J. Mater. Sci. Technol. ›› 2023, Vol. 138: 221-232.DOI: 10.1016/j.jmst.2022.07.038
Previous Articles Next Articles
R.T. da Silvaa, J.M. Morbecb,*, G. Rahmanc,*, H.B. de Carvalhod,*
Received:
2022-03-03
Revised:
2022-07-13
Accepted:
2022-07-15
Published:
2023-03-01
Online:
2023-03-03
Contact:
* E-mail addresses:. j.morbec@keele.ac.uk (J.M. Morbec), gulrahman@qau.edu.pk (G. Rahman), hugo.carvalho@unifal-mg.edu.br (H.B. de Carvalho)
R.T. da Silva, J.M. Morbec, G. Rahman, H.B. de Carvalho. A comprehensive study on the processing of Co:ZnO nanostructured ceramics: Defect chemistry engineering and grain growth kinetics[J]. J. Mater. Sci. Technol., 2023, 138: 221-232.
[1] U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98 (2005) 041301. [2] U. Ozgur, D. Hofstetter, H. Morkoc, IEEE 98 (2010) 1255-1268. [3] H.L. Tuller, S.R. Bishop, Ann. Rev. Mater. Res. 41 (2011) 369-398. [4] S.T. Pantelides, Yverdon, 1992. [5] M. Stavola, Identification of Defects in Semiconductors, Semiconductors and Semimetals, Academic Press, San Diego, 1999. [6] F.A. Kröger, Amsterdam, 1974. [7] C.G.Van de Walle, Phys.Rev. Lett. 85 (20 0 0) 1012-1015. [8] P. Xu, Y. Sun, C. Shi, F. Xu, H. Pan, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 199 (2003) 286-290. [9] P. Erhart, K. Albe, A. Klein, Phys. Rev. B 73 (2006) 205203. [10] A.A. Sokol, S.A. French, S.T. Bromley, C.R.A. Catlow, H.J.J. van Dam, P. Sherwood, in: Point Defects in ZnO, 134, Faraday Discuss, 2007, pp. 267-282. [11] F. Oba, M. Choi, A. Togo, I. Tanaka, Sci. Technol. Adv. Mater. 12 (2011) 034302. [12] Janotti, C.G. Van de Walle, Phys. Rev. B 76 (2007) 165202. [13] M. McCluskey, S. Jokela, J. Appl. Phys. 106 (2009) 071101. [14] Z.Z. Ye, H.P. He, L. Jiang, Nano Energy 52 (2018) 527-540. [15] S.S. Yi, J.B. Cui, S. Li, L.J. Zhang, D.J. Wang, Y.H. Lin, Appl. Surf. Sci. 319 (2014) 230-236. [16] B.G. Shohany, A.K. Zak, Ceram. Int. 46 (2020) 5507-5520. [17] P. Singh, R. Kumar, R.K. Singh, Ind. Eng. Chem. Res. 58 (2019) 17130-17163. [18] S.W. Yoon, S.B. Cho, S.C. We, S. Yoon, B.J. Suh, H.K. Song, Y.J. Shin, J. Appl. Phys. 93 (2003) 7879-7881. [19] S. Kolesnik, B. Dabrowski, J. Mais, J. Appl. Phys. 95 (2004) 2582-2586. [20] V.M. de Almeida, A.Mesquita, A.O. de Zevallos, N.C. Mamani, P.P. Neves, X. Gratens, V.A. Chitta, W.B. Ferraz, A.C. Doriguetto, A.C.S. Sabioni, H.B. de Car-valho, J. Alloys Compd. 655 (2016) 406-414. [21] V.M.A.Lage, R.T.da Silva, A. Mesquita, M.P.F. de Godoy, X. Gratens, V.A. Chitta, H.B. de Carvalho, J. Alloys Compd. 863 (2021) 158320. [22] H.B. de Carvalho, M.P.F. de Godoy, R.W.D. Paes, M. Mir, A. Ortiz de Zevallos, F. Iikawa, M.J.S.P. Brasil, V.A. Chitta, W.B. Ferraz, M.A. Boselli, A.C.S. Sabioni, J. Appl. Phys. 108 (2010) 033914. [23] M.P.F. de Godoy, A.Mesquita, W. Avansi, P.P. Neves, V.A. Chitta, W.B. Fer-raz, M.A. Boselli, A.C.S. Sabioni, H.B. de Carvalho, J. Alloys Compd. 555 (2013) 315-319. [24] Mesquita, F.P. Rhodes, R.T. da Silva, P.P. Neves, A.O. de Zevallos, M.R.B. An-dreeta, M.M. de Lima, A. Cantarero, I.S. da Silva, M.A. Boselli, X. Gratens, V.A. Chitta, A.C. Doriguetto, W.B. Ferraz, A.C.S. Sabioni, H.B. de Carvalho, J. Al-loys Compd. 637 (2015) 407-417. [25] M.P.F. de Godoy, X.Gratens, V.A. Chitta, A. Mesquita, M.M. de Lima, A. Cantarero, G. Rahman, J.M. Morbec, H.B. de Carvalho, J. Alloys Compd. 859 (2021) 157772. [26] N.C. Mamani, R.T. da Silva, A.O. de Zevallos, A.A.C. Cotta, W.A.D. Macedo, M.S. Li, M.I.B. Bernardi, A.C. Doriguetto, H.B. de Carvalho, J. Alloys Compd. 695 (2017) 26 82-26 88. [27] L.R. Valerio, N.C. Mamani, A.O. de Zevallos, A.Mesquita, M.I.B. Bernardi, A.C. Doriguetto, H.B. de Carvalho, RSC Adv. 7 (2017) 20611-20619. [28] R.T. da Silva, A.Mesquita, A.O. de Zevallos, T. Chiaramonte, X. Gratens, V.A. Chitta, J.M. Morbec, G. Rahman, V.M. Garcia-Suarez, A.C. Doriguetto, M.I.B. Bernardi, H.B. de Carvalho, Phys. Chem. Chem. Phys. 20 (2018) 20257-20269. [29] Y.M. Hao, S.Y. Lou, S.M. Zhou, R.J. Yuan, G.Y. Zhu, N. Li, Struct. Nanoscale Res. Lett. 7 (2012) 1-9. [30] C.J. Cong, L. Liao, Q.Y. Liu, J.C. Li, K.L. Zhang, Nanotechnology 17 (2006) 1520-1526. [31] A. Samariya, R.K. Singhal, S. Kumar, Y.T. Xing, M. Alzamora, S.N. Dolia, U.P. Deshpande, T. Shripathi, E.B. Saitovitch, Mater. Chem. Phys. 123 (2010) 678-684. [32] V.N. Ivanovski, J. Belosevic-Cavor, V. Rajic, A. Umicevic, S. Markovic, V. Kusiger-ski, M.Mitric, V. Koteski, J. Appl. Phys. 126 (2019) 125703. [33] C.P. Rajan, N. Abharana, S.N. Jha, D. Bhattacharyya, T.T. John, J. Phys. Chem. C 125 (2021) 13523-13533. [34] R. Shannon, Acta Crystallogr. Sect. A 3 (1976) 751-767. [35] C.B.S. Valentin, R. Silva, P. Banerjee, A. Franco, Mater. Sci. Semicond. Process 96 (2019) 122-126. [36] D. Karmakar, S.K. Mandal, R.M. Kadam, P.L. Paulose, Phys. Rev. B 75 (2007) 14 4 404. [37] H.L. Liu, J.G. Yang, Y.J. Zhang, Y.X. Wang, M.B. Wei, Mater. Chem. Phys. 11 (2008) 1021-1023. [38] H.M. Xiong, Adv. Mater. 25 (2013) 5329-5335. [39] S.B. Rana, R.P.P.Singh, J. Mater. Sci. Mater. Electron. 2 (2016) 9346-9355. [40] D.J. Norris, A.L. Efros, S.C. Erwin, Doped Nanocryst. Sci. 31 (2008) 1776-1779. [41] J.F. Suyver, S.F. Wuister, J.J. Kelly, A. Meijerink, Phys. Chem. Chem. Phys. 2 (20 0 0) 5445-5448. [42] G. Gorrasi, A. Sorrentino, Green Chem. 17 (2015) 2610-2625. [43] A.S. Bolokang, F.R. Cummings, B.P. Dhonge, H.M.I.Abdallah, T. Moyo, H.C. Swart, C.J. Arendse, T.F.G. Muller, D.E. Motaung, Appl. Surf. Sci. 331 (2015) 362-372. [44] S. Kumar, S. Chatterjee, K.K. Chattopadhyay, A.K. Ghosh, J. Phys. Chem. C 116 (2012) 16700-16708. [45] S.B. Rana, J. Mater. Sci.Mater. Electron. 28 (2017) 13787-13796. [46] R.B.V.D.A.C. Los Alamos Na-tional Laboratory Report LAUR, 1994. [47] B. Toby, J. Appl. Crystallogr. 34 (2001) 210-213. [48] P. Hohenberg, W. Kohn, Phys. Rev. B 136 (1964) B864-B871. [49] J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez- Portal, J. Phys. Condes. Matter 14 (2002) 2745-2779. [50] N. Troullier, J.L. Martins, Phys. Rev. B 43 (1991) 1993-2006. [51] J. Han, P. Mantas, A. Senos, J. Eur. Ceram.Soc. 2 (2002) 49-59. [52] G.D. Maha, J. Appl. Phys. 5 (1983) 3825-3832. [53] A.C.S.Sabioni, Solid State Ion. 170 (2004) 145-148. [54] P. Bonasewicz, W. Hirschwald, G. Neumann, J. Electrochem. Soc. 133 (1986) 2270-2278. [55] M.W. Barsoum, Fundamentals of Ceramics, 2nd ed., CRC Press, Boca Raton, 2003. [56] J. Jiang, L.C. Li, Mater. Lett. 61 (2007) 4 894-4 896. [57] A.C.S. Sabioni, A. Daniel, R. Metz, A.M. Huntz, F. Jomard, in: Proceedings to the 7th International Conference on Diffusion in Materials, Univ Complutende Madrid, Lanzarote, SPAIN, Surface Engn Res Grp, 2009 April 339-345. [58] M. Knobel, J.C. Denardin, H.B.De Carvalho, M.Brasil, A.B. Pakhomov, F.P. Mis-sell, Phys. Status Solidi A-Appl. Mat. 187 (2001) 177-188. [59] G. Neumann, Phys. Status Solidi B-Basic Res. 105 (1981) 605-612. [60] J.K. Srivastava, L. Agarwal, A.B. Bhattacharyya, J. Electrochem. Soc. 13 (1989) 3414-3417. [61] J.M. Calleja, J. Kuhl, M. Cardona, Phys. Rev. B 16 (1978) 3753-3761. [62] M. Schumm, M. Koerdel, S. Müller, H. Zutz, C. Ronning, J. Stehr, D.M. Hofmann, J. Geurts, New J. Phys. 10 (2008) 043004. [63] B. Sanches de Lima, P.R. Martínez-Alanis, F. Güell, W.A. dos Santos Silva, M.I.B. Bernardi, N.L. Marana, E. Longo, J.R. Sambrano, V.R. Mastelaro, ACS Appl. Electron. Mater. 3 (2021) 1447-1457. [64] P. Koidl, Phys. Rev. B 1 (1977) 2493-2499. [65] H.A. Weakliem, J. Chem. Phys. 36 (1962) 2117-2140. [66] M. Ivill, S.J. Pearton, S. Rawal, L. Leu, P. Sadik, R. Das, A.F. Hebard, M. Chisholm, J.D. Budai, D.P. Norton, New J. Phys. 10 (2008) 065002. [67] K. Samanta, P. Bhattacharya, R.S. Katiyar, W. Iwamoto, P.G. Pagliuso, C. Rettori, Phys. Rev. B 7 (2006) 245213. [68] K. Wang, Q.B. Yu, Q. Qin, W.J. Duan, Chem. Eng. Technol. 3 (2014) 1500-1506. [69] M.I. Mendelson, J. Am. Ceram.Soc. 52 (1969) 443. [70] T. Senda, R.C. Bradt, J. Am. Ceram.Soc. 7 (1990) 106-114. [71] R.M.German, in: Sintering: from Empirical Observations to Scientific Princi-ples, Butterworth-Heinemann, Boston, 2014, pp. 183-226. [72] O.J. Whittemore, J.A. Varela, J. Am. Ceram.Soc. 64 (1981) C154-C155. [73] S.-D. Shin, C.S. Sone, J.H. Han, D.Y. Kim, J. Am. Ceram. Soc. 79 (1996) 565-567. [74] J. Han, P.Q. Mantas, A.M.R.Senos, J. Eur. Ceram. Soc. 20 (20 0 0) 2753-2758. [75] G. Hardal, B.Y. Price, A-Phys. Metall.Mater. Sci. 48A (2017) 2090-2098. [76] S. Roy, T.K. Roy, D. Das, Ceram. Int. 45 (2019) 4 835-24 850. |
[1] | Ke Tian, Danrong Hu, Quan Wei, Qiang Fu, Hua Deng. Recent progress on multifunctional electromagnetic interference shielding polymer composites [J]. J. Mater. Sci. Technol., 2023, 134(0): 106-131. |
[2] | Tong Gao, Zhengyu Zhang, Yixing Li, Yujuan Song, Huawei Rong, Xuefeng Zhang. Solid-state reaction induced defects in multi-walled carbon nanotubes for improving microwave absorption properties [J]. J. Mater. Sci. Technol., 2022, 108(0): 37-45. |
[3] | Jiakang Tian, Yongqing Shen, Peizhi Liu, Haixia Zhang, Bingshe Xu, Yanhui Song, Jianguo Liang, Junjie Guo. Recent advances of amorphous-phase-engineered metal-based catalysts for boosted electrocatalysis [J]. J. Mater. Sci. Technol., 2022, 127(0): 1-18. |
[4] | Yangfan Zhang, Yao Li, Han Yu, Kai Yu, Hongbing Yu. Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance [J]. J. Mater. Sci. Technol., 2022, 106(0): 139-146. |
[5] | Wen Zhang, Lei Chen, Chenguang Xu, Xuming Lv, Yujin Wang, Jiahu Ouyang, Yu Zhou. Grain growth kinetics and densification mechanism of (TiZrHfVNbTa)C high-entropy ceramic under pressureless sintering [J]. J. Mater. Sci. Technol., 2022, 110(0): 57-64. |
[6] | Yi Wan, Zihe Zhao, Mingzhi Yu, Zhenbing Ji, Teng Wang, Yukui Cai, Chao Liu, Zhanqiang Liu. Osteogenic and antibacterial ability of micro-nano structures coated with ZnO on Ti-6Al-4V implant fabricated by two-step laser processing [J]. J. Mater. Sci. Technol., 2022, 131(0): 240-252. |
[7] | Zicong Jiang, Bei Cheng, Yong Zhang, S. Wageh, Ahmed A. Al‐Ghamdi, Jiaguo Yu, Linxi Wang. S-scheme ZnO/WO3 heterojunction photocatalyst for efficient H2O2 production [J]. J. Mater. Sci. Technol., 2022, 124(0): 193-201. |
[8] | P.F. Zou, C.H. Zheng, L. Hu, H.P. Wang. Rapid Growth of TiNi intermetallic compound within undercooled Ti50Ni50 alloy under electrostatic levitation condition [J]. J. Mater. Sci. Technol., 2021, 77(0): 82-89. |
[9] | Zongyi Ma, Gang Li, Xinglai Zhang, Jing Li, Cai Zhang, Yonghui Ma, Jian Zhang, Bing Leng, Natalia Usoltseva, Vladimir An, Baodan Liu. High-performance and broadband photodetection of bicrystalline (GaN)1-x(ZnO)x solid solution nanowires via crystal defect engineering [J]. J. Mater. Sci. Technol., 2021, 85(0): 255-262. |
[10] | G.W. Hu, L.C. Zeng, H. Du, X.W. Liu, Y. Wu, P. Gong, Z.T. Fan, Q. Hu, E.P. George. Tailoring grain growth and solid solution strengthening of single-phase CrCoNi medium-entropy alloys by solute selection [J]. J. Mater. Sci. Technol., 2020, 54(0): 196-205. |
[11] | Sukanta Bose, Sourav Mandal, Asok K. Barua, Sumita Mukhopadhyay. Properties of boron doped ZnO films prepared by reactive sputtering method: Application to amorphous silicon thin film solar cells [J]. J. Mater. Sci. Technol., 2020, 55(0): 136-143. |
[12] | Caiqin Zhou, Yayu Peng, Qingan Zhang. Growth kinetics of MgH2 nanocrystallites prepared by ball milling [J]. J. Mater. Sci. Technol., 2020, 50(0): 178-183. |
[13] | Shuang Gao, Weiyi Yang, Jun Xiao, Bo Li, Qi Li. Creation of passivated Nb/N p-n co-doped ZnO nanoparticles and their enhanced photocatalytic performance under visible light illumination [J]. J. Mater. Sci. Technol., 2019, 35(4): 610-614. |
[14] | Zalak Joshi, Davit Dhruv, K.N. Rathod, J.H. Markna, A. Satyaprasad, A.D. Joshi, P.S. Solanki, N.A. Shah. Size effects on electrical properties of sol-gel grown chromium doped zinc oxide nanoparticles [J]. J. Mater. Sci. Technol., 2018, 34(3): 488-495. |
[15] | , Zhang Lei, Qiang Zheng, ge FeiZhu, Li Jiu peng, Xuan P.A.Gao, Du Juan. Control of ZnO nanowire growth and optical properties in a vapor deposition process [J]. J. Mater. Sci. Technol., 2017, 33(8): 850-855. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||