J. Mater. Sci. Technol. ›› 2022, Vol. 124: 193-201.DOI: 10.1016/j.jmst.2022.01.029
• Research Article • Previous Articles Next Articles
Zicong Jianga, Bei Chenga, Yong Zhangb, S. Wagehc, Ahmed A. Al‐Ghamdic, Jiaguo Yua,b, Linxi Wangb,*()
Received:
2021-12-15
Revised:
2022-01-11
Accepted:
2022-01-12
Published:
2022-10-10
Online:
2022-04-04
Contact:
Linxi Wang
About author:
∗E-mail address:. linxiwang91@126.com (L. Wang)Zicong Jiang, Bei Cheng, Yong Zhang, S. Wageh, Ahmed A. Al‐Ghamdi, Jiaguo Yu, Linxi Wang. S-scheme ZnO/WO3 heterojunction photocatalyst for efficient H2O2 production[J]. J. Mater. Sci. Technol., 2022, 124: 193-201.
Fig. 2. (a, b) FESEM, (c) HRTEM, and (d) TEM images of ZW30; (e-h) HAADF and EDX mapping images of W, Zn, and O elements in ZW30; (i) EDX spectrum of ZW30.
Fig. 4. (a) Photocatalytic H2O2 production and (b) photoinduced H2O2 decomposition over different samples after 1 h irradiation. (c) First-order kinetic plot of H2O2 decomposition. (d) Fitted Kf and Kd values for photocatalytic H2O2 production over different samples.
Fig. 5. (a) Photocatalytic H2O2 production and calculated apparent quantum yield under 365 nm monochromatic irradiation over ZnO and ZW30. (b) The cyclic stability test of H2O2 production over ZW30.
Fig. 6. (a) LSV curve of ZW30 in 0.1 M O2-saturated phosphate buffer solution (pH = 7) at different rotating speeds; (b) KL plots of ZnO and ZW30 at -0.8 V vs. NHE.
[1] |
K. Wang, Y. Li, J. Li, G. Zhang, Appl. Catal. B 263 (2020) 117730.
DOI URL |
[2] |
L. Wang, B. Zhu, B. Cheng, J. Zhang, L. Zhang, J. Yu, Chin. J. Catal. 42 (2021) 1648-1658.
DOI URL |
[3] |
M. Suk, M. Chung, M. Han, H. Oh, C. Choi, Catal. Today 359 (2021) 99-105.
DOI URL |
[4] |
X. Xia, N. Deng, G. Cui, J. Xie, X. Shi, Y. Zhao, Q. Wang, W. Wang, B. Tang, Chem. Commun. 51 (2015) 10899-10902.
DOI URL |
[5] |
S. Fukuzumi, Y. Yamada, Aust. J. Chem. 67 (2014) 354-364.
DOI URL |
[6] |
S. Kato, J. Jung, T. Suenobu, S. Fukuzumi, Energy Environ. Sci. 6 (2013) 3756-3764.
DOI URL |
[7] |
J. Cao, H. Wang, Y. Zhao, Y. Liu, Q. Wu, H. Huang, M. Shao, Y. Liu, Z. Kang, J. Mater. Chem. A 8 (2020) 3701-3707.
DOI URL |
[8] |
Y. Kofuji, S. Ohkita, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, ACS Catal. 6 (2016) 7021-7029.
DOI URL |
[9] |
X. Wang, Z. Han, L. Yu, C. Liu, Y. Liu, G. Wu, ACS Sustain. Chem. Eng. 6 (2018) 14542-14553.
DOI URL |
[10] |
H. Song, L. Wei, C. Chen, C. Wen, F. Han, J. Catal. 376 (2019) 198-208.
DOI URL |
[11] | X. Yu, B. Viengkeo, Q. He, X. Zhao, Q. Huang, P. Li, W. Huang, Y. Li, Adv. Sustain. Syst. 5 (2021) 2100148. |
[12] |
Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa, T. Hirai, ACS Catal. 4 (2014) 774-780.
DOI URL |
[13] |
S. Kim, G. Moon, H. Kim, Y. Mun, P. Zhang, J. Lee, W. Choi, J. Catal. 357 (2018) 51-58.
DOI URL |
[14] |
Y. Yamada, A. Nomura, T. Miyahigashi, S. Fukuzumi, Chem. Commun. 48 (2012) 8329-8331.
DOI URL |
[15] |
H. Hou, X. Zeng, X. Zhang, Angew. Chem. Int. Ed. 59 (2020) 17356-17376.
DOI URL |
[16] |
L. Wang, S. Cao, K. Guo, Z. Wu, Z. Ma, L. Piao, Chin. J. Catal. 40 (2019) 470-475.
DOI URL |
[17] |
J. Lei, B. Chen, W. Lv, L. Zhou, L. Wang, Y. Liu, J. Zhang, ACS Sustain. Chem. Eng. 7 (2019) 16467-16473.
DOI URL |
[18] |
X. Chen, Y. Kuwahara, K. Mori, C. Louis, H. Yamashita, J. Mater. Chem. A 8 (2020) 1904-1910.
DOI URL |
[19] |
X. Zeng, Y. Liu, Y. Kang, Q. Li, Y. Xia, Y. Zhu, H. Hou, M. Uddin, T. Gengenbach, D. Xia, C. Sun, D. McCarthy, A. Deletic, J. Yu, X. Zhang, ACS Catal. 10 (2020) 3697-3706.
DOI URL |
[20] |
S. Thakur, T. Kshetri, N. Kim, J. Lee, J. Catal. 345 (2017) 78-86.
DOI URL |
[21] |
L. Zheng, H. Su, J. Zhang, L. Walekar, H. Molamahmood, B. Zhou, M. Long, Y. Hu, Appl. Catal. B 239 (2018) 475-484.
DOI URL |
[22] |
G. Moon, W. Kim, A. Bokare, N. Sung, W. Choi, Energy Environ. Sci. 7 (2014) 4023-4028.
DOI URL |
[23] |
M. Sayed, F. Xu, P. Kuang, J. Low, S. Wang, L. Zhang, J. Yu, Nat. Commun. 12 (2021) 4936.
DOI URL |
[24] |
Y. Huang, C. Haw, Z. Zheng, J. Kang, J. Zheng, H. Wang, Adv. Sustain. Syst. 5 (2021) 2000266.
DOI URL |
[25] |
L. Wang, H. Tan, L. Zhang, B. Cheng, J. Yu, Chem. Eng. J. 411 (2021) 128501.
DOI URL |
[26] |
F. Chen, Y. Tang, C. Liu, J. Qian, Z. Wu, Z. Chen, Ceram. Int. 43 (2017) 14525-14528.
DOI URL |
[27] |
L. Wang, Y. Xia, J. Yu, Chem 7 (2021) 1983-1985.
DOI URL |
[28] |
T. Tasso Guaraldo, J. Wenk, D. Mattia, Adv. Sustain. Syst. 5 (2021) 2000208.
DOI URL |
[29] |
X. Yang, H. Li, W. Zhang, M. Sun, L. Li, N. Xu, J. Wu, J. Sun, ACS Appl. Mater. Interfaces 9 (2017) 658-667.
DOI URL |
[30] |
L. Wang, Z. Li, J. Chen, Y. Huang, H. Zhang, H. Qiu, Environ. Pollut. 249 (2019) 801-811.
DOI PMID |
[31] |
S. Lin, N. Zhang, F. Wang, J. Lei, L. Zhou, Y. Liu, J. Zhang, ACS Sustain. Chem. Eng. 9 (2021) 481-488.
DOI URL |
[32] |
Y. Chen, W. Gu, L. Tan, Z. Ao, T. An, S. Wang, Appl. Catal. A 618 (2021) 118127.
DOI URL |
[33] |
G. Zuo, S. Liu, L. Wang, H. Song, P. Zong, W. Hou, B. Li, Z. Guo, X. Meng, Y. Du, T. Wang, V. Roy, Catal. Commun. 123 (2019) 69-72.
DOI URL |
[34] |
Y. Yang, B. Cheng, J. Yu, L. Wang, W. Ho, Nano Res. (2021), doi: 10.1007/s12274-021-3733-0.
DOI |
[35] | X. Li, J. Liu, J. Huang, C. He, Z. Feng, Z. Chen, L. Wan, F. Deng, Acta Phys. Chim. Sin. 37 (2021) 2010030. |
[36] |
H. Deng, X. Fei, Y. Yang, J. Fan, J. Yu, B. Cheng, L. Zhang, Chem. Eng. J. 409 (2021) 127377.
DOI URL |
[37] |
Z. Wang, B. Cheng, L. Zhang, J. Yu, H. Tan, Sol. RRL (2021) 2100587, doi: 10.1002/solr.202100587.
DOI |
[38] |
B. Zhu, H. Tan, J. Fan, B. Cheng, J. Yu, W. Ho, J. Materiomics 7 (2021) 988-997.
DOI URL |
[39] | X. Fei, H. Tan, B. Cheng, B. Zhu, L. Zhang, Acta Phys. Chim. Sin. 37 (2021) 2010027. |
[40] | Z. Mei, G. Wang, S. Yan, J. Wang, Acta Phys. Chim. Sin. 37 (2021) 2009097. |
[41] | Y. Li, M. Zhang, L. Zhou, S. Yang, Y. Ma, Acta Phys. Chim. Sin. 37 (2020) 2009030. |
[42] |
Y. Yang, J. Chen, X. Liu, M. Qiu, L. Liu, F. Gao, New J. Chem. 43 (2019) 16391-16395.
DOI URL |
[43] |
Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem 6 (2020) 1543-1559.
DOI URL |
[44] |
S. Wageh, A. Al-Ghamdi, R. Jafer, X. Li, P. Zhang, Chin. J. Catal. 42 (2021) 667-669.
DOI URL |
[45] |
K. Chaudhary, N. Shaheen, S. Zulfiqar, M. Sarwar, M. Suleman, P. Agboola, I. Shakir, M. Warsi, Synth. Met. 269 (2020) 116526.
DOI URL |
[46] |
S. Hyun, B. Nam, T. Ko, C. Lee, S. Choi, W. Lee, Phys. Status Solidi A 217 (2020) 1900874.
DOI URL |
[47] |
G. Zhang, H. Zhang, R. Wang, H. Liu, Q. He, X. Zhang, Y. Li, J. Mater. Sci. Mater. Electron. 32 (2021) 7307-7318.
DOI URL |
[48] |
G. Guan, J. Xia, S. Liu, Y. Cheng, S. Bai, S. Tee, Y. Zhang, M. Han, Adv. Mater. 29 (2017) 1700326.
DOI URL |
[49] |
J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B 243 (2019) 556-565.
DOI URL |
[50] |
M. Moradi, F. Hasanvandian, A. Isari, F. Hayati, B. Kakavandi, S. Setayesh, Appl. Catal. B 285 (2021) 119838.
DOI URL |
[51] |
A. Sajjad, S. Sajjad, A. Iqbal, N. Ryma, Ceram. Int. 44 (2018) 9364-9371.
DOI URL |
[52] |
F. Xue, M. Liu, C. Cheng, J. Deng, J. Shi, ChemCatChem 10 (2018) 5441-5448.
DOI URL |
[53] |
X. Wu, X. Zhang, S. Zhao, Y. Gong, R. Djellabi, S. Lin, X. Zhao, Appl. Catal. A 591 (2020) 117271.
DOI URL |
[54] |
J. Xiong, G. Cheng, F. Qin, R. Wang, H. Sun, R. Chen, Chem. Eng. J. 220 (2013) 228-236.
DOI URL |
[55] |
Q. Zhu, Y. Sun, S. Xu, Y. Li, X. Lin, Y. Qin, J. Hazard. Mater. 382 (2020) 121098.
DOI URL |
[56] |
S. Zhao, X. Zhao, J. Catal. 366 (2018) 98-106.
DOI URL |
[57] |
B. Burek, D. Bahnemann, J. Bloh, ACS Catal. 9 (2019) 25-37.
DOI URL |
[58] |
I. Ahmad, M. Akhtar, E. Ahmed, M. Ahmad, V. Keller, W. Khan, N. Khalid, Sep. Purif. Technol. 237 (2020) 116328.
DOI URL |
[59] |
J. Liu, X. Wei, W. Sun, X. Guan, X. Zheng, J. Li, Environ. Res. 197 (2021) 111136.
DOI URL |
[60] |
Q. Li, W. Zhao, Z. Zhai, K. Ren, T. Wang, H. Guan, H. Shi, J. Mater. Sci. Technol. 56 (2020) 216-226.
DOI URL |
[61] | S. Wageh, A. Al-Ghamdi, L. Liu, Acta Phys. Chim. Sin. 37 (2021) 2010024. |
[62] |
F. Xu, K. Meng, S. Cao, C. Jiang, T. Chen, J. Xu, J. Yu, ACS Catal. 12 (2022) 164-172.
DOI URL |
[63] |
Y. Shiraishi, T. Takii1, T. Hagi, S. Mori, Y. Kofuji, Y. Kitagawa, S. Tanaka, S. Ichikawa, T. Hirai, Nat. Mater. 18 (2019) 985-993.
DOI PMID |
[64] |
Y. Yang, G. Zeng, D. Huang, C. Zhang, D. He, C. Zhou, W. Wang, W. Xiong, X. Li, B. Li, W. Dong, Y. Zhou, Appl. Catal. B 272 (2020) 118970.
DOI URL |
[65] |
J. Wei, Y. Chen, H. Zhang, Z. Zhuang, Y. Yu, Chin. J. Catal. 42 (2021) 78-86.
DOI URL |
[66] |
Y. Ren, Y. Li, X. Wu, J. Wang, G. Zhang, Chin. J. Catal. 42 (2021) 69-77.
DOI URL |
[67] |
W. Wang, W. Zhao, H. Zhang, X. Dou, H. Shi, Chin. J. Catal. 42 (2021) 97-106.
DOI URL |
[68] |
C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, Adv. Mater. 33 (2021) 2100317.
DOI URL |
[69] |
L. Wang, B. Cheng, L. Zhang, J. Yu, Small 17 (2021) 2103447.
DOI URL |
[70] |
D. Qin, Y. Xia, Q. Li, C. Yang, Y. Qin, K. Lv, J. Mater. Sci. Technol. 56 (2020) 206-215.
DOI URL |
[71] |
L. Zheng, J. Zhang, Y. Hu, M. Long, J. Phys. Chem. C 123 (2019) 13693-13701.
DOI URL |
[72] |
H. Fattahimoghaddam, T. Mahvelati-Shamsabadi, B. Lee, ACS Sustain. Chem. Eng. 9 (2021) 4520-4530.
DOI URL |
[73] |
L. Yang, G. Dong, D. Jacobs, Y. Wang, L. Zang, C. Wang, J. Catal. 352 (2017) 274-281.
DOI URL |
[74] |
Z. Li, Z. Wu, R. He, L. Wan, S. Zhang, J. Mater. Sci. Technol. 56 (2020) 151-161.
DOI URL |
[75] |
B. Liu, C. Bie, Y. Zhang, L. Wang, Y. Li, J. Yu, Langmuir 37 (2021) 14114-14124.
DOI URL |
[76] |
J. Tian, T. Wu, D. Wang, Y. Pei, M. Qiao, B. Zong, Catal. Today 330 (2019) 171-178.
DOI URL |
[77] |
S. Wu, X. Yu, J. Zhang, Y. Zhang, Y. Zhu, M. Zhu, Chem. Eng. J. 411 (2021) 128555.
DOI URL |
[78] |
W. Zhang, X. Chen, X. Zhao, M. Yin, L. Feng, H. Wang, Appl. Surf. Sci. 527 (2020) 146908.
DOI URL |
[79] |
M. Zhang, Y. Li, W. Chang, W. Zhu, L. Zhang, R. Jin, Y. Xing, Chin. J. Catal. 43 (2022) 526-535.
DOI URL |
[1] | Yingguang Zhang, Muyan Wu, Yifei Wang, Xiaolong Zhao, Dennis Y.C. Leung. Low-cost and efficient Mn/CeO2 catalyst for photocatalytic VOCs degradation via scalable colloidal solution combustion synthesis method [J]. J. Mater. Sci. Technol., 2022, 116(0): 169-179. |
[2] | Jinfeng Zhang, Junwei Fu, Kai Dai. Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity [J]. J. Mater. Sci. Technol., 2022, 116(0): 192-198. |
[3] | Guocheng Huang, Guiyun Lin, Qing Niu, Jinhong Bi, Ling Wu. Covalent triazine-based frameworks confining cobalt single atoms for photocatalytic CO2 reduction and hydrogen production [J]. J. Mater. Sci. Technol., 2022, 116(0): 41-49. |
[4] | Ying Liang, Guohe Huang, Xiaying Xin, Yao Yao, Yongping Li, Jianan Yin, Xiang Li, Yuwei Wu, Sichen Gao. Black titanium dioxide nanomaterials for photocatalytic removal of pollutants: A review [J]. J. Mater. Sci. Technol., 2022, 112(0): 239-262. |
[5] | Olga Sacco, Paola Franco, Iolanda De Marco, Vincenzo Vaiano, Emanuela Callone, Riccardo Ceccato, Francesco Parrino. Photocatalytic activity of Eu-doped ZnO prepared by supercritical antisolvent precipitation route: When defects become virtues [J]. J. Mater. Sci. Technol., 2022, 112(0): 49-58. |
[6] | Zheao Huang, Qiancheng Zhou, Jieming Wang, Ying Yu. Fermi-level-tuned MOF-derived N-ZnO@NC for photocatalysis: A key role of pyridine-N-Zn bond [J]. J. Mater. Sci. Technol., 2022, 112(0): 68-76. |
[7] | Jiaqi Dong, Chuxuan Yan, Yingzhi Chen, Wenjie Zhou, Yu Peng, Yue Zhang, Lu-Ning Wang, Zheng-Hong Huang. Organic semiconductor nanostructures: optoelectronic properties, modification strategies, and photocatalytic applications [J]. J. Mater. Sci. Technol., 2022, 113(0): 175-198. |
[8] | Cheng Cheng, Chung-Li Dong, Jinwen Shi, Liuhao Mao, Yu-Cheng Huang, Xing Kang, Shichao Zong, Shaohua Shen. Regulation on polymerization degree and surface feature in graphitic carbon nitride towards efficient photocatalytic H2 evolution under visible-light irradiation [J]. J. Mater. Sci. Technol., 2022, 98(0): 160-168. |
[9] | Yangfan Zhang, Yao Li, Han Yu, Kai Yu, Hongbing Yu. Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance [J]. J. Mater. Sci. Technol., 2022, 106(0): 139-146. |
[10] | Kezhen Qi, Chunqiang Zhuang, Manjie Zhang, Peyman Gholami, Alireza Khataee. Sonochemical synthesis of photocatalysts and their applications [J]. J. Mater. Sci. Technol., 2022, 123(0): 243-256. |
[11] | Bo Su, Haowei Huang, Zhengxin Ding, Maarten B.J. Roeffaers, Sibo Wang, Jinlin Long. S-scheme CoTiO3/Cd9.51Zn0.49S10 heterostructures for visible-light driven photocatalytic CO2 reduction [J]. J. Mater. Sci. Technol., 2022, 124(0): 164-170. |
[12] | Lufang Ning, Jing Xu, Yang Lou, Chengsi Pan, Zhouping Wang, Yongfa Zhu. A 3D/0D cobalt-embedded nitrogen-doped porous carbon/supramolecular porphyrin magnetic-separation photocatalyst with highly efficient pollutant degradation and water oxidation performance [J]. J. Mater. Sci. Technol., 2022, 124(0): 53-64. |
[13] | Xi. Rao, L. Du, J.J. Zhao, X.D. Tan, Y.X. Fang, L.Q. Xu, Y.P. Zhang. Hybrid TiO2/AgNPs/g-C3N4 nanocomposite coatings on TC4 titanium alloy for enhanced synergistic antibacterial effect under full spectrum light [J]. J. Mater. Sci. Technol., 2022, 118(0): 35-43. |
[14] | Lei Cheng, Baihai Li, Hui Yin, Jiajie Fan, Quanjun Xiang. Cu clusters immobilized on Cd-defective cadmium sulfide nano-rods towards photocatalytic CO2 reduction [J]. J. Mater. Sci. Technol., 2022, 118(0): 54-63. |
[15] | Yang Guo, Qixin Zhou, Xiaolin Chen, Yunzhi Fu, Shenyu Lan, Mingshan Zhu, Yukou Du. Near-infrared response Pt-tipped Au nanorods/g-C3N4 realizes photolysis of water to produce hydrogen [J]. J. Mater. Sci. Technol., 2022, 119(0): 53-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||