J. Mater. Sci. Technol. ›› 2023, Vol. 134: 106-131.DOI: 10.1016/j.jmst.2022.06.031
• Invited Review • Previous Articles Next Articles
Ke Tiana, Danrong Hub, Quan Weib,*(), Qiang Fua, Hua Denga,*(
)
Received:
2022-04-29
Revised:
2022-05-28
Accepted:
2022-06-01
Published:
2023-01-20
Online:
2023-01-10
Contact:
Quan Wei,Hua Deng
About author:
huadeng@scu.edu.cn (H. Deng).Ke Tian, Danrong Hu, Quan Wei, Qiang Fu, Hua Deng. Recent progress on multifunctional electromagnetic interference shielding polymer composites[J]. J. Mater. Sci. Technol., 2023, 134: 106-131.
Fig. 1. Brief introduction of EMI shielding materials with multifunctionalities. “Electrothermal”, reproduced with permission [30]. Copyright 2022, American Chemical Society. “Self-healing”, reproduced with permission [31]. Copyright 2021, Springer Nature. “Visible transparent”, reproduced with permission [32]. Copyright 2020, American Chemical Society. “Flame retardant”, reproduced with permission [33]. Copyright 2020, Elsevier. “Hydrophobic”, reproduced with permission [34]. Copyright 2020, American Chemical Society. “Sensing”, reproduced with permission [35]. Copyright 2022, Wiley-VCH. “Thermal conductive”, reproduced with permission [36] Copyright 2021, Elsevier.
Fig. 3. (a) EMI shielding measurement setup of coaxial line method [108]. Copyright 2018, Wiley-VCH. (b) Complex scattering parameters of an EMI shielding material from a 2-port VNA.
Fig. 4. Structures, thermal conductivities and EMI shielding properties of thermal conductive EMI shielding materials with (a) segregated structure [36], Copyright 2021, Elsevier; (b) Multilayered structure [137], Copyright 2022, Wiley-VCH; (c) Monolithic carbon film [138], Copyright 2021, Elsevier.
Substrate | Nanomaterial | Structure | Electrothermal | EMI SE (dB) | Refs. |
---|---|---|---|---|---|
PC | MXene | 2-layer | ∼ 100 °C, 13 V | > 20, X band | [ |
ANF | MXene/Ag NWs | 2-layer | 115 °C, 2.5 V | 48.1, X band | [ |
PVDF/PI | MXene | Sandwich | > 80 °C, 6.5 V | 40.2, X band | [ |
PTFE/PI | MXene | Sandwich | 110 °C, 6 V | 44, X band | [ |
PVA | Ag NWs | Sandwich | ∼ 55 °C, 1.5 V | 52, X band | [ |
PLA | MXene | Multilayer | 53 °C, 1.5 V | 55.4, X band | [ |
NR | CNT/BN | Multilayer | ∼ 103 °C, 2.5 V | 22.4, X band | [ |
CNF | MXene | Multilayer | 100 °C, 6 V | ∼ 40, X band | [ |
GF | CuS | Fabric | 209 °C, 1.5 V | 61, 300 kHz-3 GHz | [ |
CF | NiCo | Fabric | ∼ 100 °C, 5 V | 87, X band | [ |
FG | MXene | Fabric | ∼ 95 °C, 4 V | 90.2, X band | [ |
PA | Ni-W-P | Fabric | 140 °C, 2 V | 43.6, 2-12.5 GHz | [ |
CF | MXene/PANI/LM | Fabric | 56 °C, 3 V | 52, X band | [ |
PMIA | Ag NWs/PEDOT:PSS | Fabric | ∼ 110 °C, 2.5 V | 56.6, X band | [ |
ANF | CNTs | Porous | 113.5 °C, 10 V | 54.4, X band | [ |
CNF | Ag NWs | Porous | 140 °C, 0.5 V | ∼ 81.2, X band | [ |
PEI | CNTs | Porous | 53 °C, 10 V | 30.3, X band | [ |
PEI | CNTs | Porous | ∼ 160 °C, 15 V | > 30, X band | [ |
- | Carbon network | Porous | 90.2 °C, 2 V | 54.9, 18-27 GHz | [ |
Table 1. Summary of electrothermal polymer composites with different structures for the purpose of EMI shielding.
Substrate | Nanomaterial | Structure | Electrothermal | EMI SE (dB) | Refs. |
---|---|---|---|---|---|
PC | MXene | 2-layer | ∼ 100 °C, 13 V | > 20, X band | [ |
ANF | MXene/Ag NWs | 2-layer | 115 °C, 2.5 V | 48.1, X band | [ |
PVDF/PI | MXene | Sandwich | > 80 °C, 6.5 V | 40.2, X band | [ |
PTFE/PI | MXene | Sandwich | 110 °C, 6 V | 44, X band | [ |
PVA | Ag NWs | Sandwich | ∼ 55 °C, 1.5 V | 52, X band | [ |
PLA | MXene | Multilayer | 53 °C, 1.5 V | 55.4, X band | [ |
NR | CNT/BN | Multilayer | ∼ 103 °C, 2.5 V | 22.4, X band | [ |
CNF | MXene | Multilayer | 100 °C, 6 V | ∼ 40, X band | [ |
GF | CuS | Fabric | 209 °C, 1.5 V | 61, 300 kHz-3 GHz | [ |
CF | NiCo | Fabric | ∼ 100 °C, 5 V | 87, X band | [ |
FG | MXene | Fabric | ∼ 95 °C, 4 V | 90.2, X band | [ |
PA | Ni-W-P | Fabric | 140 °C, 2 V | 43.6, 2-12.5 GHz | [ |
CF | MXene/PANI/LM | Fabric | 56 °C, 3 V | 52, X band | [ |
PMIA | Ag NWs/PEDOT:PSS | Fabric | ∼ 110 °C, 2.5 V | 56.6, X band | [ |
ANF | CNTs | Porous | 113.5 °C, 10 V | 54.4, X band | [ |
CNF | Ag NWs | Porous | 140 °C, 0.5 V | ∼ 81.2, X band | [ |
PEI | CNTs | Porous | 53 °C, 10 V | 30.3, X band | [ |
PEI | CNTs | Porous | ∼ 160 °C, 15 V | > 30, X band | [ |
- | Carbon network | Porous | 90.2 °C, 2 V | 54.9, 18-27 GHz | [ |
Substrate | Nanomaterial | Structure | EMI SE (dB) | Transparency | Refs. |
---|---|---|---|---|---|
PET | GE | Multilayer | 19.1, K band | 80.5% | [ |
PEI | rGO | Multilayer | 6.4, 0.5-8.5 GHz | 62% | [ |
Sapphire wafer | CNTs | 2-layer | 21.4, X band | 71.4% | [ |
PET | Ag NWs | 2-layer | 25, X band | 90% | [ |
CA/PU | Ag NWs | Sandwich | 31.3, X band | 81% | [ |
PET/PMMA | Ag NWs | Sandwich | 21.3, X band | 95.6% | [ |
Quartz | Ag mesh | 2-layer | 26, Ku band | 91% | [ |
PDDA | Ag NWs | 2-layer | 31.3, X band | 86.8% | [ |
PET/PDMS | AgNTs | Sandwich | ∼ 20, X band | 90% | [ |
PET | AgNFs | 2-layer | > 50, X band | 75% | [ |
PES/PET | CuNWs | Sandwich | 22, X band | 73% | [ |
PET | ITO, Ag-, Cu NPs | Sandwich | 26, 8-40 GHz | 96.5% | [ |
PET | Ag NWs/rGO | Sandwich | 42.9, 0.03-1.8 GHz | 74.4% | [ |
Quartz | GE/Al | Sandwich | 47.8 Ku band | 85% | [ |
PI | Ag NWs/Cu NPs | 2-layer | 35, 0-1500 GHz | 58% | [ |
PET | Ag NWs/MXene | 2-layer | 49.2, X band | 83% | [ |
PET | Ag/ZnO | Multilayer | > 62, 4-40 GHz | 90% | [ |
PET | Ag NWs/Fe3O4 | 2-layer | 24.9, X band | 90% | [ |
- | Metal-mesh/GE | Hydrid film | 14.1, Ku band | 90.5% | [ |
- | Ag NWs/rGO | Hybrid film | 35.5, X band | 91.1% | [ |
Acrylic | Ag NWs/rGO | 2-layer | 24, 0.03-3 GHz | 85% | [ |
Glass | Ag NWs/PEDOT:PSS | 2-layer | 30.5, 1-12 GHz | 91% | [ |
- | GE/MgF | Sandwich | 8.1, X band | 89.4% | [ |
- | GNS/Ag NWs | Hybrid film | 26, Ku, K band | 78.4% | [ |
PET | rGO/Ag NWs | 2-layer | 33.6, X band | 81.9% | [ |
Table 2. The key properties of transparent EMI shielding films derived from various nanomaterials.
Substrate | Nanomaterial | Structure | EMI SE (dB) | Transparency | Refs. |
---|---|---|---|---|---|
PET | GE | Multilayer | 19.1, K band | 80.5% | [ |
PEI | rGO | Multilayer | 6.4, 0.5-8.5 GHz | 62% | [ |
Sapphire wafer | CNTs | 2-layer | 21.4, X band | 71.4% | [ |
PET | Ag NWs | 2-layer | 25, X band | 90% | [ |
CA/PU | Ag NWs | Sandwich | 31.3, X band | 81% | [ |
PET/PMMA | Ag NWs | Sandwich | 21.3, X band | 95.6% | [ |
Quartz | Ag mesh | 2-layer | 26, Ku band | 91% | [ |
PDDA | Ag NWs | 2-layer | 31.3, X band | 86.8% | [ |
PET/PDMS | AgNTs | Sandwich | ∼ 20, X band | 90% | [ |
PET | AgNFs | 2-layer | > 50, X band | 75% | [ |
PES/PET | CuNWs | Sandwich | 22, X band | 73% | [ |
PET | ITO, Ag-, Cu NPs | Sandwich | 26, 8-40 GHz | 96.5% | [ |
PET | Ag NWs/rGO | Sandwich | 42.9, 0.03-1.8 GHz | 74.4% | [ |
Quartz | GE/Al | Sandwich | 47.8 Ku band | 85% | [ |
PI | Ag NWs/Cu NPs | 2-layer | 35, 0-1500 GHz | 58% | [ |
PET | Ag NWs/MXene | 2-layer | 49.2, X band | 83% | [ |
PET | Ag/ZnO | Multilayer | > 62, 4-40 GHz | 90% | [ |
PET | Ag NWs/Fe3O4 | 2-layer | 24.9, X band | 90% | [ |
- | Metal-mesh/GE | Hydrid film | 14.1, Ku band | 90.5% | [ |
- | Ag NWs/rGO | Hybrid film | 35.5, X band | 91.1% | [ |
Acrylic | Ag NWs/rGO | 2-layer | 24, 0.03-3 GHz | 85% | [ |
Glass | Ag NWs/PEDOT:PSS | 2-layer | 30.5, 1-12 GHz | 91% | [ |
- | GE/MgF | Sandwich | 8.1, X band | 89.4% | [ |
- | GNS/Ag NWs | Hybrid film | 26, Ku, K band | 78.4% | [ |
PET | rGO/Ag NWs | 2-layer | 33.6, X band | 81.9% | [ |
Fig. 5. Multilayered EMI shielding composites with electrothermal properties. Structures, electro-heating and EMI shielding properties of (a) 2-layer ANF/MXene-Ag NWs composite [181], Copyright 2020, American Chemical Society; (b) 3-layer PVA/Ag NWs composite with sandwiched structure [183], Copyright 2021, Wiley-VCH; (c) Alternating CNF and MXene multilayers [179], Copyright 2020, American Chemical Society.
Fig. 6. (a) Flexible CF/NiCo fabric [185], Copyright 2022, Elsevier; (b) ANF/CNTs sponge [30], Copyright 2020, American Chemical Society, that used as electrothermal element with the purpose of EMI shielding.
Fig. 7. Honeycomb porous graphene (HPG)-based EMI shield with strain sensing function. (a) Photograph and SEM image of the HPG surface morphology, and (b) EMI SE of the HPG at 10 GHz. (c) Strain sensing behaviors and multifunctional applications of the HPG sensor used to monitor pulse signal, respiration signal, and sounds [213]. Copyright 2021, American Chemical Society.
Fig. 8. (a) Schematic representation of the sensing mechanism of the leather/Ag NWs nanocomposite upon pressing and (b) relative current changes and corresponding GFs of the leather/Ag NWs sensor responds to various pressures. Current responses upon (c) the repeated pressure of fingertip, (d) finger bending with gradually increased angles and (e) repeatedly speaking “DOG” [35]. Copyright 2022, Wiley-VCH.
Fig. 9. (a) EMI shielding MXene/Ag NW silk textiles with humidity detection function [225]. Copyright 2019, Wiley-VCH. (b) Functional PANI/MXene/Cotton fabrics with acid/alkali responsive and EMI shielding performances [226]. Copyright 2022, American Chemical Society.
Fig. 10. Flame retardant EMI shielding composites with dispersed FRs; (a) Schematic of layer-multiplying co-extrusion technique to produce flame retardant TPU/CNTs composite. (b) EMI shielding properties and (c) schematic of the burning behaviors of the multilayered FR filled TPU/CNTs [244]. Copyright 2019, Elsevier. Flame retardant cotton fabric decorated with FR coating; (d) Diagrammatic illustration of FR and Ag NWs treated cotton fabric. (e) EMI SE, and (f) real-time images of vertical flame tests for pristine cotton (a1, a2, a3), cotton coated with 4-bilayers FRs coating (b1, b2, b3) and cotton coated with 4-bilayers FRs coating and Ag NWs (c1, c2, c3) [245]. Copyright 2019, Elsevier.
Fig. 11. (a) Illustration of the preparation process of ANF/MXene composite film with inherent flame retardancy. (b) SE values of composite films with different contents of MXene nanosheets and (c) digital image the composite film after heating on an alcohol lamp for 60 s [267]. Copyright 2020, American Chemical Society.
Fig. 12. Structures, photographs of transmittance demonstration and EMI shielding properties of transparent EMI shielding film derived from different nanomaterials. (a) Ultrathin large-area single crystal graphene [295], Copyright 2021, Wiley-VCH. (b) Crackle templated Ag mesh [271], Copyright 2016, Springer Nature. (c) Double sized silver layer sandwiched by oxides film [298], Copyright 2020, American Chemical Society. (d) rGO/Ag NWs hybrid film [32], Copyright 2020, American Chemical Society.
Fig. 13. (a) Schematic illustration of the fabrication procedures of hydrophobic MXene foam. (b) Cross-sectional SEM images of the MXene film and the MXene foam, and (c) the corresponding results of WCA test. (d) EMI SE of the MXene foam at different thicknesses [332]. Copyright 2017, Wiley-VCH.
Fig. 14. (a) Schematic of the fabrication of the hydrophobic PVDF/GE/CNTs film with raspy surface. (b) SEM image of the imparted hierarchical surface and (c) photographs display the self-cleaning ability of the hydrophobic composite film. (d) Curves of SET for the composite film [322]. Copyright 2018, Elsevier.
Fig. 15. (a) Schematic illustration for preparation of PP fabric with in-situ grown Ag NPs and PFDT coating. (b) CAs between the composite fabric surface and the aqueous solution droplets with different pH. (c) EMI SE of the treated PP fabric with different dipping time in silver trifluoroacetate in the X band [59]. Copyright 2019, Elsevier.
Fig. 16. Self-healing PU/GO/CNT EMI shielding composite. (a) Schematic representation of PU/GO/CNT composite with segregated conductive network for EMI shielding. (b) Self-healing mechanism of PU/GO/CNT composite based on DA bond, and (c) EMI SE versus healing cycles of the composite [31]. Copyright 2021, Springer Nature.
[1] |
J.M. Thomassin, C. Jerome, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Mater. Sci. Eng. R-Rep. 74 (2013) 211-232.
DOI URL |
[2] |
C. Liang, H. Qiu, P. Song, X. Shi, J. Kong, J. Gu, Sci. Bull. 65 (2020) 616-622.
DOI URL |
[3] |
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Science 353 (2016) 1137-1140.
DOI PMID |
[4] | T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee, M.K. Kim, S.J. Kim, D. Kim, Y. Gogotsi, S.O. Kim, C.M. Koo, Adv. Mater. 32 (2020) 12595. |
[5] | A. Ahlbom, A. Green, L. Kheifets, D. Savitz, A. Swerdlow, Environ. Health Per-spect. 112 (2004) 1741-1754. |
[6] |
O. Elmas, Toxicol. Ind. Health 32 (2016) 76-82.
DOI PMID |
[7] |
G.M. Hasan, I.A. Sheikh, S. Karim, A. Haque, M.A. Kamal, A.G. Chaudhary, E. Azhar, Z. Mirza, CNS Neurol. Disord. Drug Targets 13 (2014) 1406-1412.
DOI URL |
[8] |
J. Wang, H. Su, W. Xie, S. Yu, Sci. Rep. 7 (2017) 12595-12601.
DOI URL |
[9] |
Z. Zhan, Q. Song, Z. Zhou, C. Lu, J. Mater. Chem. C 7 (2019) 9820-9829.
DOI URL |
[10] |
X. Chen, L. Liu, F. Pan, J. Mao, X. Xu, T. Yan, Mater. Sci. Eng. B-Adv. 197 (2015) 67-74.
DOI URL |
[11] |
Y. Zhang, M. Qiu, Y. Yu, B. Wen, L. Cheng, ACS Appl. Mater. Interfaces 9 (2017) 809-818.
DOI URL |
[12] |
G.P. Kar, S. Biswas, R. Rohini, S. Bose, J. Mater. Chem. A 3 (2015) 7974-7985.
DOI URL |
[13] |
W.L. Song, M.S. Cao, M.M. Lu, S. Bi, C.Y. Wang, J. Liu, J. Yuan, L.Z. Fan, Carbon 66 (2014) 67-76.
DOI URL |
[14] |
X. Jia, B. Shen, L. Zhang, W. Zheng, Carbon 173 (2021) 932-940.
DOI URL |
[15] |
Q.W. Wang, H.B. Zhang, J. Liu, S. Zhao, X. Xie, L. Liu, R. Yang, N. Koratkar, Z.Z. Yu, Adv. Funct. Mater. 29 (2019) 1806819-1806828.
DOI URL |
[16] | G. Sang, P. Xu, T. Yan, V. Murugadoss, N. Naik, Y. Ding, Z. Guo, Nanomicro Lett. 13 (2021) 153-168. |
[17] |
M. Wang, X.H. Tang, J.H. Cai, H. Wu, J.B. Shen, S.Y. Guo, Carbon 177 (2021) 377-402.
DOI URL |
[18] |
Y. Zhang, K. Ruan, X. Shi, H. Qiu, Y. Pan, Y. Yan, J. Gu, Carbon 175 (2021) 271-280.
DOI URL |
[19] |
Y. Zhu, J. Liu, T. Guo, J.J. Wang, X. Tang, V. Nicolosi, ACS Nano 15 (2021) 1465-1474.
DOI URL |
[20] |
B. Shin, S. Mondal, M. Lee, S. Kim, Y.I. Huh, C. Nah, Chem. Eng. J. 418 (2021) 129282-129302.
DOI URL |
[21] |
L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI |
[22] | Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu, W. Zhang, T. Zhou, Z. Zhang, X. Zhang, H.M. Cheng, W. Ren, Adv. Mater. 32 (2020). |
[23] |
J. Xu, R. Li, S. Ji, B. Zhao, T. Cui, X. Tan, G. Gou, J. Jian, H. Xu, Y. Qiao, Y. Yang, S. Zhang, T.L. Ren, ACS Nano 15 (2021) 8907-8918.
DOI URL |
[24] |
D. Tian, Y. Xu, Y. Wang, Z. Lei, Z. Lin, T. Zhao, Y. Hu, R. Sun, C.P. Wong, Chem. Eng. J. 420 (2021) 130482-130491.
DOI URL |
[25] |
K. Wang, Q. Ma, Y. Zhang, S. Wang, G. Han, Polymers 12 (2020) 783-795.
DOI URL |
[26] |
W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang, M.G. Ma, F. Chen, ACS Nano 12 (2018) 4583-4593.
DOI URL |
[27] |
J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z.Z. Yu, Adv. Mater. 29 (2017) 1702367-1702372.
DOI URL |
[28] | Y. Zhang, Z. Ma, K. Ruan, J. Gu, Research 2022 (2022) 9780290. |
[29] | A. Cl, H.A. Jie, B. Yz, Z.A. Wei, A. Cl, C. Xm, A. Yl, B. Jg, Compos. Sci. Technol. (2022) 109445-109453. |
[30] |
D.T. Papanastasiou, A. Schultheiss, D. Munoz-Rojas, C. Celle, A. Carella, J.P. Si-monato, D. Bellet, Adv. Funct. Mater. 30 (2020) 1910225-1910257.
DOI URL |
[31] |
T. Wang, W.W. Kong, W.C. Yu, J.F. Gao, K. Dai, D.X. Yan, Z.M. Li, Nano-Micro Lett. 13 (2021) 162.
DOI URL |
[32] | W. Chen, L.X. Liu, H.B. Zhang, Z.Z. Yu, ACS Nano (2020) 16643-16653. |
[33] | Y. Yao, S. Jin, X. Ma, R. Yu, H. Zou, H. Wang, X. Lv, Q. Shu, Compos. Sci. Tech-nol. 200 (2020) 108457-108466. |
[34] |
X. Mei, L. Lu, Y. Xie, Y.X. Yu, Y. Tang, K.S. Teh, ACS Appl. Mater. Interfaces 12 (2020) 49030-49041.
DOI URL |
[35] | Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Angew. Chem. Int. Ed Engl. 61 (2022) 202200705. |
[36] |
W. Ren, Y. Yang, J. Yang, H. Duan, G. Zhao, Y. Liu, Chem. Eng. J. 415 (2021) 129052-129063.
DOI URL |
[37] |
H. Wang, S. Li, M. Liu, J. Li, X. Zhou, Macromol. Mater. Eng. 306 (2021) 2100032-2100044.
DOI URL |
[38] |
H. Deng, L. Lin, M. Ji, S. Zhang, M. Yang, Q. Fu, Prog. Polym. Sci. 39 (2014) 627-655.
DOI URL |
[39] |
G. Zhao, K. Tian, Q. Pan, Q. Zhang, H. Deng, Q. Fu, Compos. Sci. Technol. 213 (2021) 108925-108934.
DOI URL |
[40] |
D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wang, Z.M. Li, Adv. Funct. Mater. 25 (2015) 559-566.
DOI URL |
[41] |
J. Zhang, Z. Wang, J. Li, Y. Dong, A. He, G. Tan, Q. Man, B. Shen, J. Wang, W. Xia, J. Shen, X. Wang, J. Mater. Sci. Technol. 96 (2022) 11-20.
DOI URL |
[42] |
Y. Xu, Z. Lin, K. Rajavel, T. Zhao, P. Zhu, Y. Hu, R. Sun, C.P. Wong, Nano-Micro Lett. 14 (2022) 29-43.
DOI URL |
[43] |
L. Han, Q. Song, K. Li, X. Yin, J. Sun, H. Li, F. Zhang, X. Ren, X. Wang, J. Mater. Sci. Technol. 72 (2021) 154-161.
DOI URL |
[44] |
Y. Zhang, Y. Yan, H. Qiu, Z. Ma, K. Ruan, J. Gu, J. Mater. Sci. Technol. 103 (2022) 42-49.
DOI |
[45] |
Y. Li, B. Xue, S. Yang, Z. Cheng, L. Xie, Q. Zheng, Chem. Eng. J. 410 (2021) 128356-128366.
DOI URL |
[46] |
X. Mei, L. Lu, Y. Xie, Y.-X. Yu, Y. Tang, K.S. Teh, ACS Appl. Mater. Interfaces 12 (2020) 49030-49041.
DOI URL |
[47] |
H. Abbasi, M. Antunes, J.I. Velasco, Prog. Mater. Sci. 103 (2019) 319-373.
DOI URL |
[48] | P. Song, B. Liu, H. Qiu, X. Shi, D. Cao, J. Gu, Compos. Commun. 24 (2021) 100823-100833. |
[49] |
Y. Chen, Y. Yang, Y. Xiong, L. Zhang, W. Xu, G. Duan, C. Mei, S. Jiang, Z. Rui, K. Zhang, Nano Today 38 (2021) 101204-101227.
DOI URL |
[50] |
Y. Cheng, W. Zhu, X. Lu, C. Wang, Compos. Commun. 27 (2021) 100823-100833.
DOI URL |
[51] |
W. Zhao, M. Jiang, W. Wang, S. Liu, W. Huang, Q. Zhao, Adv. Funct. Mater. 31 (2021) 2009136-2009165.
DOI URL |
[52] |
S. Biswas, S.S. Panja, S. Bose, J. Mater. Chem. C 6 (2018) 3120-3142.
DOI URL |
[53] |
J. Kruzelak, A. Kvasnicakova, K. Hlozekova, I. Hudec, Nanoscale Adv. 3 (2021) 123-172.
DOI URL |
[54] |
S. Gong, X. Sheng, X. Li, M. Sheng, H. Wu, X. Lu, J. Qu, Adv. Funct. Mater. 32 (2022) 2200570-2200581.
DOI URL |
[55] |
W. Chen, L.X. Liu, H.B. Zhang, Z.Z. Yu, ACS Nano 15 (2021) 7668-7681.
DOI PMID |
[56] | Y. Zhang, J. Gu, Nanomicro Lett. 14 (2022) 89-97. |
[57] |
Y. Zhang, Z. Ma, K. Ruan, J. Gu, Nano Res. 15 (2022) 5601-5609.
DOI URL |
[58] |
C. Liang, K. Ruan, Y. Zhang, J. Gu, ACS Appl. Mater. Interfaces 12 (2020) 18023-18031.
DOI URL |
[59] |
J. Gao, J. Luo, L. Wang, X. Huang, H. Wang, X. Song, M. Hu, L.C. Tang, H. Xue, Chem. Eng. J. 364 (2019) 493-502.
DOI URL |
[60] |
Y. Guo, H. Qiu, K. Ruan, Y. Zhang, J. Gu, Nano-Micro Lett. 14 (2022) 26.
DOI URL |
[61] |
M. Sang, G. Liu, S. Liu, Y. Wu, S. Xuan, S. Wang, S. Xuan, W. Jiang, X. Gong, Chem. Eng. J. 414 (2021) 128883-128895.
DOI URL |
[62] | Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Angew. Chem. Int. Ed. (2022) 20220705. |
[63] |
X. Jin, J. Wang, L. Dai, X. Liu, L. Li, Y. Yang, Y. Cao, W. Wang, H. Wu, S. Guo, Chem. Eng. J. 380 (2020) 122475-122483.
DOI URL |
[64] |
B. Zhou, Z. Li, Y. Li, X. Liu, J. Ma, Y. Feng, D. Zhang, C. He, C. Liu, C. Shen, Compos. Sci. Technol. 201 (2021) 108531-108539.
DOI URL |
[65] | Y. Sun, N.J. Long, G. Sidorov, J. Fang, R.A. Badcock, Z. Jiang, IEEE Trans. Appl. Supercond. 31 (2021) 4700208-4700215. |
[66] |
A.L. Carey, C.A. Hurst, J. Math Phys. 18 (1977) 1553-1561.
DOI URL |
[67] |
P.N. Mikropoulos, T.E. Tsovilis, IEEE Trans. Dielectr. Electr. Insul. 19 (2012) 2155-2164.
DOI URL |
[68] |
A.K. Singh, A. Shishkin, T. Koppel, N. Gupta, Compos. Part B-Eng. 149 (2018) 188-197.
DOI URL |
[69] | M. Jaroszewski, S. Thomas, A.V. Rane, Advanced Materials for Electromagnetic Shielding: Fundamentals, Properties, and Applications, Wiley, 2018. |
[70] |
A. Raveendran, M.T. Sebastian, S. Raman, J. Electron. Mater. 48 (2019) 2601-2634.
DOI |
[71] |
Y.J. Wan, X.M. Li, P.L. Zhu, R. Sun, C.P. Wong, W.H. Liao, Compos. Part A-Appl. Sci Manuf. 130 (2020) 105764-105772.
DOI URL |
[72] |
S. Thomas, Y. Grohens, Y.B. Pottathara, New J. Chem. 43 (2019) 681-688.
DOI |
[73] |
D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wang, Z.M. Li, Adv. Funct. Mater. 25 (2015) 559-566.
DOI URL |
[74] |
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu, Z. Ma, Y. Guo, J. Gu, Nano-Micro Lett. 13 (2021) 91.
DOI URL |
[75] |
Y. Li, X. Tian, S.P. Gao, L. Jing, K. Li, H. Yang, F. Fu, J.Y. Lee, Y.X. Guo, J.S. Ho, P.Y. Chen, Adv. Funct. Mater. 30 (2020) 1907451-1907462.
DOI URL |
[76] |
C. Yuan, J. Huang, Y. Dong, X. Huang, Y. Lu, J. Li, T. Tian, W. Liu, W. Song, ACS Appl. Mater. Interfaces 12 (2020) 26659-26669.
DOI URL |
[77] | R. Pandey, S. Tekumalla, M. Gupta, Materials for Potential EMI Shielding Ap-plications, Elsevier, 2020. |
[78] |
P. Los, A. Lukomska, R. Jeziorska, Polimery 61 (2016) 663-669.
DOI URL |
[79] | J. Zhao, J. Zhang, L. Wang, S. Lyu, W. Ye, B.B. Xu, H. Qiu, L. Chen, J. Gu, Com-pos. Part A-Appl. Sci Manuf. 129 (2020) 105714-105721. |
[80] | J. Zhao, J. Zhang, L. Wang, J. Li, T. Feng, J. Fan, L. Chen, J. Gu, Compos. Com-mun. 22 (2020) 100486-100492. |
[81] |
Y. Tao, P. Li, S.Q. Shi, Materials 9 (2016) 540-547.
DOI URL |
[82] |
Y. Li, N. Sun, J. Liu, X. Hao, J. Du, H. Yang, X. Li, M. Cao, Compos. Sci. Technol. 159 (2018) 240-250.
DOI URL |
[83] |
Y. Yang, M. Li, Y. Wu, B. Zong, J. Ding, RSC Adv. 6 (2016) 25444-25448.
DOI URL |
[84] | P. Song, Z. Ma, H. Qiu, Y. Ru, J. Gu, Nano-Micro Lett. 14 (2022) 51. |
[85] |
Y. Xie, Z. Li, J. Tang, P. Li, W. Chen, P. Liu, L. Li, Z. Zheng, J. Mater. Chem. C 9 (2021) 9702-9711.
DOI URL |
[86] |
E. Hosseini, N. Sabet, M. Arjmand, U. Sundararaj, H. Hassanzadeh, M.H. Zarifi, K. Karan, Chem. Eng. J. 435 (2022) 134598-134612.
DOI URL |
[87] |
Y.J. Wan, S.H. Yu, W.H. Yang, P.L. Zhu, R. Sun, C.P. Wong, W.H. Liao, RSC Adv. 6 (2016) 56589-56598.
DOI URL |
[88] |
T.K. Gupta, B.P. Singh, S.R. Dhakate, V.N. Singh, R.B. Mathur, J. Mater. Chem. A 1 (2013) 9138-9149.
DOI URL |
[89] |
S. Geetha, K. Satheesh Kumar, C.R. Rao, M. Vijayan, D. Trivedi, J. Appl. Polym. Sci. 112 (2009) 2073-2086.
DOI URL |
[90] |
D.H. Park, Y.K. Lee, S.S. Park, C.S. Lee, S.H. Kim, W.N. Kim, Macromol. Res. 21 (2013) 905-910.
DOI URL |
[91] | L. Lyu, J. Liu, H. Liu, C. Liu, Y. Lu, K. Sun, R. Fan, N. Wang, N. Lu, Z. Guo, Eng. Sci. 2 (2018) 26-42. |
[92] |
A. Tiwari, A. Tiwari, A. Bhatia, U. Chadha, S. Kandregula, S.K. Selvaraj, P. Bhardwaj, Nano 17 (2022) 2230001.
DOI URL |
[93] |
J. Yin, J. Zhang, S. Zhang, C. Liu, X. Yu, L. Chen, Y. Song, S. Han, M. Xi, C. Zhang, N. Li, Z. Wang, Chem. Eng. J. 421 (2021) 129763-129771.
DOI URL |
[94] |
C. Weng, G. Wang, Z. Dai, Y. Pei, L. Liu, Z. Zhang, Nanoscale 11 (2019) 22804-22812.
DOI URL |
[95] |
W. Jiang, F. Wu, Y. Jiang, M. Sun, K. Zhang, Y. Xia, D. Wang, A. Xie, Nanoscale 9 (2017) 10961-10965.
DOI URL |
[96] | M. González, G. Mokry, M. Nicolás, J. Baselga, J. Pozuelo, Carbon Nanotubes-Current Progress of their Polymer Composites, inTech, 2016, pp. 297-321. |
[97] |
M.H. Al-Saleh, U. Sundararaj, Carbon 47 (2009) 1738-1746.
DOI URL |
[98] |
D. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding, Z. Wang, Q. Shao, C. Wang, H. Liu, N. Lu, R. Wei, A. Subramania, Z. Guo, Polym. Rev. 59 (2019) 280-337.
DOI URL |
[99] | W. Machczynski, Pr. Inst. Elektrotech. 45 (1997) 129-148. |
[100] |
X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, H. Xue, J. Mater. Chem. C 1 (2013) 765-777.
DOI URL |
[101] |
F. Qin, C. Brosseau, J. Appl. Phys. 111 (2012) 061301-061325.
DOI URL |
[102] |
J. Zhu, H. Gu, Z. Luo, N. Haldolaarachige, D.P. Young, S. Wei, Z. Guo, Langmuir 28 (2012) 10246-10255.
DOI URL |
[103] |
M. González, J. Pozuelo, J. Baselga, Chem. Rec. 18 (2018) 1000-1009.
DOI URL |
[104] |
P. Toneguzzo, G. Viau, O. Acher, F. Fievet-Vincent, F. Fievet, Adv. Mater. 10 (1998) 1032-1035.
DOI URL |
[105] |
R. Arias, P. Chu, D.L. Mills, Phys. Rev. B 71 (2005) 224410-224421.
DOI URL |
[106] |
T. Wu, Y. Liu, X. Zeng, T. Cui, Y. Zhao, Y. Li, G. Tong, ACS Appl. Mater. Interfaces 8 (2016) 7370-7380.
DOI URL |
[107] |
N. Devi, S.S. Ray, Polym. Eng. Sci. 62 (2022) 591-621.
DOI URL |
[108] |
Z. Wang, B. Mao, Q. Wang, J. Yu, J. Dai, R. Song, Z. Pu, D. He, Z. Wu, S. Mu, Small 14 (2018) 1704332-1704339.
DOI URL |
[109] |
X. Jia, B. Shen, L. Zhang, W. Zheng, Carbon 176 (2021) 660-661.
DOI URL |
[110] |
X. Jia, B. Shen, L. Zhang, W. Zheng, Chem. Eng. J. 405 (2021) 126927-126935.
DOI URL |
[111] |
H. Duan, H. Zhu, J. Gao, D.X. Yan, K. Dai, Y. Yang, G. Zhao, Y. Liu, Z.M. Li, J. Mater. Chem. A 8 (2020) 9146-9159.
DOI URL |
[112] |
Y. Li, L. Sun, F. Xu, S. Wang, Q. Peng, Z. Yang, X. He, Y. Li, Nanoscale 11 (2019) 1692-1699.
DOI URL |
[113] |
F. Pan, L. Yu, Z. Xiang, Z. Liu, B. Deng, E. Cui, Z. Shi, X. Li, W. Lu, Carbon 172 (2021) 506-515.
DOI URL |
[114] |
J. Xu, T. Liu, Y. Zhang, Y. Zhang, K. Wu, C. Lei, Q. Fu, J. Fu, Matter 4 (2021) 2474-2489.
DOI URL |
[115] |
S.A. Kumar, A.P. Singh, P. Saini, F. Khatoon, S.K. Dhawan, J. Mater. Sci. 47 (2012) 2461-2471.
DOI URL |
[116] |
M. Peng, F. Qin, J. Appl. Phys. 130 (2021) 225108-225117.
DOI URL |
[117] |
H. Liu, R. Fu, X. Su, B. Wu, H. Wang, Y. Xu, X. Liu, Compos. Commun. 23 (2021) 100593-100598.
DOI URL |
[118] |
Y. Wang, Z. Xin, J. Shen, L. Zhao, B. Wang, X. Feng, Z. Mao, X. Sui, Compos. Commun. 30 (2022) 101085-101091.
DOI URL |
[119] |
D. Kim, Y.J. Lee, K.H. Ahn, Compos. Commun. 30 (2022) 101093-101099.
DOI URL |
[120] |
Y. Chen, Y. Li, Y. Liu, P. Chen, C. Zhang, H. Qi, ACS Appl. Mater. Interfaces 13 (2021) 36221-36231.
DOI URL |
[121] | B. Zhao, S. Wang, C. Zhao, R. Li, S.M. Hamidinejad, Y. Kazemi, C.B. Park, Car-bon 127 (2018) 469-478. |
[122] |
H. Cheng, S. Wei, Y. Ji, J. Zhai, X. Zhang, J. Chen, C. Shen, Compos. Part A-Appl. Sci Manuf. 121 (2019) 139-148.
DOI URL |
[123] | H. Cheng, Y. Pan, Q. Chen, R. Che, G. Zheng, C. Liu, C. Shen, X. Liu, Adv. Com-pos. Hybrid Mater. 4 (2021) 505-513. |
[124] |
K. Rajavel, S. Luo, Y. Wan, X. Yu, Y. Hu, P. Zhu, R. Sun, C. Wong, Compos. Part A-Appl. Sci Manuf. 129 (2020) 105693-105704.
DOI URL |
[125] |
L. Wei, J. Ma, W. Zhang, S.L. Bai, Y. Ren, L. Zhang, Y. Wu, J. Qin, Carbon 181 (2021) 212-224.
DOI URL |
[126] |
M.C. Vu, D. Mani, J.B. Kim, T.H. Jeong, S. Park, G. Murali, I. In, J.C. Won, D. Losic, C.S. Lim, S.R. Kim, Compos. Part A-Appl. Sci Manuf. 149 (2021) 106574-106584.
DOI URL |
[127] |
B. Zhou, Q. Li, P. Xu, Y. Feng, J. Ma, C. Liu, C. Shen, Nanoscale 13 (2021) 2378-2388.
DOI URL |
[128] |
T.B. Ma, H. Ma, K.P. Ruan, X.T. Shi, H. Qiu, S.Y. Gao, J.W. Gu, Chin. J. Polym. Sci. 40 (2022) 248-255.
DOI URL |
[129] |
G. Wang, L. Wang, L.H. Mark, V. Shaayegan, G. Wang, H. Li, G. Zhao, C.B. Park, ACS Appl. Mater. Interfaces 10 (2018) 1195-1203.
DOI URL |
[130] |
X. Yang, S. Fan, Y. Li, Y. Guo, Y. Li, K. Ruan, S. Zhang, J. Zhang, J. Kong, J. Gu, Compos. Part A-Appl. Sci Manuf. 128 (2020) 105670-105678.
DOI URL |
[131] |
L.C. Jia, D.X. Yan, Y. Yang, D. Zhou, C.H. Cui, E. Bianco, J. Lou, R. Vajtai, B. Li, P.M. Ajayan, Z.M. Li, Adv. Mater. Technol. 2 (2017) 1700078-1700083.
DOI URL |
[132] |
H. Pang, L. Xu, D.X. Yan, Z.M. Li, Prog. Polym. Sci. 39 (2014) 1908-1933.
DOI URL |
[133] |
C. Liu, W. Wu, Y. Wang, Z. Wang, Q. Chen, Compos. Commun. 25 (2021) 100719-100724.
DOI URL |
[134] |
A. Iqbal, P. Sambyal, C.M. Koo, Adv. Funct. Mater. 30 (2020) 2000883-2000907.
DOI URL |
[135] |
W.C. Yu, G.Q. Zhang, Y.H. Liu, L. Xu, D.X. Yan, H.D. Huang, J.H. Tang, J.Z. Xu, Z.M. Li, Chem. Eng. J. 373 (2019) 556-564.
DOI URL |
[136] |
Y. Xie, P. Li, J. Tang, B. Wei, W. Chen, P. Liu, S. Yang, Z. Zheng, Compos. Part A-Appl. Sci Manuf. 149 (2021) 106517-106526.
DOI URL |
[137] | Y. Gao, D. Bao, M. Zhang, Y. Cui, F. Xu, X. Shen, Y. Zhu, H. Wang, Small 18 (2022) e2105567. |
[138] |
H. Jia, Q.Q. Kong, X. Yang, L.J. Xie, G.H. Sun, L.L. Liang, J.P. Chen, D. Liu, Q.G. Guo, C.M. Chen, Carbon 171 (2021) 329-340.
DOI URL |
[139] |
Z. Guo, P. Ren, Z. Zhang, Z. Dai, K. Hui, H. Yan, Y. Jin, J. Gao, F. Ren, J. Mater. Chem. C 9 (2021) 6894-6903.
DOI URL |
[140] |
M. Kamkar, A. Ghaffarkhah, E. Hosseini, M. Amini, S. Ghaderi, M. Arjmand, New J. Chem. 45 (2021) 21488-21507.
DOI URL |
[141] | D. Hu, X. Huang, S. Li, P. Jiang, Compos. Sci. Technol. 188 (2020) 197995-108002. |
[142] |
Y. Guo, H. Qiu, K. Ruan, S. Wang, Y. Zhang, J. Gu, Compos. Sci. Technol. 219 (2022) 109253-109259.
DOI URL |
[143] |
G. Wang, X. Liao, F. Zou, P. Song, W. Tang, J. Yang, G. Li, Compos. Commun. 28 (2021) 100953-100958.
DOI URL |
[144] |
Y. Zhang, K. Ruan, J. Gu, Small 17 (2021) 2101951-2101960.
DOI URL |
[145] |
Z. Ma, J. Li, J. Zhang, A. He, Y. Dong, G. Tan, M. Ning, Q. Man, X. Liu, J. Mater. Sci. Technol. 81 (2021) 43-50.
DOI URL |
[146] |
L. L J. Ying, X. Tan, X. Wang, J. Gao, Q. Yan, H. Ma, K. Nishimura, H. Li, J. Yu, T.H. Liu, R. Xiang, R. Sun, N. Jiang, C. Wong, S. Maruyama, C.T. Lin, W. Dai, ACS Nano 15 (2021) 12922-12934.
DOI URL |
[147] |
L. L W. Dai, J. Yu, N. Jiang, C.T. Lin, New Carbon Mater. 36 (2021) 930-938.
DOI URL |
[148] |
N.H. Barbhuiya, U. Misra, S.P. Singh, Environ. Sci. Water Res. Technol. 7 (2021) 671-705.
DOI URL |
[149] | J.S. Lewis, T. Perrier, Z. Barani, F. Kargar, A.A. Balandin, Nanotechnology 32 (2021) 142003. |
[150] |
Y. Liu, B. Qu, X. Wu, Y. Tian, K. Wu, B. Yu, R. Du, Q. Fu, F. Chen, Carbon 153 (2019) 565-574.
DOI URL |
[151] |
Y. Liang, Y. Tong, Z. Tao, Q. Guo, B. Hao, Z. Liu, Macromol. Mater. Eng. 306 (2021) 2100055-2100065.
DOI URL |
[152] |
L. Li, Z. Ma, P. Xu, B. Zhou, Q. Li, J. Ma, C. He, Y. Feng, C. Liu, Compos. Part A-Appl. Sci Manuf. 139 (2020) 106134-106141.
DOI URL |
[153] |
Y. Liu, M. Lu, K. Wu, S. Yao, X. Du, G. Chen, Q. Zhang, L. Liang, M. Lu, Compos. Sci. Technol. 174 (2019) 1-10.
DOI URL |
[154] |
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8 (2008) 902-907.
DOI URL |
[155] |
X. Du, I. Skachko, A. Barker, E.Y. Andrei, Nat. Nanotechnol. 3 (2008) 491-495.
DOI URL |
[156] |
B. Shen, W. Zhai, W. Zheng, Adv. Funct. Mater. 24 (2014) 4542-4548.
DOI URL |
[157] |
F. Xu, R. Chen, Z. Lin, X. Sun, S. Wang, W. Yin, Q. Peng, Y. Li, X. He, J. Mater. Chem. C 6 (2018) 12321-12328.
DOI URL |
[158] |
T. Someya, Z. Bao, G.G. Malliaras, Nature 540 (2016) 379-385.
DOI URL |
[159] |
J. Lee, H. Sul, W. Lee, K.R. Pyun, I. Ha, D. Kim, H. Park, H. Eom, Y. Yoon, J. Jung, D. Lee, S.H. Ko, Adv. Funct. Mater. 30 (2020) 1909171-1909181.
DOI URL |
[160] |
W. Zhai, C. Wang, S. Wang, J. Li, Y. Zhao, P. Zhan, K. Dai, G. Zheng, C. Liu, C. Shen, J. Mater. Chem. A 9 (2021) 7238-7247.
DOI URL |
[161] |
S.H. Park, E.H. Cho, J. Sohn, P. Theilmann, K. Chu, S. Lee, Y. Sohn, D. Kim, B. Kim, Nano Res. 6 (2013) 389-398.
DOI URL |
[162] |
L. Wu, L. Wang, Z. Guo, J. Luo, H. Xue, J. Gao, ACS Appl. Mater. Interfaces 11 (2019) 34338-34347.
DOI URL |
[163] |
Z. Zhou, Q. Song, B. Huang, S. Feng, C. Lu, ACS Nano 15 (2021) 12405-12417.
DOI URL |
[164] |
Y. Liu, H. Zhang, H. Porwal, W. Tu, J. Evans, M. Newton, J.J.C. Busfield, T. Peijs, E. Bilotti, Adv. Funct. Mater. 27 (2017) 1702253-1702261.
DOI URL |
[165] |
X. Jia, B. Shen, J. Chen, G. Wang, Z. Sun, W. Zheng, Compos. Commun. 30 (2022) 101062-101067.
DOI URL |
[166] |
Y. Han, K. Ruan, J. Gu, Nano Res. 15 (2022) 4747-4755.
DOI URL |
[167] | Z. Hu, J. Zhou, Q. Fu, Adv. Electron. Mater. 7 (2021) 2100459-2100474. |
[168] |
T. Kim, C. Park, E.P. Samuel, S. An, A. Aldalbahi, F. Alotaibi, A.L. Yarin, S.S. Yoon, ACS Appl. Mater. Interfaces 13 (2021) 10013-10025.
DOI URL |
[169] |
M. Zhang, C. Wang, X. Liang, Z. Yin, K. Xia, H. Wang, M. Jian, Y. Zhang, Adv. Electron. Mater. 3 (2017) 1700193-1700200.
DOI URL |
[170] |
H. Lu, Z. Xia, Q. Mi, J. Zhang, X. Zheng, Z. He, J. Wu, J. Zhang, Ind. Eng. Chem. Res. 61 (2022) 1773-1785.
DOI URL |
[171] | B. Zhao, P. Bai, S. Wang, H. Ji, B. Fan, R. Zhang, R. Che, ACS Appl. Mater. Inter-faces 13 (2021) 29101-29112. |
[172] |
L. Paliotta, G. De Bellis, A. Tamburrano, F. Marra, A. Rinaldi, S.K. Balijepalli, S. Kaciulis, M.S. Sarto, Carbon 89 (2015) 260-271.
DOI URL |
[173] |
P. Wang, G. Zheng, K. Dai, C. Liu, C. Shen, Chem. Eng. J. 430 (2022) 133052-133060.
DOI URL |
[174] |
B. Tian, Q. Liu, C. Luo, Y. Feng, W. Wu, Adv. Electron. Mater. 6 (2020) 1900922-1900931.
DOI URL |
[175] |
D. Han, Y. Li, X. Jiang, W. Zhao, F. Wang, W. Lan, E. Xie, W. Han, Compos. Sci. Technol. 168 (2018) 460-466.
DOI URL |
[176] |
Z. Du, K. Chen, Y. Zhang, Y. Wang, P. He, H.Y. Mi, Y. Wang, C. Liu, C. Shen, Compos. Commun. 26 (2021) 100770-100774.
DOI URL |
[177] |
T.H. Park, S. Yu, M. Koo, H. Kim, E.H. Kim, J.E. Park, B. Ok, B. Kim, S.H. Noh, C. Park, E. Kim, C.M. Koo, C. Park, ACS Nano 13 (2019) 6835-6844.
DOI URL |
[178] | K. Qiu, A. Elhassan, T. Tian, X. Yin, J. Yu, Z. Li, B. Ding, ACS Appl. Mater. Inter-faces 12 (2020) 11016-11025 |
[179] |
B. Zhou, Z. Zhang, Y. Li, G. Han, Y. Feng, B. Wang, D. Zhang, J. Ma, C. Liu, ACS Appl. Mater. Interfaces 12 (2020) 4895-4905.
DOI URL |
[180] |
W. Ning, Z. Wang, P. Liu, D. Zhou, S. Yang, J. Wang, Q. Li, S. Fan, K. Jiang, Carbon 139 (2018) 1136-1143.
DOI URL |
[181] |
Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang, C. Liu, A. Wei, X. Xiang, L. Wei, J. Gu, ACS Nano 14 (2020) 8368-8382.
DOI URL |
[182] | M. Sang, S. Liu, W. Li, S. Wang, J. Li, J. Li, S. Xuan, X. Gong, Compos. Part A-Appl. Sci Manuf. 153 (2022). |
[183] |
Q. Zhou, J. Lyu, G. Wang, M. Robertson, Z. Qiang, B. Sun, C. Ye, M. Zhu, Adv. Funct. Mater. 31 (2021) 2104536-2104546.
DOI URL |
[184] |
Y. Zhan, E. Lago, C. Santillo, A.E. Del Rio Castillo, S. Hao, G.G. Buonocore, Z. Chen, H. Xia, M. Lavorgna, F. Bonaccorso, Nanoscale 12 (2020) 7782-7791.
DOI URL |
[185] |
J. Li, X. Zhang, Y. Ding, S. Zhao, Z. Ma, H. Zhang, X. He, Chem. Eng. J. 427 (2022) 131937-131946.
DOI URL |
[186] |
X. Jia, B. Shen, L. Zhang, W. Zheng, Compos. Part B-Eng. 198 (2020) 108250-108257.
DOI URL |
[187] |
Y. Bai, F. Qin, Y. Lu, ACS Appl. Mater. Interfaces 12 (2020) 48016-48026.
DOI URL |
[188] |
J. Li, Y.X. Li, L.Y. Yang, S.G. Yin, Adv. Mater. Interfaces 9 (2022) 2102266-2102276.
DOI URL |
[189] |
Y. Chen, L. Zhang, C. Mei, Y. Li, G. Duan, S. Agarwal, A. Greiner, C. Ma, S. Jiang, ACS Appl. Mater. Interfaces 12 (2020) 35513-35522.
DOI URL |
[190] |
D. Feng, P. Liu, Q. Wang, Ind. Eng. Chem. Res. 59 (2020) 5838-5847.
DOI URL |
[191] | Z. Sun, J. Chen, X. Jia, G. Wang, B. Shen, W. Zheng, Mater. Today Phys. 21 (2021) 100521-100529. |
[192] |
J. Huang, Z. Xu, W. Qiu, F. Chen, Z. Meng, C. Hou, W. Guo, X.Y. Liu, Adv. Funct. Mater. 30 (2020) 1910547-1910529.
DOI URL |
[193] |
M. Zhu, X. Yan, Y. Lei, J. Guo, Y. Xu, H. Xu, L. Dai, L. Kong, ACS Appl. Mater. Interfaces 14 (2022) 14520-14531.
DOI URL |
[194] |
S. Zhang, X. Huang, W. Xiao, L. Zhang, H. Yao, L. Wang, J. Luo, J. Gao, ACS Appl. Mater. Interfaces 13 (2021) 21865-21875.
DOI URL |
[195] |
Z. Xiang, X. Zhu, Y. Dong, X. Zhang, Y. Shi, W. Lu, J. Mater. Chem. A 9 (2021) 17538-17552.
DOI URL |
[196] |
S.J. Jung, J. Shin, S.S. Lim, B. Kwon, S.H. Baek, S.K. Kim, H.H. Park, J.S. Kim, Nano Energy 81 (2021) 105604-105610.
DOI URL |
[197] |
K. Rao, G.U. Kulkarni, Nanoscale 6 (2014) 5645-5651.
DOI PMID |
[198] | N.S. Jang, K.H. Kim, S.H. Ha, S.H. Jung, H.M. Lee, J.M. Kim, ACS Appl. Mater. Interfaces 12 (2017) 19612-19621. |
[199] |
Y.C. Chen, A.J. Crosby, Adv. Mater. 26 (2015) 5626-5631.
DOI URL |
[200] |
S. Choi, J. Park, W. Hyun, J. Kim, J. Kim, Y.B. Lee, C. Song, H.J. Hwang, J.H. Kim, T. Hyeon, D.H. Kim, ACS Nano 9 (2015) 6626-6633.
DOI URL |
[201] |
M. Amjadi, K.U. Kyung, I. Park, M. Sitti, Adv. Funct. Mater. 26 (2016) 1678-1698.
DOI URL |
[202] |
M.D. H N.N. Jason, W. Cheng, J. Mater. Chem. C 5 (2017) 5845-5866.
DOI URL |
[203] |
S. Choi, S.I. Han, D. Kim, T. Hyeon, D.H. Kim, Chem. Soc. Rev. 48 (2019) 1566-1595.
DOI URL |
[204] |
A. Sanli, A. Benchirouf, C. Mueller, O. Kanoun, Sens. Actuator A-Phys. 254 (2017) 61-68.
DOI URL |
[205] |
J. Tolvanen, J. Hannu, H. Jantunen, IEEE Sens. J. 17 (2017) 4735-4746.
DOI URL |
[206] |
M.S. de Luna, Y. Wang, T. Zhai, L. Verdolotti, G.G. Buonocore, M. Lavorgna, H. Xia, Prog. Polym. Sci. 89 (2019) 213-249.
DOI URL |
[207] |
L. Veeramuthu, M. Venkatesan, J.S. Benas, C.J. Cho, C.C. Lee, F.K. Lieu, J.H. Lin, R.H. Lee, C.C. Kuo, Polymers 13 (2021) 4281-4319.
DOI URL |
[208] |
J. Dong, S. Luo, S. Ning, G. Yang, D. Pan, Y. Ji, Y. Feng, F. Su, C. Liu, ACS Appl. Mater. Interfaces 13 (2021) 60478-60488.
DOI URL |
[209] |
Y. Hu, C. Hou, Y. Shi, J. Wu, D. Yang, Z. Huang, Y. Wang, Y. Liu, Nanotechnology 33 (2022) 165603-165614.
DOI URL |
[210] |
A. Pasha, S. Khasim, A.A.A. Darwish, T.A. Hamdalla, S.A. Al-Ghamdi, S. Al-fadhli, Synth. Met. 283 (2022) 116984-116997.
DOI URL |
[211] |
J. Wang, B. Liu, Y. Cheng, Z. Ma, Y. Zhan, H. Xia, Polymers 13 (2021) 3277-3292.
DOI URL |
[212] |
M. Hao, Y. Wang, L. Li, Q. Lu, F. Sun, L. Li, X. Yang, Y. Li, M. Liu, S. Feng, S. Feng, T. Zhang, Soft Matter 17 (2021) 9057-9065.
DOI URL |
[213] |
J. Xu, R. Li, S. Ji, B. Zhao, T. Cui, X. Tan, G. Gou, J. Jian, H. Xu, Y. Qiao, Y. Yang, S. Zhang, T.L. Ren, ACS Nano 15 (2021) 8907-8918.
DOI URL |
[214] | Z.X. Wang, X.S. Han, Z.J. Zhou, W.Y. Meng, X.W. Han, S.J. Wang, J.W. Pu, Com-pos. Sci. Technol. 213 (2021) 8-17. |
[215] |
T.T. Tung, R. Karunagaran, D.N.H. Tran, B. Gao, S. Nag-Chowdhury, I. Pillin, M. Castro, J.F. Feller, D. Losic, J. Mater. Chem. C 4 (2016) 3422-3430.
DOI URL |
[216] |
C. Liang, Y. Liu, Y. Ruan, H. Qiu, P. Song, J. Kong, H. Zhang, J. Gu, Compos. Part A-Appl. Sci Manuf. 139 (2020) 106143-106152.
DOI URL |
[217] |
H. Gu, Y. Xu, Y. Shen, P. Zhu, T. Zhao, Y. Hu, R. Sun, C.P. Wong, Ind. Eng. Chem. Res. 59 (2020) 20740-20748.
DOI URL |
[218] |
V.T. Nguyen, B.K. Min, Y. Yi, S.J. Kim, C.G. Choi, Chem. Eng. J. 393 (2020) 124608-124617.
DOI URL |
[219] |
A. Kogelbauer, C. Gru1ndling, J.A. Lercher, ACS Appl. Mater. Interfaces 7 (2015) 19243-19250.
DOI URL |
[220] |
T. Ishigami, Y. Nii, Y. Ohmukai, S. Rajabzadeh, H. Matsuyama, Membranes 4 (2014) 113-122.
DOI PMID |
[221] |
D. Xu, Q. Wang, D. Feng, P. Liu, Ind. Eng. Chem. Res. 59 (2020) 1934-1943.
DOI URL |
[222] |
X. Zheng, P. Wang, X. Zhang, Q. Hu, Z. Wang, W. Nie, L. Zou, C. Li, X. Han, Compos. Part A-Appl. Sci Manuf. 152 (2022) 106700-106710.
DOI URL |
[223] | L. Wang, P. Song, C.T. Lin, J. Kong, J. Gu, Research 2020 (2020) 4093732-4093743. |
[224] |
Y. Chen, Y. Liu, Y. Li, H. Qi, ACS Appl. Mater. Interfaces 13 (2021) 30020-30029.
DOI URL |
[225] |
L.X. Liu, W. Chen, H.B. Zhang, Q.W. Wang, F. Guan, Z.Z. Yu, Adv. Funct. Mater. 29 (2019) 1905197-1905206.
DOI URL |
[226] |
D.Y. Li, L.X. Liu, Q.W. Wang, H.B. Zhang, W. Chen, G. Yin, Z.Z. Yu, ACS Appl. Mater. Interfaces 14 (2022) 12703-12712.
DOI URL |
[227] |
J.H. Cai, J. Li, X.D. Chen, M. Wang, Chem. Eng. J. 393 (2020) 124805-124814.
DOI URL |
[228] |
Q. Zhang, Q. Liang, Z. Zhang, Z. Kang, Q. Liao, Y. Ding, M. Ma, F. Gao, X. Zhao, Y. Zhang, Adv. Funct. Mater. 28 (2018) 1703801-1703809.
DOI URL |
[229] |
Y. Du, X. Wang, X. Dai, W. Lu, Y. Tang, J. Kong, J. Mater. Sci. Technol. 100 (2022) 1-11.
DOI URL |
[230] | E. Kar, N. Bose, B. Dutta, N. Mukherjee, S. Mukherjee, ACS Appl. Mater. Inter-faces 11 (2019) 17501-17512. |
[231] |
R. Zhu, Z. Li, G. Deng, Y. Yu, J. Shui, R. Yu, C. Pan, X. Liu, Nano Energy 92 (2022) 106700-106709.
DOI URL |
[232] |
L. Duan, D.R. D’Hooge, L. Cardon, Prog. Mater Sci. 114 (2020) 100617-100656.
DOI URL |
[233] |
G. Yun, S.Y. Tang, S. Sun, D. Yuan, Q. Zhao, L. Deng, S. Yan, H. Du, M.D. Dickey, W. Li, Nat. Commun. 10 (2019) 1300-1308.
DOI URL |
[234] |
B. Yao, X. Xu, H. Li, Z. Han, J. Hao, G. Yang, Z. Xie, Y. Chen, W. Liu, Q. Wang, H. Wang, Chem. Eng. J. 410 (2021) 128288-128295.
DOI URL |
[235] |
F. Chen, Q. Huang, Z. Zheng, Small Struct. 3 (2022) 2100135-2100152.
DOI URL |
[236] |
W. He, P. Song, B. Yu, Z. Fang, H. Wang, Prog. Mater. Sci. 114 (2020) 100687-100735.
DOI URL |
[237] | P. Song, H. Qiu, L. Wang, X. Liu, Y. Zhang, J. Zhang, J. Kong, J. Gu, Sustain. Mater. Technol. 24 (2020) e00153. |
[238] |
S.T. Lazar, T.J. Kolibaba, J.C. Grunlan, Nat. Rev. Mater. 5 (2020) 259-275.
DOI URL |
[239] |
N.F. Attia, S.E.A. Elashery, A.M. Zakria, A.S. Eltaweil, H. Oh, Mater. Sci. Eng. B 274 (2021) 115460-115469.
DOI URL |
[240] |
G. Camino, L. Costa, M.P.L.D. Cortemiglia, Polym. Degrad. Stab. 33 (1991) 131-154.
DOI URL |
[241] |
Y. Ma, P. Ma, Y. Ma, D. Xu, P. Wang, R. Yang, J. Appl. Polym. Sci. 134 (2017) 45088-45094.
DOI URL |
[242] |
X. Ji, D. Chen, Q. Wang, J. Shen, S. Guo, Compos. Sci. Technol. 163 (2018) 49-55.
DOI URL |
[243] |
I.C. Kim, K.H. Kwon, W.N. Kim, J. Appl. Polym. Sci. 136 (2019) 48162-48173.
DOI URL |
[244] |
X. Ji, D. Chen, J. Shen, S. Guo, Chem. Eng. J. 370 (2019) 1341-1349.
DOI URL |
[245] |
Y. Zhang, W. Tian, L. Liu, W. Cheng, W. Wang, K.M. Liew, B. Wang, Y. Hu, Chem. Eng. J. 372 (2019) 1077-1090.
DOI |
[246] |
W. Guo, Y. Zhao, X. Wang, W. Cai, J. Wang, L. Song, Y. Hu, Compos. Part B-Eng. 192 (2020) 107990-108000.
DOI URL |
[247] |
Y. Zhang, J. Yu, J. Lu, C. Zhu, D. Qi, J. Alloy. Compd. 870 (2021) 159442-159450.
DOI URL |
[248] |
L. He, Y. Shi, Q. Wang, D. Chen, J. Shen, S. Guo, Compos. Sci. Technol. 199 (2020) 108324-108331.
DOI URL |
[249] |
S. Huang, L. Wang, Y. Li, C. Liang, J. Zhang, J. Appl. Polym. Sci. 138 (2021) 50649-50657.
DOI URL |
[250] |
L. Yin-Ling, K. Chi-Wai, C.W.M. Yuen, Text. Prog. 44 (2012) 175-249.
DOI URL |
[251] |
N. Inagaki, K. Hamajima, K. Katsuura, J. Appl. Polym. Sci. 22 (1978) 3283-3291.
DOI URL |
[252] |
M.Y. Wang, A.R. Horrocks, S. Horrocks, M.E. Hall, J.S. Pearson, S. Clegg, J. Fire Sci. 18 (2000) 265-294.
DOI URL |
[253] |
L. Liu, Y. Pan, Z. Wang, Y. Hou, Z. Gui, Y. Hu, Ind. Eng. Chem. Res. 56 (2017) 9429-9436.
DOI URL |
[254] |
Y. Pan, L. Liu, X. Wang, L. Song, Y. Hu, Carbohydr. Polym. 201 (2018) 1-8.
DOI URL |
[255] |
S. Bourbigot, G. Fontaine, Polym. Chem. 1 (2010) 1413-1422.
DOI URL |
[256] |
B. Edwards, S. Rudolf, P. Hauser, A. El-Shafei, Ind. Eng. Chem. Res. 54 (2015) 577-584.
DOI URL |
[257] |
C. Lan, H. Jia, M. Qiu, S. Fu, ACS Appl. Mater. Interfaces 13 (2021) 38761-38772.
DOI URL |
[258] |
W. Cheng, Y. Zhang, W. Tian, J. Liu, J. Lu, B. Wang, W. Xing, Y. Hu, Ind. Eng. Chem. Res. 59 (2020) 14025-14036.
DOI URL |
[259] |
Y. Mao, D. Wang, S. Fu, Compos. Part A-Appl. Sci Manuf. 153 (2022) 106751-106762.
DOI URL |
[260] |
Y. Shi, L. He, D. Chen, Q. Wang, J. Shen, S. Guo, Compos. Part A-Appl. Sci Manuf. 137 (2020) 106037-106046.
DOI URL |
[261] |
C. Gao, Y. Shi, Y. Chen, S. Zhu, Y. Feng, Y. Lv, F. Yang, M. Liu, W. Shui, J. Colloid Interface Sci. 606 (2022) 1193-1204.
DOI URL |
[262] |
Q. Zhang, J. Wang, S. Yang, J. Cheng, G. Ding, S. Huo, Compos. Part B-Eng. 177 (2019) 107380-107389.
DOI URL |
[263] |
T. Zhang, S. Zeng, H. Jiang, Z. Li, D. Bai, Y. Li, J. Li, ACS Appl. Mater. Interfaces 13 (2021) 11332-11343.
DOI URL |
[264] |
C. Liang, H. Qiu, P. Song, X. Shi, J. Kong, J. Gu, Sci. Bull. 65 (2020) 616-622.
DOI URL |
[265] |
W. Yang, J.J. Liu, L.L. Wang, W. Wang, A.C.Y. Yuen, S. Peng, B. Yu, H.D. Lu, G.H. Yeoh, C.H. Wang, Compos. Part B-Eng. 188 (2020) 107875-107885.
DOI URL |
[266] |
L. Wang, Z. Ma, Y. Zhang, H. Qiu, K. Ruan, J. Gu, Carbon Energy 4 (2022) 200-210.
DOI URL |
[267] |
C. Lei, Y. Zhang, D. Liu, K. Wu, Q. Fu, ACS Appl. Mater. Interfaces 12 (2020) 26485-26495.
DOI URL |
[268] |
Y. Yuan, L. Liu, M. Yang, T. Zhang, F. Xu, Z. Lin, Y. Ding, C. Wang, J. Li, W. Yin, Q. Peng, X. He, Y. Li, Carbon 123 (2017) 223-232.
DOI URL |
[269] |
Y. Li, C. Li, S. Zhao, J. Cui, G. Zhang, A. Gao, Y. Yan, Compos. Part A-Appl. Sci Manuf. 119 (2019) 101-110.
DOI URL |
[270] |
H. Zhou, Z. Xiao, Y. Wang, X. Hao, Y. Xie, Y. Song, F. Wang, Q. Wang, Constr. Build. Mater. 233 (2020) 117369-117376.
DOI URL |
[271] |
Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin, J. Tan, Sci. Rep. 6 (2016) 25601-25611.
DOI PMID |
[272] |
S. Yan, P. Li, Z. Ju, H. Chen, J. Ma, J. Mater. Sci.: Mater. Electron. 32 (2021) 15475-15483.
DOI URL |
[273] |
H. Wang, Z. Lu, Y. Liu, J. Tan, L. Ma, S. Lin, Opt. Lett. 42 (2017) 1620-1623.
DOI URL |
[274] | R.A. Maniyara, V.K. Mkhitaryan, T.L. Chen, D.S. Ghosh, V. Pruneri, Nat. Com-mun. 7 (2016) 13771-13778. |
[275] |
H. Xu, S.M. Anlage, L. Hu, G. Gruner, Appl. Phys. Lett. 90 (2007) 183119-183122.
DOI URL |
[276] |
Z. Lu, L. Ma, J. Tan, H. Wang, X. Ding, Nanoscale 8 (2016) 16684-16693.
DOI URL |
[277] |
S. Kim, J.S. Oh, M.G. Kim, W. Jang, M. Wang, Y. Kim, H.W. Seo, Y.C. Kim, J.H. Lee, Y. Lee, J.D. Nam, ACS Appl. Mater. Interfaces 6 (2014) 17647-17653.
DOI URL |
[278] |
J.B. Park, H. Rho, A.N. Cha, H. Bae, S.H. Lee, S.W. Ryu, T. Jeong, J.S. Ha, Appl. Surf. Sci. 516 (2020) 145745-145750.
DOI URL |
[279] | X. Liang, J. Lu, T. Zhao, X. Yu, Q. Jiang, Y. Hu, P. Zhu, R. Sun, C.P. Wong, Adv. Mater. Interfaces 6 (2018) 1801635-1801645. |
[280] |
L.C. Jia, D.X. Yan, X. Liu, R. Ma, H.Y. Wu, Z.M. Li, ACS Appl. Mater. Interfaces 10 (2018) 11941-11949.
DOI URL |
[281] |
X. Zhu, A. Guo, Z. Yan, F. Qin, J. Xu, Y. Ji, C. Kan, Nanoscale 13 (2021) 8067-8076.
DOI URL |
[282] |
X. Zhu, J. Xu, F. Qin, Z. Yan, A. Guo, C. Kan, Nanoscale 12 (2020) 14589-14597.
DOI URL |
[283] |
C. Jiang, D. Tan, Q. Li, J. Huang, J. Bu, L. Zang, R. Ji, S. Bi, Q. Guo, ACS Appl. Mater. Interfaces 13 (2021) 15525-15535.
DOI URL |
[284] |
S. Lin, H. Wang, F. Wu, Q. Wang, X. Bai, D. Zu, J. Song, D. Wang, Z. Liu, Z. Li, N. Tao, K. Huang, M. Lei, B. Li, H. Wu, NPJ Flex. Electron. 3 (2019) 6-13.
DOI URL |
[285] |
Q. Xie, Z. Yan, S. Wang, Y. Wang, L. Mei, F. Qin, R. Jiang, Adv. Eng. Mater. 23 (2021) 2100283-2100291.
DOI URL |
[286] |
H. Wang, C. Ji, C. Zhang, Y. Zhang, Z. Zhang, Z. Lu, J. Tan, L.J. Guo, ACS Appl. Mater. Interfaces 11 (2019) 11782-11791.
DOI URL |
[287] |
C.C. Huang, S. Gupta, C.Y. Lo, N.H. Tai, Mater. Lett. 253 (2019) 152-155.
DOI URL |
[288] |
Z. Lu, L. Ma, J. Tan, H. Wang, X. Ding, 2D Mater. 4 (2017) 025021-025029.
DOI URL |
[289] |
D.H. Kim, Y. Kim, J.W. Kim, Mater. Des. 89 (2016) 703-707.
DOI URL |
[290] |
Z. Wang, B. Jiao, Y. Qing, H. Nan, L. Huang, W. Wei, Y. Peng, F. Yuan, H. Dong, X. Hou, Z. Wu, ACS Appl. Mater. Interfaces 12 (2020) 2826-2834.
DOI URL |
[291] |
Y. Han, Y. Liu, L. Han, J. Lin, P. Jin, Carbon 115 (2017) 34-42.
DOI URL |
[292] |
Y. Yang, S. Chen, W. Li, P. Li, J. Ma, B. Li, X. Zhao, Z. Ju, H. Chang, L. Xiao, H. Xu, Y. Liu, ACS Nano 14 (2020) 8754-8765.
DOI PMID |
[293] |
D.G. Kim, J.H. Choi, D.K. Choi, S.W. Kim, ACS Appl. Mater. Interfaces 10 (2018) 29730-29740.
DOI URL |
[294] |
F. Qin, Z. Yan, J. Fan, J. Cai, X. Zhu, X. Zhang, Macromol. Mater. Eng. 306 (2020) 2000607-2000616.
DOI URL |
[295] | H. Yang, L. Wang, H. Wang, Y. Zhang, Z. Su, Z. Su, J. Zhang, Z. Lu, D. Jia, P. Hu, Adv. Mater. Technol. (2021) 2101465-2101473. |
[296] |
N. Zhang, Z. Wang, R. Song, Q. Wang, H. Chen, B. Zhang, H. Lv, Z. Wu, D. He, Sci. Bull. 64 (2019) 540-546.
DOI URL |
[297] |
G. Wang, Y. Zhao, F. Yang, Y. Zhang, M. Zhou, G. Ji, Nano-Micro Lett. 14 (2022) 65-78.
DOI URL |
[298] |
C. Yuan, J. Huang, Y. Dong, X. Huang, Y. Lu, J. Li, T. Tian, W. Liu, W. Song, ACS Appl. Mater. Interfaces 12 (2020) 26659-26669.
DOI URL |
[299] |
J. Du, S. Pei, L. Ma, H.M. Cheng, Adv. Mater. 26 (2014) 1958-1991.
DOI URL |
[300] |
Q. Zhang, J.S. Nam, J. Han, S. Datta, N. Wei, E.X. Ding, A. Hussain, S. Ahmad, V. Skakalova, A.T. Khan, Y.P. Liao, M. Tavakkoli, B. Peng, K. Mustonen, D. Kim, I. Chung, S. Maruyama, H. Jiang, I. Jeon, E.I. Kauppinen, Adv. Funct. Mater. 32 (2021) 2103397-2103407.
DOI URL |
[301] |
L. Wang, X. Yue, Q. Sun, L. Zhang, G. Ren, G. Lu, H.D. Yu, W. Huang, Nano Res. 15 (2022) 2433-2464.
DOI URL |
[302] |
C. Ma, Y.F. Liu, Y.G. Bi, X.L. Zhang, D. Yin, J. Feng, H.B. Sun, Nanoscale 13 (2021) 12423-12437.
DOI URL |
[303] |
A. Kumar, M.O. Shaikh, C.H. Chuang, Nanomaterials 11 (2021) 693-762.
DOI URL |
[304] |
K.T. Lee, D.H. Park, H.W. Baac, S. Han, Materials 11 (2018) 1503-1522.
DOI URL |
[305] |
D. Zhang, A.H. Alami, W.C.H. Choy, Sol. RRL 6 (2022) 2100830-2100852.
DOI URL |
[306] |
P. Mustonen, D.M.A. Mackenzie, H. Lipsanen, Front. Optoelectron. 13 (2020) 91-113.
DOI URL |
[307] | M. Singh, S. Rana, Mater. Today Commun. 24 (2020) 101317-101336. |
[308] |
K. Kim, J. Kim, B.G. Hyun, S. Ji, S.Y. Kim, S. Kim, B.W. An, J.U. Park, Nanoscale 7 (2015) 14577-14594.
DOI URL |
[309] |
X. Wang, R.R. Wang, L.J. Shi, J. Sun, J. Inorg. Mater. 34 (2019) 49-59.
DOI |
[310] |
L. Wang, X. Hu, Batter. Supercaps 3 (2020) 1275-1286.
DOI URL |
[311] |
S.W. Kim, S.Y. Lee, Energy Environ. Mater. 3 (2020) 265-285.
DOI URL |
[312] |
J. Wu, M. Agrawal, H.C.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, ACS Nano 4 (2010) 43-48.
DOI URL |
[313] | S.K. Hong, K.Y. Kim, T.Y. Kim, J.H. Kim, S.W. Park, J.H. Kim, B.J. Cho, Nanotech-nology 23 (2012) 455704-455709. |
[314] |
M. Zhang, J.T.W. Yeow, Carbon 156 (2020) 339-345.
DOI URL |
[315] |
S.B. Yang, B.S. Kong, D.H. Jung, Y.K. Baek, C.S. Han, S.K. Oh, H.T. Jung, Nanoscale 3 (2011) 1361-1373.
DOI URL |
[316] |
Y.S. Wang, S.M. Li, S.T. Hsiao, H. Wei, S.Y. Yang, H.W. Tien, C.C.M. Ma, C.C. Hu, J. Power Sources 260 (2014) 326-337.
DOI URL |
[317] |
H. Wang, Z. Lu, J. Tan, Opt. Express 24 (2016) 22989-23000.
DOI URL |
[318] | K. Ellmer, Nat. Photon. 6 (2012) 808-816. |
[319] |
D. Tan, C. Jiang, Q. Li, S. Bi, X. Wang, J. Song, J. Mater. Sci.: Mater. Electron. 32 (2021) 25603-25630.
DOI URL |
[320] |
Z. Ying, Z. Jing, Z. Yong, H. Zhong, F. Lin, J. Lei, Adv. Funct. Mater. 16 (2006) 568-574.
DOI URL |
[321] |
M. Wu, Y. Li, N. An, J. Sun, Adv. Funct. Mater. 26 (2016) 6777-6784.
DOI URL |
[322] |
X. Ma, B. Shen, L. Zhang, Y. Liu, W. Zhai, W. Zheng, Compos. Sci. Technol. 158 (2018) 86-93.
DOI URL |
[323] | A. Das, H.T. Hayvaci, M.K. Tiwari, I.S. Bayer, D. Erricolo, C.M. Megaridis, J. Col-loid Interface Sci. 353 (2011) 311-315. |
[324] | L. Zhang, J. Luo, S. Zhang, J. Yan, X. Huang, L. Wang, J. Gao, J. Mater. Sci. Tech-nol. 98 (2022) 62-71. |
[325] |
J.J. Liu, W.J. Yang, Y. Xu, A.C.Y. Yuen, T.B.Y. Chen, C.X. Wei, S.E. Zhu, G.H. Yeoh, W. Yang, H.D. Lu, Compos. Commun. 31 (2022) 101112-101116.
DOI URL |
[326] |
J. Luo, L. Huo, L. Wang, X. Huang, J. Li, Z. Guo, Q. Gao, M. Hu, H. Xue, J. Gao, Chem. Eng. J. 391 (2020) 123537-123546.
DOI URL |
[327] |
N. Mittal, D. Deva, R. Kumar, A. Sharma, Carbon 93 (2015) 492-501.
DOI URL |
[328] |
R. Yuan, S. Wu, P. Yu, B. Wang, L. Mu, X. Zhang, Y. Zhu, B. Wang, H. Wang, J. Zhu, ACS Appl. Mater. Interfaces 8 (2016) 12481-12493.
DOI URL |
[329] |
D. Dixit, C. Ghoroi, J. Colloid Interface Sci. 564 (2020) 8-18.
DOI URL |
[330] |
H.J. Choi, B.J. Park, J.H. Eom, S.G. Yoon, Curr. Appl. Phys. 16 (2016) 1642-1648.
DOI URL |
[331] |
D. Dixit, C. Ghoroi, J. Colloid Interface Sci. 564 (2020) 8-18.
DOI URL |
[332] |
J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z.Z. Yu, Adv. Mater. 29 (2017) 1702367-1702372.
DOI URL |
[333] |
Y. Sun, L. Ma, Y. Song, A.D. Phule, L. Li, Z.X. Zhang, Eur. Polym. J. 147 (2021) 110288-110296.
DOI URL |
[334] |
J. Luo, L. Wang, X. Huang, B. Li, Z. Guo, X. Song, L. Lin, L.C. Tang, H. Xue, J. Gao, ACS Appl. Mater. Interfaces 11 (2019) 10883-10894.
DOI URL |
[335] |
H. Wang, L. Tang, X. Wu, W. Dai, Y. Qiu, Appl. Surf. Sci. 253 (2007) 8818-8824.
DOI URL |
[336] |
X.F. Gao, L. Jiang, Nature 432 (2004) 36-36.
DOI URL |
[337] |
A.M. Karim, J.P. Rothstein, H.P. Kavehpour, J. Colloid Interface Sci. 513 (2018) 658-665.
DOI URL |
[338] |
Y. Cheng, M. Tan, P. Hu, X. Zhang, B. Sun, L. Yan, S. Zhou, W. Han, Appl. Surf. Sci. 448 (2018) 138-144.
DOI URL |
[339] |
Y. Zheng, Y. Song, T. Gao, S. Yan, H. Hu, F. Cao, Y. Duan, X. Zhang, ACS Appl. Mater. Interfaces 12 (2020) 40802-40814.
DOI URL |
[340] |
M. Cheng, W. Ren, H. Li, X. Liu, S. Bandaru, J. Zhang, X. Zhang, Compos. Part B-Eng. 224 (2021) 109169-109180.
DOI URL |
[341] | S. Wu, M. Zou, Z. Li, D. Chen, H. Zhang, Y. Yuan, Y. Pei, A. Cao, Small 14 (2018) e1800634. |
[342] |
S. Lee, J. Park, M.C. Kim, M. Kim, P. Park, I.J. Yoon, J. Nah, ACS Appl. Mater. Interfaces 13 (2021) 25428-25437.
DOI URL |
[343] |
M. Sang, S. Wang, S. Liu, M. Liu, L. Bai, W. Jiang, S. Xuan, X. Gong, ACS Appl. Mater. Interfaces 11 (2019) 47340-47349.
DOI URL |
[344] |
Y. Xing, Y. Xue, J. Song, Y. Sun, L. Huang, X. Liu, J. Sun, Appl. Surf. Sci. 436 (2018) 865-872.
DOI URL |
[345] |
L.C. Jia, G. Zhang, L. Xu, W.J. Sun, G.J. Zhong, J. Lei, D.X. Yan, Z.M. Li, ACS Appl. Mater. Interfaces 11 (2019) 1680-1688.
DOI URL |
[346] |
M. Kosarli, A. Polymerou, G. Foteinidis, C. Vazouras, A.S. Paipetis, Polymers 13 (2021) 2753-2765.
DOI URL |
[347] |
A.V. Menon, B. Choudhury, G. Madras, S. Bose, Chem. Eng. J. 382 (2020) 122816-122828.
DOI URL |
[348] |
A.V. Menon, G. Madras, S. Bose, Chem. Eng. J. 366 (2019) 72-82.
DOI URL |
[349] |
W. Ma, W. Cai, W. Chen, P. Liu, J. Wang, Z. Liu, Chem. Eng. J. 426 (2021) 130729-130737.
DOI URL |
[350] |
H.J. Sim, D.W. Lee, H. Kim, Y. Jang, G.M. Spinks, S. Gambhir, D.L. Officer, G.G. Wallace, S.J. Kim, Carbon 155 (2019) 499-505.
DOI URL |
[351] |
W. Yang, B. Shao, T. Liu, Y. Zhang, R. Huang, F. Chen, Q. Fu, ACS Appl. Mater. Interfaces 10 (2018) 8245-8257.
DOI URL |
[352] | L. Zou, C. Lan, S. Zhang, X. Zheng, Z. Xu, C. Li, L. Yang, F. Ruan, S.C. Tan, Nano-Micro Lett. 13 (2021) 190-205190. |
[353] |
G. Li, P. Xiao, S. Hou, Y. Huang, Carbon 147 (2019) 398-407.
DOI URL |
[354] |
J. Lu, Y. Zhang, Y. Tao, B. Wang, W. Cheng, G. Jie, L. Song, Y. Hu, J. Colloid Interface Sci. 588 (2021) 164-174.
DOI URL |
[355] |
T. Wang, W.C. Yu, C.G. Zhou, W.J. Sun, Y.P. Zhang, L.C. Jia, J.F. Gao, K. Dai, D.X. Yan, Z.M. Li, Compos. Part B-Eng. 193 (2020) 108015-108022.
DOI URL |
[356] |
T. Wang, W.C. Yu, W.J. Sun, L.C. Jia, J.F. Gao, J.H. Tang, H.J. Su, D.X. Yan, Z.M. Li, Compos. Sci. Technol. 200 (2020) 108446-108454.
DOI URL |
[357] |
Z. Tan, H. Zhao, F. Sun, L. Ran, L. Yi, L. Zhao, J. Wu, Compos. Part A-Appl. Sci Manuf. 155 (2022) 106809-106820.
DOI URL |
[358] |
H. Zhao, J. Yun, Y. Zhang, K. Ruan, Y. Huang, Y. Zheng, L. Chen, J. Gu, ACS Appl. Mater. Interfaces 14 (2022) 3233-3243.
DOI URL |
[359] |
S. Zhu, M. Wang, Z. Qiang, J. Song, Y. Wang, Y. Fan, Z. You, Y. Liao, M. Zhu, C. Ye, Chem. Eng. J. 406 (2021) 127140-127149.
DOI URL |
[360] |
Z.H. Zeng, N. Wu, J.J. Wei, Y.F. Yang, T.T. Wu, B. Li, S.B. Hauser, W.D. Yang, J.R. Liu, S.Y. Zhao, Nano-Micro Lett. 14 (2022) 59-74.
DOI URL |
[361] |
B. Zhou, M. Su, D. Yang, G. Han, Y. Feng, B. Wang, J. Ma, J. Ma, C. Liu, C. Shen, ACS Appl. Mater. Interfaces 12 (2020) 40859-40869.
DOI URL |
[362] |
G. Wang, S.J.H. Ong, Y. Zhao, Z.J. Xu, G. Ji, J. Mater. Chem. A 8 (2020) 24368-24387.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||