J. Mater. Sci. Technol. ›› 2016, Vol. 32 ›› Issue (11): 1161-1170.DOI: 10.1016/j.jmst.2016.08.024
• Orginal Article • Previous Articles Next Articles
Xu Zhigang,A. Hodgson Michael,Cao Peng()
Received:
2016-02-02
Accepted:
2016-08-23
Online:
2016-11-20
Published:
2017-02-16
Contact:
Cao Peng
Xu Zhigang,A. Hodgson Michael,Cao Peng. Effects of Mechanical Milling and Sintering Temperature on the Densification, Microstructure and Tensile Properties of the Fe-Mn-Si Powder Compacts[J]. J. Mater. Sci. Technol., 2016, 32(11): 1161-1170.
Powder | Particle size (µm) -------------- | Impurities (wt%) --------------- | ||||
---|---|---|---|---|---|---|
d10 | d50 | d90 | O | C | N | |
Fe | 19.96 | 38.62 | 68.13 | 0.18 | 0.07 | 0.02 |
Mn | 14.91 | 38.7 | 78.2 | 0.11 | 0.07 | 0.07 |
Si | 18.17 | 43.41 | 90.25 | 0.09 | 0.03 | 0.05 |
Table 1. Particle size of the starting powder
Powder | Particle size (µm) -------------- | Impurities (wt%) --------------- | ||||
---|---|---|---|---|---|---|
d10 | d50 | d90 | O | C | N | |
Fe | 19.96 | 38.62 | 68.13 | 0.18 | 0.07 | 0.02 |
Mn | 14.91 | 38.7 | 78.2 | 0.11 | 0.07 | 0.07 |
Si | 18.17 | 43.41 | 90.25 | 0.09 | 0.03 | 0.05 |
Fig. 3. Mn concentration at the cross section of the sintered Fe-Mn-Si alloys at different temperatures for 3 h: (a) BE compacts sintered at 1200 °C; (b) BE compacts sintered at 1300 °C; (c) MM compacts sintered at 1300 °C.
Powder mixture | Sintering temperature (°C) | Thickness of MDR (µm) | Chemical composition (wt%)a ----------------------------------- | |||
---|---|---|---|---|---|---|
Mn | Si | O | Fe | |||
BE | 1000 | —b | 28.1 ± 1.25 | 3.08 ± 0.58 | 0.39 ± 0.05 | Bal. |
1100 | 650 ± 35 | 27.8 ± 1.42 | 3.22 ± 0.5 | 0.37 ± 0.06 | Bal. | |
1200 | 1250 ± 56 | 28.2 ± 1.2 | 3.25 ± 0.2 | 0.41 ± 0.05 | Bal. | |
1300 | —c | 5.1 ± 0.8 | 3.51 ± 0.3 | 0.42 ± 0.08 | Bal. | |
MM | 1000 | —b | 27.6 ± 0.87 | 2.9 ± 0.39 | 0.49 ± 0.09 | Bal. |
1100 | 255 ± 23 | 28.1 ± 1.35 | 3.15 ± 0.23 | 0.45 ± 0.07 | Bal. | |
1200 | 460 ± 31 | 27.89 ± 0.61 | 3.36 ± 0.15 | 0.42 ± 0.05 | Bal. | |
1300 | 550 ± 45 | 27.6 ± 1.1 | 3.16 ± 0.25 | 0.45 ± 0.09 | Bal. |
Table 2. Thickness of MDR and the average chemical compositions of the sintered Fe-28Mn-3Si compacts
Powder mixture | Sintering temperature (°C) | Thickness of MDR (µm) | Chemical composition (wt%)a ----------------------------------- | |||
---|---|---|---|---|---|---|
Mn | Si | O | Fe | |||
BE | 1000 | —b | 28.1 ± 1.25 | 3.08 ± 0.58 | 0.39 ± 0.05 | Bal. |
1100 | 650 ± 35 | 27.8 ± 1.42 | 3.22 ± 0.5 | 0.37 ± 0.06 | Bal. | |
1200 | 1250 ± 56 | 28.2 ± 1.2 | 3.25 ± 0.2 | 0.41 ± 0.05 | Bal. | |
1300 | —c | 5.1 ± 0.8 | 3.51 ± 0.3 | 0.42 ± 0.08 | Bal. | |
MM | 1000 | —b | 27.6 ± 0.87 | 2.9 ± 0.39 | 0.49 ± 0.09 | Bal. |
1100 | 255 ± 23 | 28.1 ± 1.35 | 3.15 ± 0.23 | 0.45 ± 0.07 | Bal. | |
1200 | 460 ± 31 | 27.89 ± 0.61 | 3.36 ± 0.15 | 0.42 ± 0.05 | Bal. | |
1300 | 550 ± 45 | 27.6 ± 1.1 | 3.16 ± 0.25 | 0.45 ± 0.09 | Bal. |
Fig. 5. Sintered density of BE and MM compacts sintered for 3 h as a function of sintering temperature, and the relative density of BE and MM green compacts at room temperature (Note: the relative density of the BE alloys sintered at 1300 °C is not given, due to significant sublimation of Mn during sintering at this temperature, as shown in Table 2.).
Fig. 10. SEM micrographs of BE compacts sintered at (a) 1000 °C, (b) 1100 °C, (c) 1200 °C, (d) 1300 °C; (e) EDX spectrum from the square box ‘A’ in (a), and (f) EDX spectrum from the square box ‘B’ in (b).
Fig. 12. Tensile stress-strain curves of Fe-28Mn-3Si compacts sintered at various temperatures: (a) BE compact at 1100 °C; (b) BE compact at 1300 °C; (c) MM compact at 1100 °C; (d) MM compact at 1300 °C.
Type of sintered powder mixture | Sintering temperature (°C) | Relative density (%) | Ultimate tensile strength (MPa) | Fracture strain (%) | Young's modulus (GPa) |
---|---|---|---|---|---|
Blended elemental (BE) | 1000 | 63.5 ± 0.7 | 47.6 ± 4.5 | — | — |
1100 | 64.9 ± 0.8 | 84.1 ± 4.2 | 1.75 ± 0.45 | 19.8 ± 0.63 | |
1200 | 68.2 ± 1.1 | 114.2 ± 9.8 | 2.66 ± 0.52 | 30.43 ± 1.74 | |
1300 | — | 154.9 ± 12.6 | 3.26 ± 0.63 | 30.28 ± 0.97 | |
Mechanical milled (MM) | 1000 | 64.8 ± 0.5 | 89.5 ± 5.2 | 1.08 ± 0.23 | 45 ± 2.61 |
1100 | 77.3 ± 0.9 | 214.5 ± 12.1 | 5.1 ± 0.81 | 62.14 ± 1.82 | |
1200 | 85.3 ± 1.3 | 328.2 ± 27.3 | 8.45 ± 1.33 | 79.45 ± 2.69 | |
1300 | 90.6 ± 1.1 | 454.5 ± 30.2 | 11.86 ± 1.12 | 102.62 ± 4.31 |
Table 3. Static tensile properties of Fe-Mn-Si alloys sintered for 3 h at different sintering temperatures
Type of sintered powder mixture | Sintering temperature (°C) | Relative density (%) | Ultimate tensile strength (MPa) | Fracture strain (%) | Young's modulus (GPa) |
---|---|---|---|---|---|
Blended elemental (BE) | 1000 | 63.5 ± 0.7 | 47.6 ± 4.5 | — | — |
1100 | 64.9 ± 0.8 | 84.1 ± 4.2 | 1.75 ± 0.45 | 19.8 ± 0.63 | |
1200 | 68.2 ± 1.1 | 114.2 ± 9.8 | 2.66 ± 0.52 | 30.43 ± 1.74 | |
1300 | — | 154.9 ± 12.6 | 3.26 ± 0.63 | 30.28 ± 0.97 | |
Mechanical milled (MM) | 1000 | 64.8 ± 0.5 | 89.5 ± 5.2 | 1.08 ± 0.23 | 45 ± 2.61 |
1100 | 77.3 ± 0.9 | 214.5 ± 12.1 | 5.1 ± 0.81 | 62.14 ± 1.82 | |
1200 | 85.3 ± 1.3 | 328.2 ± 27.3 | 8.45 ± 1.33 | 79.45 ± 2.69 | |
1300 | 90.6 ± 1.1 | 454.5 ± 30.2 | 11.86 ± 1.12 | 102.62 ± 4.31 |
Fig. 15. Fracture surfaces of the Fe-28Mn-3Si alloys sintered from BE powder at different temperatures: (a) 1200 °C; (b) enlarged square area in (a); (c) 1300 °C; (d) enlarged square area in (c).
Fig. 16. Fracture surfaces of the as-sintered Fe-28Mn-3Si alloys sintered from MM powder at different temperatures: (a) 1100 °C; (b) 1200 °C; (c) enlarged square area in (b); (d) 1300 °C.
|
[1] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[2] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[3] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[4] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[5] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[6] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[7] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[8] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[9] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[10] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[11] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[12] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[13] | Zhen Chen, Daoyong Cong, Yin Zhang, Xiaoming Sun, Runguang Li, Shaohui Li, Zhi Yang, Chao Song, Yuxian Cao, Yang Ren, Yandong Wang. Intrinsic two-way shape memory effect in a Ni-Mn-Sn metamagnetic shape memory microwire [J]. J. Mater. Sci. Technol., 2020, 45(0): 44-48. |
[14] | Peng Li, Shuai Wang, Yueqing Xia, Xiaohu Hao, Honggang Dong. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy [J]. J. Mater. Sci. Technol., 2020, 45(0): 59-69. |
[15] | Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48(0): 140-145. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||