | Co3O4 | 779.15(i) | 2.00 | 30.75 | |
Co2O3 | 780.94(ii) | 3.30 | 35.29 | ||
Co2p3/2 sat. | Co3O4/Co2O3 | 785.78(iii) | 6.00 | 33.96 | |
O1s | Metal oxides (Cu/Co oxides) | 529.24(i) | 1.07 | 60.10 | |
Metal oxides (Cu/Co oxides) | 529.78(ii) | 1.35 | 18.58 | ||
Surface oxygen/C-O/O-C-O bonds | 531.13(iii) | 1.50 | 21.31 | ||
C1s | C-C/C-H bonds | 284.45(i) | 1.32 | 72.82 | |
C-OH/C-O-C bonds | 286.62(ii) | 1.32 | 14.59 | ||
C-O/O-C-O bonds | 288.01(iii) | 1.32 | 12.59 | ||
CuxCoyOz + 0.5 wt.% GO | Cu2p3/2 | Metal Cu+ ions (Cu2O bonds) | 932.40((i) | 1.70 | 73.97 |
Metal Cu2+ ions (CuO bonds) | 934.30(ii) | 1.74 | 26.03 | ||
Co2p3/2 | Co3O4 | 779.12(i) | 2.00 | 28.66 | |
Co2O3 | 780.86(ii) | 3.30 | 34.08 | ||
Co2p3/2 sat. | Co3O4/Co2O3 | 785.71(iii) | 5.97 | 37.25 | |
O1s | Metal oxides (Cu/Co oxides) | 529.15(i) | 1.08 | 63.38 | |
Metal oxides (Cu/Co oxides) | 529.71(ii) | 1.32 | 13.97 | ||
Surface oxygen/C-O/O-C-O bonds | 531.10(iii) | 1.68 | 22.65 | ||
C1s | C-C/C-H bonds | 284.34(i) | 1.34 | 78.09 | |
C-OH/C-O-C bonds | 286.79(ii) | 1.32 | 11.24 | ||
C-O/O-C-O bonds | 288.58(iii) | 1.33 | 10.68 | ||
CuxCoyOz + 1 wt.% GO | Cu2p3/2 | Metal Cu+ ions (Cu2O bonds) | 932.34(i) | 1.77 | 67.96 |
Metal Cu2+ ions (CuO bonds) | 934.28(ii) | 2.20 | 32.04 | ||
Co2p3/2 | Co3O4 | 779.08(i) | 2.00 | 25.47 | |
Co2O3 | 780.80(ii) | 3.29 | 37.26 | ||
Co2p3/2 sat. | Co3O4/Co2O3 | 785.67(iii) | 5.99 | 37.27 | |
O1s | Metal oxides (Cu/Co oxides) | 529.06(i) | 1.10 | 61.14 | |
Metal oxides (Cu/Co oxides) | 529.49(ii) | 1.35 | 28.93 | ||
Surface oxygen/C-O/O-C-O bonds | 530.98(iii) | 1.39 | 9.93 | ||
C1s | C-C/C-H bonds | 284.37(i) | 1.40 | 62.84 | |
C-OH/C-O-C bonds | 286.32(ii) | 1.36 | 10.05 | ||
C-O/O-C-O bonds | 288.15(iii) | 1.35 | 27.00 | ||
CuxCoyOz + 1.5 wt.% GO | Cu2p3/2 | Metal Cu+ ions (Cu2O bonds) | 932.30(i) | 1.70 | 68.08 |
Metal Cu2+ ions (CuO bonds) | 934.25(ii) | 2.20 | 31.92 | ||
Co2p3/2 | Co3O4 | 779.07(i) | 2.08 | 30.65 | |
Co2O3 | 780.73(ii) | 3.30 | 33.33 | ||
Co2p3/2 sat. | Co3O4/Co2O3 | 785.64(iii) | 5.99 | 36.02 | |
O1s | Metal oxides (Cu/Co oxides) | 529.03(i) | 1.08 | 80.16 | |
Metal oxides (Cu/Co oxides) | 529.45(ii) | 1.37 | 9.65 | ||
Surface oxygen/C-O/O-C-O bonds | 530.98(iii) | 1.35 | 10.19 | ||
C1s | C-C/C-H bonds | 284.60(i) | 1.37 | 77.68 | |
C-OH/C-O-C bonds | 286.55(ii) | 1.35 | 15.17 | ||
C-O/O-C-O bonds | 288.81(iii) | 1.34 | 7.14 |
Table 4. Fitting results of the XPS data of sol-gel derived CuxCoyOz coatings with and without graphene oxide addition for the core level binding energies
Samples | Photoelectron lines | Bonding states | BE (eV) | FWHM (eV) | Percentage of the component (%) |
---|---|---|---|---|---|
CuxCoyOz | Cu2p3/2 | Metal Cu+ ions (Cu2O bonds) | 932.52(i) | 1.70 | 268.86 |
Metal Cu2+ ions (CuO bonds) | 934.55(ii) | 2.00 | 31.14 | ||
Co2p3/2 | Co3O4 | 779.40(i) | 2.00 | 24.54 | |
Co2O3 | 781.15(ii) | 3.26 | 37.34 | ||
Co2p3/2 sat. | Co3O4/Co2O3 | 785.96(iii) | 5.96 | 38.12 | |
O1s | Metal oxides (Cu/Co oxides) | 529.26(i) | 1.00 | 54.33 | |
Metal oxides (Cu/Co oxides) | 529.81(ii) | 1.30 | 28.07 | ||
Surface oxygen/C-O/O-C-O bonds | 531.37(iii) | 1.30 | 17.60 | ||
C1s | C-C/C-H bonds | 284.40(i) | 1.30 | 60.25 | |
C-OH/C-O-C bonds | 286.28(ii) | 1.25 | 23.01 | ||
C-O/O-C-O bonds | 288.14(iii) | 1.30 | 16.74 | ||
CuxCoyOz + 0.1 wt.% GO | Cu2p3/2 | Metal Cu+ ions (Cu2O bonds) | 932.53(i) | 1.80 | 74.03 |
Metal Cu2+ ions (CuO bonds) | 934.45(ii) | 2.20 | 25.97 | ||
Co2p3/2 | Co3O4 | 779.15(i) | 2.00 | 30.75 | |
Co2O3 | 780.94(ii) | 3.30 | 35.29 | ||
Co2p3/2 sat. | Co3O4/Co2O3 | 785.78(iii) | 6.00 | 33.96 | |
O1s | Metal oxides (Cu/Co oxides) | 529.24(i) | 1.07 | 60.10 | |
Metal oxides (Cu/Co oxides) | 529.78(ii) | 1.35 | 18.58 | ||
Surface oxygen/C-O/O-C-O bonds | 531.13(iii) | 1.50 | 21.31 | ||
C1s | C-C/C-H bonds | 284.45(i) | 1.32 | 72.82 | |
C-OH/C-O-C bonds | 286.62(ii) | 1.32 | 14.59 | ||
C-O/O-C-O bonds | 288.01(iii) | 1.32 | 12.59 | ||
CuxCoyOz + 0.5 wt.% GO | Cu2p3/2 | Metal Cu+ ions (Cu2O bonds) | 932.40((i) | 1.70 | 73.97 |
Metal Cu2+ ions (CuO bonds) | 934.30(ii) | 1.74 | 26.03 | ||
Co2p3/2 | Co3O4 | 779.12(i) | 2.00 | 28.66 | |
Co2O3 | 780.86(ii) | 3.30 | 34.08 | ||
Co2p3/2 sat. | Co3O4/Co2O3 | 785.71(iii) | 5.97 | 37.25 | |
O1s | Metal oxides (Cu/Co oxides) | 529.15(i) | 1.08 | 63.38 | |
Metal oxides (Cu/Co oxides) | 529.71(ii) | 1.32 | 13.97 | ||
Surface oxygen/C-O/O-C-O bonds | 531.10(iii) | 1.68 | 22.65 | ||
C1s | C-C/C-H bonds | 284.34(i) | 1.34 | 78.09 | |
C-OH/C-O-C bonds | 286.79(ii) | 1.32 | 11.24 | ||
C-O/O-C-O bonds | 288.58(iii) | 1.33 | 10.68 | ||
CuxCoyOz + 1 wt.% GO | Cu2p3/2 | Metal Cu+ ions (Cu2O bonds) | 932.34(i) | 1.77 | 67.96 |
Metal Cu2+ ions (CuO bonds) | 934.28(ii) | 2.20 | 32.04 | ||
Co2p3/2 | Co3O4 | 779.08(i) | 2.00 | 25.47 | |
Co2O3 | 780.80(ii) | 3.29 | 37.26 | ||
Co2p3/2 sat. | Co3O4/Co2O3 | 785.67(iii) | 5.99 | 37.27 | |
O1s | Metal oxides (Cu/Co oxides) | 529.06(i) | 1.10 | 61.14 | |
Metal oxides (Cu/Co oxides) | 529.49(ii) | 1.35 | 28.93 | ||
Surface oxygen/C-O/O-C-O bonds | 530.98(iii) | 1.39 | 9.93 | ||
C1s | C-C/C-H bonds | 284.37(i) | 1.40 | 62.84 | |
C-OH/C-O-C bonds | 286.32(ii) | 1.36 | 10.05 | ||
C-O/O-C-O bonds | 288.15(iii) | 1.35 | 27.00 | ||
CuxCoyOz + 1.5 wt.% GO | Cu2p3/2 | Metal Cu+ ions (Cu2O bonds) | 932.30(i) | 1.70 | 68.08 |
Metal Cu2+ ions (CuO bonds) | 934.25(ii) | 2.20 | 31.92 | ||
Co2p3/2 | Co3O4 | 779.07(i) | 2.08 | 30.65 | |
Co2O3 | 780.73(ii) | 3.30 | 33.33 | ||
Co2p3/2 sat. | Co3O4/Co2O3 | 785.64(iii) | 5.99 | 36.02 | |
O1s | Metal oxides (Cu/Co oxides) | 529.03(i) | 1.08 | 80.16 | |
Metal oxides (Cu/Co oxides) | 529.45(ii) | 1.37 | 9.65 | ||
Surface oxygen/C-O/O-C-O bonds | 530.98(iii) | 1.35 | 10.19 | ||
C1s | C-C/C-H bonds | 284.60(i) | 1.37 | 77.68 | |
C-OH/C-O-C bonds | 286.55(ii) | 1.35 | 15.17 | ||
C-O/O-C-O bonds | 288.81(iii) | 1.34 | 7.14 |
Coatings name | Band-gap, Eg (eV) |
---|---|
CuxCoyOz | 2.4 |
CuxCoyOz + 0.1wt.% GO | 2.2 |
CuxCoyOz + 0.5wt.% GO | 2.1 |
CuxCoyOz + 1wt.% GO | 1.7 |
CuxCoyOz + 1.5wt.% GO | 1.6 |
Table 5. Energy band-gaps of CuxCoyOz thin film coatings with the addition of graphene oxide
Coatings name | Band-gap, Eg (eV) |
---|---|
CuxCoyOz | 2.4 |
CuxCoyOz + 0.1wt.% GO | 2.2 |
CuxCoyOz + 0.5wt.% GO | 2.1 |
CuxCoyOz + 1wt.% GO | 1.7 |
CuxCoyOz + 1.5wt.% GO | 1.6 |
Sample compositions | Absorptance, α (%) | Emittance, ε (%) | Selectivity, s = α/ε |
---|---|---|---|
CuxCoyOz | 83.40 | 5.70 | 14.63 |
CuxCoyOz + 0.1 wt.% GO | 84.00 | 5.27 | 15.85 |
CuxCoyOz + 0.5 wt.% GO | 84.30 | 4.80 | 17.56 |
CuxCoyOz + 1 wt.% GO | 85.60 | 3.20 | 26.75 |
CuxCoyOz + 1.5 wt.% GO | 86.14 | 2.97 | 29.01 |
Table 6. Optical properties of the CuxCoyOz thin film coatings with the addition of graphene oxide
Sample compositions | Absorptance, α (%) | Emittance, ε (%) | Selectivity, s = α/ε |
---|---|---|---|
CuxCoyOz | 83.40 | 5.70 | 14.63 |
CuxCoyOz + 0.1 wt.% GO | 84.00 | 5.27 | 15.85 |
CuxCoyOz + 0.5 wt.% GO | 84.30 | 4.80 | 17.56 |
CuxCoyOz + 1 wt.% GO | 85.60 | 3.20 | 26.75 |
CuxCoyOz + 1.5 wt.% GO | 86.14 | 2.97 | 29.01 |
|
[1] | P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion [J]. J. Mater. Sci. Technol., 2020, 45(0): 98-107. |
[2] | Enkang Hao, Yulong An, Xia Liu, Yijing Wang, Huidi Zhou, Fengyuan Yan. Effect of annealing treatment on microstructures, mechanical properties and cavitation erosion performance of high velocity oxy-fuel sprayed NiCoCrAlYTa coating [J]. J. Mater. Sci. Technol., 2020, 53(0): 19-31. |
[3] | Cuiyu Zhang, Xuan Ge, Qiaodan Hu, Fan Yang, Pingsheng Lai, Caijuan Shi, Wenquan Lu, Jianguo Li. Atomic scale structural analysis of liquid immiscibility in binary silicate melt: A case of SiO2‒TiO2 system [J]. J. Mater. Sci. Technol., 2020, 53(0): 53-60. |
[4] | Inime Ime Udoh, Hongwei Shi, Mohammad Soleymanibrojeni, Fuchun Liu, En-Hou Han. Inhibition of galvanic corrosion in Al/Cu coupling model by synergistic combination of 3-Amino-1,2,4-triazole-5-thiol and cerium chloride [J]. J. Mater. Sci. Technol., 2020, 44(0): 102-115. |
[5] | Heng Chen, Zifan Zhao, Huimin Xiang, Fu-Zhi Dai, Wei Xu, Kuang Sun, Jiachen Liu, Yanchun Zhou. High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: A novel high temperature stable thermal barrier material [J]. J. Mater. Sci. Technol., 2020, 48(0): 57-62. |
[6] | Jingchen Li, Liangliang Wei, Jian He, Hao Chen, Hongbo Guo. The role of Re in improving the oxidation-resistance of a Re modified PtAl coating on Mo-rich single crystal superalloy [J]. J. Mater. Sci. Technol., 2020, 58(0): 63-72. |
[7] | Haifeng Chen, Yizhou Shen, Zhaoru He, Zhengwei Wu, Xinyu Xie. Facilely fabricating superhydrophobic coated-mesh materials for effective oil-water separation: Effect of mesh size towards various organic liquids [J]. J. Mater. Sci. Technol., 2020, 51(0): 151-160. |
[8] | Yong-Il Kim, Ki-Bok Kim, Miso Kim. Characterization of lattice parameters gradient of Cu(In1-xGax)Se2 absorbing layer in thin-film solar cell by glancing incidence X-ray diffraction technique [J]. J. Mater. Sci. Technol., 2020, 51(0): 193-201. |
[9] | Anil Kunwar, Yuri Amorim Coutinho, Johan Hektor, Haitao Ma, Nele Moelans. Integration of machine learning with phase field method to model the electromigration induced Cu6Sn5 IMC growth at anode side Cu/Sn interface [J]. J. Mater. Sci. Technol., 2020, 59(0): 203-219. |
[10] | Paul C. Uzoma, Fuchun Liu, En-Hou Han. Multi-stimuli-triggered and self-repairable fluorocarbon organic coatings with urea-formaldehyde microcapsules filled with fluorosilane [J]. J. Mater. Sci. Technol., 2020, 45(0): 70-83. |
[11] | Lin Chen, Mingyu Hu, Jun Guo, Xiaoyu Chong, Jing Feng. Mechanical and thermal properties of RETaO4 (RE = Yb, Lu, Sc) ceramics with monoclinic-prime phase [J]. J. Mater. Sci. Technol., 2020, 52(0): 20-28. |
[12] | C. Garcia-Cabezon, C. Garcia-Hernandez, M.L. Rodriguez-Mendez, F. Martin-Pedrosa. A new strategy for corrosion protection of porous stainless steel using polypyrrole films [J]. J. Mater. Sci. Technol., 2020, 37(0): 85-95. |
[13] | Minghe Zhang, Haiyang Chen, Youkang Wang, Shengjie Wang, Runguang Li, Shilei Li, Yan-Dong Wang. Deformation-induced martensitic transformation kinetics and correlative micromechanical behavior of medium-Mn transformation-induced plasticity steel [J]. J. Mater. Sci. Technol., 2019, 35(8): 1779-1786. |
[14] | Zongye Ding, Qiaodan Hu, Wenquan Lu, Xuan Ge, Sheng Cao, Siyu Sun, Tianxing Yang, Mingxu Xia, Jianguo Li. In-situ study on hydrogen bubble evolution in the liquid Al/solid Ni interconnection by synchrotron radiation X-ray radiography [J]. J. Mater. Sci. Technol., 2019, 35(7): 1388-1392. |
[15] | Chang-Yang Li, Xiao-Li Fan, Rong-Chang Zeng, Lan-Yue Cui, Shuo-Qi Li, Fen Zhang, Qing-Kun He, M. Bobby Kannan, , Dong-Chu Chen, Shao-Kang Guan. Corrosion resistance of in-situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31—Influence of EDTA [J]. J. Mater. Sci. Technol., 2019, 35(6): 1088-1098. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||