Please wait a minute...
J. Mater. Sci. Technol.  2017, Vol. 33 Issue (4): 352-358    DOI: 10.1016/j.jmst.2016.09.012
Orginal Article Current Issue | Archive | Adv Search |
Phase Selection in Solidification of Undercooled Co-B Alloys
Wei X.X.1, Xu W.2, Kang J.L.1, Ferry M.2, Li J.F.1,*()
1 State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Australian Research Council Centre of Excellence for Design in Light Metals, School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
Download:  HTML  PDF(3885KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A series Co-(18.5-20.7) at.% B melts encompassing the eutectic composition (Co81.5B18.5) were solidified at different degrees of undercooling. It is found that the metastable Co23B6 phase solidifies as a substitute for the stable Co3B phase in the alloy melts undercooled above a critical undercooling value of ~60 K. The Co23B6 and α-Co phases make up a metastable eutectic. The corresponding eutectic composition and temperature are Co80.4B19.6 and 1343 K, respectively. On exposure of the metastable Co23B6 phase at a given temperature above 1208 K, it does not decompose even after several hours. But it transforms by a eutectoid reaction to α-Co + Co3B at lower temperature.

Key words:  Undercooling      Rapid solidification      Metastable phase diagram      Structure evolution     
Received:  13 December 2015      Published:  24 May 2017
Corresponding Authors:  Li J.F.     E-mail:  jfli@sjtu.edu.cn

Cite this article: 

Wei X.X., Xu W., Kang J.L., Ferry M., Li J.F.. Phase Selection in Solidification of Undercooled Co-B Alloys. J. Mater. Sci. Technol., 2017, 33(4): 352-358.

URL: 

http://www.jmst.org/EN/10.1016/j.jmst.2016.09.012     OR     http://www.jmst.org/EN/Y2017/V33/I4/352

Fig. 1.  Heating DSC curves of hypoeutectic, eutectic and hypereutectic alloy samples solidified at an undercooling below 5 K (heating rate = 20 K/min).
Fig. 2.  Microstructures of the bulk Co81.5B18.5 eutectic alloy solidified at undercooling of (a) 5 K, (b) 55 K, (c) 65 K and (d) 75 K. (e) XRD patterns of 55 K and 65 K undercooled samples and (f) cooling curves of four samples (Te is the equilibrium eutectic temperature and Tme the metastable eutectic temperature).
Fig. 3.  Microstructures of the bulk Co80.4B19.6 alloy solidified at an undercooling of (a) 20 K and (b) 68 K, and (c) their corresponding XRD patterns and (d) cooling curves (Tl is the equilibrium liquidus temperature, Te the equilibrium eutectic temperature and Tme the metastable eutectic temperature).
Fig. 4.  Microstructures of the bulk Co79.3B20.7 (Co23B6) alloy solidified at an undercooling of (a) 17 K and (b) 70 K, and (c) their corresponding XRD patterns and (d) cooling curves (Tl is the liquidus temperature, Te the equilibrium eutectic temperature and Tml the melting temperature of metastable Co23B6 phase).
Fig. 5.  (a) DSC curves of the Co81.5B18.5, Co80.4B19.6 and Co79.3B20.7 alloys consisting fully of metastable Co23B6 phase at a heating rate of 20 K/min, (b) DSC curves of the Co79.3B20.7 alloy consisting fully of metastable Co23B6 phase during isothermal annealing at various temperatures, (c) microstructure of the alloy isothermally annealed to the end of the decomposition and (d) the corresponding XRD patterns.
Fig. 6.  Co-rich region of the Co-B phase diagram. The solid lines correspond to the equilibrium diagram[21], while the dashed lines show the estimated metastable phase diagram. The symbols denote the phase constitution of typical bulk alloy samples solidified at different undercoolings.
[1] T. Zhang, F. Liu, H.F. Wang, G.C. Yang,Scr. Mater, 63(2010), pp. 43-46
doi: 10.1016/j.scriptamat.2010.03.006
[2] J.F. Li, W.Q. Jie, G.C. Yang, Y.H. Zhou,Acta Mater, 50(2002), pp. 1797-1807
doi: 10.1016/S1359-6454(02)00032-0
[3] J.F. Li, Y.C. Liu, Y.L. Lu, G.C. Yang, Y.H. Zhou,J. Cryst. Growth, 192(1998), pp. 462-470
doi: 10.1016/S0022-0248(98)00399-6
[4] J.F. Li, Y.H. Zhou, G.C. Yang,J. Cryst. Growth, 206(1999), pp. 141-146
doi: 10.1016/S0022-0248(99)00284-5
[5] E.G. Castle, A.M. Mullis, R.F. Cochrane,Acta Mater, 77(2014), pp. 76-84
doi: 10.1016/j.actamat.2014.05.043
[6] J.F. Li, X.L. Li, L. Liu, S.Y. Lu,J. Mater. Res, 23(2008), pp. 2139-2148
doi: 10.1557/JMR.2008.0259
[7] C. Yang, J. Gao, Y.K. Zhang, M. Kolbe, D.M. Herlach,Acta Mater, 59(2011), pp. 3915-3926
doi: 10.1016/j.actamat.2011.03.016
[8] X.X. Wei, X. Lin, W. Xu, Q.S. Huang, M. Ferry, J.F. Li, Y.H. Zhou,Acta Mater, 95(2015), pp. 44-56
doi: 10.1016/j.actamat.2015.05.014
[9] L. Liu, X.X. Wei, Q.S. Huang, J.F. Li, X.H. Cheng, Y.H. Zhou,J. Cryst. Growth, 358(2012), pp. 20-28
doi: 10.1016/j.jcrysgro.2012.07.041
[10] K. Eckler, F. Gartner, H. Assadi, A.F. Norman, A.L. Greer, D.H. Herlach,Mater. Sci. Eng. A, 226-228(1997), pp. 410-414
[11] S.A. Moir, D.M. Herlach,Acta Mater, 45(1997), pp. 2827-2837
doi: 10.1016/S1359-6454(96)00376-X
[12] C. Notthoff, B. Feuerbacher, H. Franz, D.M. Herlach, D. Holland-Moritz,Phys. Rev. Lett, 86(2001), pp. 1038-1041
doi: 10.1103/PhysRevLett.86.1038 pmid: 11178004
[13] S.N. Ojha,Mater. Sci. Eng. A, 304-306(2001), pp. 114-118
[14] J.F. Xu, F. Liu, B. Dang,Metall. Mater. Trans. A, 44(2012), pp. 1401-1408
[15] F. Liu, J.G. Xu, D. Zhang, Z.Y. Jian,Metall. Mater. Trans. A, 45(2014), pp. 4810-4819
doi: 10.1007/s11661-014-2460-5
[16] L. Battezzati, C. Antonione, M. Baricco,J. Alloys Compd, 247(1997), pp. 164-171
doi: 10.1016/S0925-8388(96)02570-4
[17] C.L. Yang, F. Liu, G.C. Yang, Y.Z. Chen, N. Liu, Y.H. Zhou,J. Alloys Compd, 441(2007), pp. 101-106
doi: 10.1016/j.jallcom.2006.09.074
[18] C.L. Yang, F. Liu, G.C. Yang, Y.H. Zhou,J. Cryst. Growth, 311(2009), pp. 404-412
doi: 10.1016/j.jcrysgro.2008.11.025
[19] C.L. Yang, G.C. Yang, F. Liu, Y.Z. Chen, N. Liu, D. Chen, Y.H. Zhou,Physica B, 373(2006), pp. 136-141
doi: 10.1016/j.physb.2005.11.112
[20] P.R. Ohodnicki, N.C. Cates, D.E. Laughlin, M.E. McHenry, M. Widom, Phys. Rev. B, 78(2008), p. 144414
doi: 10.1103/PhysRevB.78.144414
[21] P.K. Liao, K.E. Spear, T.B. Massalski, H. Okamoto (Eds.),Binary Alloy Phase Diagrams (2nd ed.), ASM International, Materials Park, OH (1990)
[22] J.-D. Schobel, H.H. Stadelmaier, Z. Metallkd, 54(1966), pp. 323-325
[23] M.F.X. Gigliotti, G.A. Colligan, G.L.F. Powell, Metall. Trans, 1(1970), pp. 891-897
[24] S.T. Bluni, M.R. Notis, A.R. Marder,Acta. Metall. Mater, 43(1995), pp. 1775-1782
doi: 10.1016/0956-7151(94)00397-Z
[25] R.S. Barclay, P. Niessen, H.W. Kerr,J. Cryst. Growth, 20(1973), pp. 175-182
doi: 10.1016/0022-0248(73)90001-8
[26] Y.K. Zhang, J. Gao, M. Kolbe, S. Klein, C. Yang, H. Yasuda, D.M. Herlach, C.A. Gandin,Acta Mater, 61(2013), pp. 4861-4873
doi: 10.1016/j.actamat.2013.04.061
[27] Q. Wang, L.-M. Wang, M.Z. Ma, S. Binder, T. Volkmann, D.M. Herlach, J.S. Wang, Q.G. Xue, Y.J. Tian, R.P. Liu, Phys. Rev. B, 83(2011), p. 014202
doi: 10.1103/PhysRevB.83.014202
[1] Yulin Liu, Lei Luo, Chaofei Han, Liangyun Ou, Jijie Wang, Chunzhong Liu. Effect of Fe, Si and Cooling Rate on the Formation of Fe- and Mn-rich Intermetallics in Al-5Mg-0.8Mn Alloy[J]. J. Mater. Sci. Technol., 2016, 32(4): 305-313.
[2] Xiang Xiao, Guoquan Liu, Benfu Hu, Jinsan Wang, Wenbin Ma. Microstructure Stability of V and Ta Microalloyed 12%Cr Reduced Activation Ferrite/Martensite Steel during Long-term Aging at 650 °C[J]. J. Mater. Sci. Technol., 2015, 31(3): 311-319.
[3] Guhui Gao, Han Zhang, Xiaolu Gui, Zhunli Tan, Bingzhe Bai. Tempering Behavior of Ductile 1700 MPa Mn-Si-Cr-C Steel Treated by Quenching and Partitioning Process Incorporating Bainite Formation[J]. J. Mater. Sci. Technol., 2015, 31(2): 199-204.
[4] Yanhong Jing, Zhi Zheng, Enze Liu, Yi Guo. Microstructural Evolution of a Ni-base Alloy DZ468 Joint Bonded with a New Co-base Filler[J]. J. Mater. Sci. Technol., 2014, 30(5): 480-486.
[5] Hongjie Jiang, Shanshan Cao, Changbo Ke, Xiao Ma, Xinping Zhang. Fine-Grained Bulk NiTi Shape Memory Alloy Fabricated by Rapid Solidification Process and Its Mechanical Properties and Damping Performance[J]. J. Mater. Sci. Technol., 2013, 29(9): 855-862.
[6] Na Li, Junwei Zhang, Qian Xu, Lulu Zhai, Shengli Li, Jiguang Li. Rapidly Solidified Steel Droplets with B and P Addition[J]. J. Mater. Sci. Technol., 2013, 29(10): 995-998.
[7] Nan Wang, Ruining Yang, Wenjing Yao, Jinfeng Xu, Xixing Wen. Interactive Effect of Grain Orientation and Grain Size on Magnetic Properties of Fe-78 wt% Ni Ribbons[J]. J. Mater. Sci. Technol., 2012, 28(9): 833-836.
[8] Hongzhi Ji, Lin Yuan, Debin Shan. Effect of Microstructure on Thermal Expansion Coefficient of 7A09 Aluminum Alloy[J]. J. Mater. Sci. Technol., 2011, 27(9): 797-801.
[9] Wenjing Yao, Zipeng Ye, Nan Wang, Xiujun Han, Jianyuan Wang, Xixing Wen. Competitive Nucleation and Rapid Growth of Co-Si Intermetallic Compounds during Eutectic Solidification under Containerless Processing Conditionion[J]. J. Mater. Sci. Technol., 2011, 27(11): 1077-1082.
[10] Zhenya Zhang, Huashun Yu, Shaoqing Wang, Haitao Wang, Guanghui Min. Microstructure and Tensile Properties of ZK60 Alloy Fabricated by Simplified Rapid Solidification Powder Metallurgy (S-RS P/M) Process[J]. J. Mater. Sci. Technol., 2010, 26(2): 151-155.
[11] Yiping Lu,Gencang Yang,Xiong Li,Yaohe Zhou. Amorphous Formation in an Undercooled Binary Ni-Si Alloy under Slow Cooling Rate[J]. J. Mater. Sci. Technol., 2009, 25(03): 370-372.
[12] Juanhua Su,Fengzhang Ren,Baohong Tian,Pin Liu,Qiming Dong. Aging Strengthening in Rapidly Solidified Cu-Cr-Sn- Zn Alloy[J]. J. Mater. Sci. Technol., 2009, 25(02): 230-232.
[13] Jing YU, Qingyan XU, Baicheng LIU, Jiarong LI, Hailong YUAN, Haipeng JIN. Experimental Study and Numerical Simulation of Directionally Solidified Turbine Blade Casting[J]. J. Mater. Sci. Technol., 2008, 24(03): 369-373.
[14] Pan DONG, Jia ZHANG, Wanliang HOU, Xinchun CHANG, Jianqiang WANG, Mingxiu QUAN. Investigation of glass formability in Al-Co-Y ternary system[J]. J. Mater. Sci. Technol., 2008, 24(02): 161-164.
[15] Guanghui MENG, Xin LIN, Weidong HUANG. Lamellar Spacing Selection in Regular Eutectic Solidification at Low Velocity[J]. J. Mater. Sci. Technol., 2007, 23(06): 851-854.
[1] Xuejun ZHANG, Yan NIU. Oxidation of NiAl-Ag Alloys at 1000℃ in 0.1 MPa O2[J]. J Mater Sci Technol, 2005, 21(04): 489 -492 .
[2] Jianjun WU. Yun ZHANG, Yanfei JIANG, Meiyun XUE, Tingquan LEI. High temperature deformation of Al2O3/Cu composites[J]. J Mater Sci Technol, 2001, 17(03): 325 -328 .
[3] M.Krauss, B.Scholtes. Thermal Shock Damage of Hot-work Tool Steel AISI H11 in Hard Turned, Electroeroded, Shot-peened or Deep Rolled Surface Conditions[J]. J Mater Sci Technol, 2004, 20(Supl.): 93 -96 .
[4] Qiang FU, Nai ZHOU, Wenhai HUANG, Deping WANG, Liying ZHANG. Formation and Characterization of Bone-like Nanoscale Hydroxyapatite in Glass Bone Cement[J]. J Mater Sci Technol, 2004, 20(06): 772 -774 .
[5] Lin YANG, Zhentao YU, Ju DENG. Quick-homogeneous Corrosion of Ti-2A1-2.5Zr Alloy in High-temperature and High-pressure Water Steam[J]. J Mater Sci Technol, 2001, 17(01): 43 -44 .
[6] Shoujing Wang, Xiang Zhao, Na Xiao, Liang Zuo. High Magnetic Field Influence on the WidmanstÄatten Transformation in High Purity Fe-0.36 wt% C Alloy[J]. J Mater Sci Technol, 2012, 28(6): 552 -557 .
[7] Nannan Song, Yikun Luan, Yunlong Bai, Z.A. Xu, Xiuhong Kang, Dianzhong Li. Numerical Simulation of Solidification of Work Roll in Centrifugal Casting Process[J]. J Mater Sci Technol, 2012, 28(2): 147 -154 .
[8] Min SHI, Ning LIU, Yudong XU, Can WANG, Yupeng YUAN, P.Majewski. A Valence Electron Structure Criterion of Ionic Conductivity of Sr- and Mg-doped LaGaO3 Ceramics[J]. J Mater Sci Technol, 2006, 22(02): 215 -219 .
[9] Ali Mazahery, Mohsen Ostad Shabani. Application of the Extrusion to Increase the Binding between the Ceramic Particles and the Metal Matrix: Enhancement of Mechanical and Tribological Properties[J]. J. Mater. Sci. Technol., 2013, 29(5): 423 -428 .
[10] Wei GUO, Jitai NIU, Jinfan ZHAI, Changli WANG, Jie YU, Guangtao ZHOU. Study on Non-interlayer Liquid Phase Diffusion Bonding for SiCp/ZL101 Aluminum Matrix Composite[J]. J Mater Sci Technol, 2003, 19(Supl.): 88 -90 .
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.