J. Mater. Sci. Technol. ›› 2022, Vol. 130: 12-26.DOI: 10.1016/j.jmst.2022.03.039
• Research Article • Previous Articles Next Articles
Yanning Chena,b, Liang Wua,b,*(), Wenhui Yaoa,b, Jiahao Wua,b, Jianpeng Xianga,b, Xiaowei Daia,b, Tao Wua,b, Yuan Yuana,b, Jingfeng Wanga,b, Bin Jianga,b, Fusheng Pana,b
Received:
2021-12-30
Revised:
2022-03-11
Accepted:
2022-03-15
Published:
2022-12-10
Online:
2022-12-07
Contact:
Liang Wu
About author:
∗ College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China. E-mail address: wuliang@cqu.edu.cn (L. Wu).Yanning Chen, Liang Wu, Wenhui Yao, Jiahao Wu, Jianpeng Xiang, Xiaowei Dai, Tao Wu, Yuan Yuan, Jingfeng Wang, Bin Jiang, Fusheng Pan. Development of metal-organic framework (MOF) decorated graphene oxide/MgAl-layered double hydroxide coating via microstructural optimization for anti-corrosion micro-arc oxidation coatings of magnesium alloy[J]. J. Mater. Sci. Technol., 2022, 130: 12-26.
Fig. 3. (A) Photograph of graphite powder and well-dispersed GO; (B) TEM image of GO; (C) SEM image of GO; (D) EDS data of GO; (E) XRD patterns of the GO powder, MAO coating, LDHs coating, G/LDHs coating; (F) XRD patterns of ZIF-8 powder, ZG/LDHs-5 coating, ZG/LDHs-15 coating, ZG/LDHs-25 coating, and ZG/LDHs-35 coating.
Fig. 4. FT-IR spectra of the (A) GO powder, MAO coating, LDHs coating, and G/LDHs coating; (B) ZIF-8 powder, ZG/LDHs-5 coating, ZG/LDHs-15 coating, ZG/LDHs-25, and ZG/LDHs-35.
Fig. 5. SEM images of the (A-C) MAO coating, (D-F) LDHs coating, (G-I) G/LDHs coating, (J-L) ZG/LDHs-5 coating, (M-O) ZG/LDHs-15 coating, (P-R) ZG/LDHs-25 coating, and (S-U) ZG/LDHs-35 coating.
Fig. 6. XPS spectra of (A, B) C 1s, (C) Mg 2p, and (D) Al 2p and (E) Zn 2p in MAO coating, LDHs coating, G/LDHs coating, ZG/LDHs-5 coating, ZG/LDHs-15 coating, ZG/LDHs-25 coating, and ZG/LDHs-35 coating.
Fig. 7. Cross-sectional SEM micrographs of (A) MAO coating, (B) LDHs coating, (C) G/LDHs coating, (D) ZG/LDHs-5 coating, (E) ZG/LDHs-15 coating, (F) ZG/LDHs-25 coating, and (G) ZG/LDHs-35 coating.
Fig. 8. (A) Cross-sectional morphology of ZG/LDHs-25 coating, (B) EDS analysis of ZG/LDHs-25 coating and the EDS mapping of (C) Mg, (D) Zn, (E) Al, (F) C, (G) O, and (H) N.
Sample | Ecorr (VSCE) | icorr (A cm-2) |
---|---|---|
MAO coating | -1.73 | 6.07 × 10-6 |
LDHs coating | -1.42 | 6.22 × 10-7 |
G/LDHs coating | -1.51 | 1.48 × 10-8 |
ZG/LDHs-5 coating | -0.89 | 4.80 × 10-9 |
ZG/LDHs-15 coating | -0.86 | 2.39 × 10-9 |
ZG/LDHs-25 coating | -0.96 | 7.81 × 10-10 |
ZG/LDHs-35 coating | -0.28 | 1.68 × 10-8 |
Table 1. Parameters of polarization curves for different coatings.
Sample | Ecorr (VSCE) | icorr (A cm-2) |
---|---|---|
MAO coating | -1.73 | 6.07 × 10-6 |
LDHs coating | -1.42 | 6.22 × 10-7 |
G/LDHs coating | -1.51 | 1.48 × 10-8 |
ZG/LDHs-5 coating | -0.89 | 4.80 × 10-9 |
ZG/LDHs-15 coating | -0.86 | 2.39 × 10-9 |
ZG/LDHs-25 coating | -0.96 | 7.81 × 10-10 |
ZG/LDHs-35 coating | -0.28 | 1.68 × 10-8 |
Fig. 11. Impedance spectra and fitting lines of different specimens after immersion (A, B) 30 min, (C, D) 7 days, and (E, F) 14 days in 3.5 wt.% NaCl solution.
Immersion period | Specimens | CPEout | Routb (Ω cm2) | CPEin | Rinb (Ω cm2) | CPEdl | Rctb (Ω cm2) | χ2 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Y0a (Ω-1 cm-2 Sn) | nc | Y0a (Ω-1 cm-2 Sn) | nc | Y0a (Ω-1 cm-2 Sn) | nc | ||||||
30 min | MAO | 4.6 × 10-5 | 0.8 | 9.5 × 104 | 5.1 × 10-5 | 0.7 | 5.1 × 103 | - | - | - | 2.2 × 10-3 |
LDHs | 4.9 × 10-6 | 1.0 | 6.5 × 105 | 5.9 × 10-7 | 0.8 | 1.1 × 105 | - | - | - | 1.1 × 10-3 | |
G/LDHs | 1.8 × 10-7 | 0.7 | 1.0 × 106 | 6.5 × 10-9 | 1.0 | 6.9 × 105 | - | - | - | 1.3 × 10-3 | |
ZG/LDHs-5 | 3.5 × 10-9 | 0.9 | 1.8 × 107 | 5.2 × 10-9 | 0.9 | 1.7 × 106 | - | - | - | 2.5 × 10-3 | |
ZG/LDHs-15 | 7.5 × 10-10 | 0.8 | 1.2 × 108 | 2.1 × 10-9 | 0.7 | 3.9 × 107 | - | - | - | 3.5 × 10-3 | |
ZG/LDHs-25 | 2.3 × 10-10 | 0.7 | 4.6 × 108 | 8.2 × 10-10 | 0.8 | 8.6 × 107 | - | - | - | / | |
ZG/LDHs-35 | 3.8 × 10-10 | 0.8 | 3.4 × 107 | 2.2 × 10-8 | 0.8 | 7.1 × 106 | - | - | - | 5.7 × 10-3 | |
7 days | MAO | 1.5 × 10-4 | 0.9 | 7.4 × 102 | 3.0 × 10-4 | 0.8 | 1.3 × 103 | 5.7 × 10-3 | |||
LDHs | 2.3 × 10-5 | 0.9 | 2.5 × 102 | 1.5 × 10-5 | 0.8 | 1.0 × 103 | 3.6 × 10-3 | ||||
G/LDHs | 3.9 × 10-7 | 1.0 | 4.0 × 103 | 5.6 × 10-5 | 0.8 | 1.4 × 104 | 3.4 × 10-3 | ||||
ZG/LDHs-5 | 9.1 × 10-8 | 0.8 | 3.3 × 105 | 3.7 × 10-6 | 0.7 | 9.8 × 105 | 1.3 × 10-3 | ||||
ZG/LDHs-15 | 1.9 × 10-8 | 0.7 | 7.2 × 105 | 4.5 × 10-7 | 0.7 | 4.9 × 106 | 2.3 × 10-3 | ||||
ZG/LDHs-25 | 1.3 × 10-9 | 0.9 | 1.5 × 106 | 1.7 × 10-7 | 0.8 | 6.1 × 106 | 4.6 × 10-3 | ||||
ZG/LDHs-35 | 2.5 × 10-8 | 0.9 | 3.8 × 105 | 2.3 × 10-6 | 0.9 | 1.1 × 106 | 3.2 × 10-3 | ||||
14 days | MAO | 8.9 × 10-2 | 1.0 | 1.8 × 102 | 1.9 × 10-3 | 0.9 | 6.6 × 102 | 4.3 × 10-2 | 1.0 | 2.1 × 102 | 2.7 × 10-3 |
LDHs | 7.8 × 10-4 | 0.7 | 1.6 × 101 | 7.4 × 10-4 | 1.0 | 5.5 × 101 | 1.3 × 10-3 | 0.9 | 1.3 × 103 | 1.9 × 10-3 | |
G/LDHs | 1.9 × 10-5 | 1.0 | 2.2 × 102 | 3.5 × 10-4 | 0.8 | 3.1 × 102 | 1.3 × 10-4 | 0.8 | 9.4 × 103 | 1.7 × 10-3 | |
ZG/LDHs-5 | 9.2 × 10-6 | 0.7 | 1.6 × 103 | 5.9 × 10-5 | 0.8 | 2.3 × 103 | 7.1 × 10-5 | 0.6 | 9.3 × 103 | 1.1 × 10-3 | |
ZG/LDHs-15 | 1.4 × 10-7 | 0.8 | 4.8 × 104 | 1.3 × 10-5 | 0.7 | 6.3 × 103 | 1.3 × 10-3 | ||||
ZG/LDHs-25 | 3.9 × 10-8 | 0.9 | 1.4 × 105 | 2.5 × 10-6 | 0.8 | 9.0 × 105 | 2.1 × 10-3 | ||||
ZG/LDHs-35 | 1.9 × 10-7 | 1.0 | 4.6 × 103 | 2.8 × 10-5 | 0.9 | 6.7 × 103 | 7.2 × 10--6 | 0.8 | 1.5 × 104 | 3.1 × 10-3 |
Table 2. Fitting parameters are related to the EIS diagram in Fig. 11.
Immersion period | Specimens | CPEout | Routb (Ω cm2) | CPEin | Rinb (Ω cm2) | CPEdl | Rctb (Ω cm2) | χ2 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Y0a (Ω-1 cm-2 Sn) | nc | Y0a (Ω-1 cm-2 Sn) | nc | Y0a (Ω-1 cm-2 Sn) | nc | ||||||
30 min | MAO | 4.6 × 10-5 | 0.8 | 9.5 × 104 | 5.1 × 10-5 | 0.7 | 5.1 × 103 | - | - | - | 2.2 × 10-3 |
LDHs | 4.9 × 10-6 | 1.0 | 6.5 × 105 | 5.9 × 10-7 | 0.8 | 1.1 × 105 | - | - | - | 1.1 × 10-3 | |
G/LDHs | 1.8 × 10-7 | 0.7 | 1.0 × 106 | 6.5 × 10-9 | 1.0 | 6.9 × 105 | - | - | - | 1.3 × 10-3 | |
ZG/LDHs-5 | 3.5 × 10-9 | 0.9 | 1.8 × 107 | 5.2 × 10-9 | 0.9 | 1.7 × 106 | - | - | - | 2.5 × 10-3 | |
ZG/LDHs-15 | 7.5 × 10-10 | 0.8 | 1.2 × 108 | 2.1 × 10-9 | 0.7 | 3.9 × 107 | - | - | - | 3.5 × 10-3 | |
ZG/LDHs-25 | 2.3 × 10-10 | 0.7 | 4.6 × 108 | 8.2 × 10-10 | 0.8 | 8.6 × 107 | - | - | - | / | |
ZG/LDHs-35 | 3.8 × 10-10 | 0.8 | 3.4 × 107 | 2.2 × 10-8 | 0.8 | 7.1 × 106 | - | - | - | 5.7 × 10-3 | |
7 days | MAO | 1.5 × 10-4 | 0.9 | 7.4 × 102 | 3.0 × 10-4 | 0.8 | 1.3 × 103 | 5.7 × 10-3 | |||
LDHs | 2.3 × 10-5 | 0.9 | 2.5 × 102 | 1.5 × 10-5 | 0.8 | 1.0 × 103 | 3.6 × 10-3 | ||||
G/LDHs | 3.9 × 10-7 | 1.0 | 4.0 × 103 | 5.6 × 10-5 | 0.8 | 1.4 × 104 | 3.4 × 10-3 | ||||
ZG/LDHs-5 | 9.1 × 10-8 | 0.8 | 3.3 × 105 | 3.7 × 10-6 | 0.7 | 9.8 × 105 | 1.3 × 10-3 | ||||
ZG/LDHs-15 | 1.9 × 10-8 | 0.7 | 7.2 × 105 | 4.5 × 10-7 | 0.7 | 4.9 × 106 | 2.3 × 10-3 | ||||
ZG/LDHs-25 | 1.3 × 10-9 | 0.9 | 1.5 × 106 | 1.7 × 10-7 | 0.8 | 6.1 × 106 | 4.6 × 10-3 | ||||
ZG/LDHs-35 | 2.5 × 10-8 | 0.9 | 3.8 × 105 | 2.3 × 10-6 | 0.9 | 1.1 × 106 | 3.2 × 10-3 | ||||
14 days | MAO | 8.9 × 10-2 | 1.0 | 1.8 × 102 | 1.9 × 10-3 | 0.9 | 6.6 × 102 | 4.3 × 10-2 | 1.0 | 2.1 × 102 | 2.7 × 10-3 |
LDHs | 7.8 × 10-4 | 0.7 | 1.6 × 101 | 7.4 × 10-4 | 1.0 | 5.5 × 101 | 1.3 × 10-3 | 0.9 | 1.3 × 103 | 1.9 × 10-3 | |
G/LDHs | 1.9 × 10-5 | 1.0 | 2.2 × 102 | 3.5 × 10-4 | 0.8 | 3.1 × 102 | 1.3 × 10-4 | 0.8 | 9.4 × 103 | 1.7 × 10-3 | |
ZG/LDHs-5 | 9.2 × 10-6 | 0.7 | 1.6 × 103 | 5.9 × 10-5 | 0.8 | 2.3 × 103 | 7.1 × 10-5 | 0.6 | 9.3 × 103 | 1.1 × 10-3 | |
ZG/LDHs-15 | 1.4 × 10-7 | 0.8 | 4.8 × 104 | 1.3 × 10-5 | 0.7 | 6.3 × 103 | 1.3 × 10-3 | ||||
ZG/LDHs-25 | 3.9 × 10-8 | 0.9 | 1.4 × 105 | 2.5 × 10-6 | 0.8 | 9.0 × 105 | 2.1 × 10-3 | ||||
ZG/LDHs-35 | 1.9 × 10-7 | 1.0 | 4.6 × 103 | 2.8 × 10-5 | 0.9 | 6.7 × 103 | 7.2 × 10--6 | 0.8 | 1.5 × 104 | 3.1 × 10-3 |
Fig. 13. SEM images of all coatings after immersion in 3.5 wt.% NaCl solution for 14 days (A) MAO coating, (B) LDHs coating, (C) G/LDHs coating, (D) ZG/LDHs-5 coating, (E) ZG/LDHs-15 coating, (F) ZG/LDHs-25 coating, (G) ZG/LDHs-35 coating, and (H) their corresponding EDS data.
Fig. 15. Visual appearance of the (A1-C1) MAO coating, (A2-C2) LDHs coating, (A3-C3) G/LDHs coating, (A4-C4) ZG/LDHs-5 coating, (A5-C5) ZG/LDHs-15 coating, (A6-C6) ZG/LDHs-25 coating, and (A7-C7) ZG/LDHs-35 coating.
Sample | Time (day) | 2-mIm (ppm) | Zn (ppm) |
---|---|---|---|
ZG/LDHs-25 coating | 2 | 164.9 | 237.9 |
7 | 64.5 | 48.2 |
Table 3. Amount of the released zinc cations and 2-mIm molecules from the ZG/LDHs-25 coating in the 3.5% NaCl solution during the time.
Sample | Time (day) | 2-mIm (ppm) | Zn (ppm) |
---|---|---|---|
ZG/LDHs-25 coating | 2 | 164.9 | 237.9 |
7 | 64.5 | 48.2 |
[1] |
N.M. Mahmoodi, M. Taghizadeh, A. Taghizadeh, J. Mol. Liq. 277 (2019) 310-322.
DOI URL |
[2] |
O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Nature 423 (2003) 705-714.
DOI URL |
[3] |
N.M. Mahmoodi, M. Oveisi, A. Taghizadeh, M. Taghizadeh, Carbohydr. Polym. 227 (2020) 115364.
DOI URL |
[4] |
N.M. Mahmoodi, M. Taghizadeh, A. Taghizadeh, J. Abdi, B. Hayati, A.A. Shekarchi, Appl. Surf. Sci. 480 (2019) 288-299.
DOI URL |
[5] |
N.M. Mahmoodi, M. Oveisi, A. Taghizadeh, M. Taghizadeh, J. Hazard. Mater. 368 (2019) 746-759.
DOI URL |
[6] |
N.M. Mahmoodi, A. Taghizadeh, M. Taghizadeh, J. Abdi, J. Hazard. Mater. 378 (2019) 120741.
DOI URL |
[7] |
J. Abdi, N.M. Mahmoodi, M. Vossoughi, I. Alemzadeh, Microporous Mesoporous Mater. 273 (2019) 177-188.
DOI URL |
[8] |
M. Zhang, L. Ma, L.L. Wang, Y.W. Sun, Y. Liu, ACS Appl. Mater. Interfaces 10 (2018) 2259-2263.
DOI URL |
[9] |
X.B. Liu, T. Yue, K. Qi, B.Y. Xia, Z.Y. Chen, Y.B. Qiu, X.P. Guo, Corros. Sci. 177 (2020) 108949.
DOI URL |
[10] | L.L. Xiong, M. Yu, Y.Q. Li, X.X. Kong, S.M. Li, J.H. Liu, Prog. Org. Coat. 142 (2020) 105562. |
[11] |
N.M. Mahmoodi, J. Abdi, Microchem. J. 144 (2019) 436-442.
DOI URL |
[12] |
M. Oveisi, N.M. Mahmoodi, M.A. Asli, J. Clean. Prod. 222 (2019) 669-684.
DOI |
[13] |
Q. Liu, N.Y. Wang, J. Caro, A.S. Huang, J. Am. Chem. Soc. 135 (2013) 17679-17682.
DOI URL |
[14] |
A.S. Huang, W. Dou, J. Caro, J. Am. Chem. Soc. 132 (2010) 15562-15564.
DOI URL |
[15] |
L. Jiang, Y.M. Dong, Y. Yuan, X. Zhou, Y. Liu, X.K. Meng, Chem. Eng. J. 430 (2022) 132823.
DOI URL |
[16] | D.K. Yoo, H.C. Woo, S.H. Jhung, Coord. Chem. Rev. 422 (2020) 15. |
[17] |
A. Sharsheeva, V.A. Iglin, P.V. Nesterov, O.A. Kuchur, E. Garifullina, E. Hey-Hawkins, S.A. Ulasevich, E.V. Skorb, A.V. Vinogradov, M.I. Morozov, J. Mater. Chem. B 7 (2019) 6810-6821.
DOI PMID |
[18] |
H. Dai, X.Z. Yuan, L.B. Jiang, H. Wang, J. Zhang, J.J. Zhang, T. Xiong, Coord. Chem. Rev. 441 (2021) 213985.
DOI URL |
[19] |
Y. Liu, N.Y. Wang, J.H. Pan, F. Steinbach, J. Caro, J. Am. Chem. Soc. 136 (2014) 14353-14356.
DOI PMID |
[20] | Y. Yoo, H.K. Jeong, Chem. Commun. (2008) 2441-2443. |
[21] |
Y.N. Chen, L. Wu, W.H. Yao, Z.Y. Zhong, Y.H. Chen, J.H. Wu, F.S. Pan, Surf. Coat. Technol. 413 (2021) 127083.
DOI URL |
[22] |
N. Wei, X.D. Zheng, H.X. Ou, P.L. Yu, Q. Li, S.S. Feng, New J. Chem. 43 (2019) 5603-5610.
DOI URL |
[23] |
C.J. Xuan, B.S. Hou, W.W. Xia, Z.K. Peng, T. Shen, H.L. Xin, G.A. Zhang, D.L. Wang, J. Mater. Chem. A 6 (2018) 10731-10739.
DOI URL |
[24] |
X. Jiang, S.W. Li, Y.P. Bai, L. Shao, J. Mater. Chem. A 7 (2019) 10898-10904.
DOI |
[25] |
D. Jiang, A.D. Burrows, Y. Xiong, K.J. Edler, J. Mater. Chem. A 1 (2013) 5497-5500.
DOI URL |
[26] |
J. Hou, P.D. Sutrisna, Y. Zhang, V. Chen, Angew. Chem. Int. Ed. 55 (2016) 3947-3951.
DOI URL |
[27] | K. Khaletskaya, S. Turner, M. Tu, S. Wannapaiboon, A. Schneemann, R. Meyer, A. Ludwig, G. Van Tendeloo, R.A. Fischer, Adv. Funct. Mater. 24 (2014) 4 804-4 811. |
[28] |
X.R. Wang, C.L. Chi, J.F. Tao, Y.W. Peng, S.M. Ying, Y.H. Qian, J. Dong, Z.G. Hu, Y.D. Gu, D. Zhao, Chem. Commun. 52 (2016) 8087-8090.
DOI URL |
[29] |
M.Y. Yu, S.S. Zhang, Y. Chen, H.Y. Jin, Y. Zhang, L.H. Lu, Z. Shu, S. Hou, B.Q. Xie, H.D. Cui, Carbon 133 (2018) 101-108.
DOI URL |
[30] |
G. Zhang, L. Wu, A.T. Tang, Y.L. Ma, G.L. Song, D.J. Zheng, B. Jiang, A. Atrens, F.S. Pan, Corros. Sci 139 (2018) 370-382.
DOI URL |
[31] |
G. Zhang, L. Wu, A.T. Tang, X.B. Chen, Y.L. Ma, Y. Long, P. Peng, X.X. Ding, H.L. Pan, F.S. Pan, Appl. Surf. Sci. 456 (2018) 419-429.
DOI URL |
[32] |
Y.N. Chen, L. Wu, W.H. Yao, Y.H. Chen, Z.Y. Zhong, W.J. Ci, J.B. Wu, Z.H. Xie, Y. Yuan, F.S Pan, Corros. Sci 194 (2022) 109941.
DOI URL |
[33] |
T. Ishizaki, N. Kamiyama, K. Watanabe, A. Serizawa, Corros. Sci 92 (2015) 76-84.
DOI URL |
[34] |
H. Xu, J.X. Wu, J. Liu, Y. Chen, X. Fan, J. Mater. Sci. Mater. Electron. 29 (2018) 17234-17244.
DOI URL |
[35] |
K.X. Wang, C.L. Miao, Y.N. Liu, L.Y. Cai, W. Jones, J.X. Fan, D.Q. Li, J.T. Feng, Appl. Catal. B-Environ. 270 (2020) 118878.
DOI URL |
[36] |
E.L. Bustamante, J.L. Fernández, J.M. Zamaro, J. Colloid Interface Sci. 424 (2014) 37-43.
DOI URL |
[37] |
T.Y. Zhu, S. Xu, F. Yu, X. Yu, Y. Wang, J. Membr. Sci. 598 (2020) 117681.
DOI URL |
[38] |
H. Yang, N. Wang, L. Wang, H.X. Liu, Q.F. An, S. Ji, J. Membr. Sci. 545 (2018) 158-166.
DOI URL |
[39] |
C. Blawert, W. Dietzel, E. Ghali, G. Song, Adv. Eng. Mater. 8 (2006) 511-533.
DOI URL |
[40] |
G. Zhang, L. Wu, A.T. Tang, B. Weng, A. Atrens, S.D. Ma, L. Liu, F.S. Pan, RSC Adv. 8 (2018) 2248-2259.
DOI URL |
[41] |
Y. Zuo, P.H. Zhao, J.M. Zhao, Surf. Coat. Technol. 166 (2003) 237-242.
DOI URL |
[42] |
H.Y. Hsiao, H.C. Tsung, W.T. Tsai, Surf. Coat. Technol. 199 (2005) 127-134.
DOI URL |
[43] |
J. Chen, Y. Song, D. Shan, E.H. Han, Corros. Sci 53 (2011) 3281-3288.
DOI URL |
[44] |
H.Y. Hsiao, W.T. Tsai, Surf. Coat. Technol. 190 (2005) 299-308.
DOI URL |
[45] |
B. Ramezanzadeh, S. Niroumandrad, A. Ahmadi, M. Mahdavian, M.H.M. Moghadam, Corros. Sci 103 (2016) 283-304.
DOI URL |
[46] |
H.P. Mungse, K. Gupta, R. Singh, O.P. Sharma, H. Sugimura, O.P. Khatri, J. Colloid Interface Sci. 541 (2019) 150-162.
DOI URL |
[47] |
D. Tuncel, A.N. Ökte, Catal. Today 361 (2021) 191-197.
DOI URL |
[48] | G. Zhang, L. Wu, A.T. Tang, H.L. Pan, Y.L. Ma, Q. Zhan, Q.Y. Tan, F.S. Pan, A. Atrens, J. Electrochem. Soc. 165 (2018) C317-C327. |
[49] |
W. Yao, J. Wang, P.Y. Wang, X.X. Wang, S.J. Yu, Y.D. Zou, J. Hou, T. Hayat, A. Al-saedi, X.K. Wang, Environ. Pollut. 229 (2017) 827-836.
DOI URL |
[50] |
X.Q. Zhan, W. Shang, Y.Q. Wen, Y.Q. Li, M.M. Ma, J. Alloys Compd. 774 (2019) 522-531.
DOI URL |
[51] |
J. Kuang, Z.X. Ba, Z.Z. Li, Y.Q. Jia, Z.Z. Wang, Surf. Coat. Technol. 361 (2019) 75-82.
DOI URL |
[52] |
Y. Zhang, P.H. Yu, J.P. Wang, Y.D. Li, F. Chen, K. Wei, Y. Zuo, Appl. Surf. Sci. 433 (2018) 927-933.
DOI URL |
[53] |
Z.H. Wang, J.M. Zhang, Y. Li, L.J. Bai, G.J. Zhang, Trans. Indian Ceram. Soc. 79 (2020) 59-66.
DOI URL |
[54] |
S.Q. Jiang, Z.Y. Zhang, D. Wang, Y.Q. Wen, N. Peng, W. Shang, J. Magnes. Alloy. (2021), doi: 10.1016/j.jma.2021.07.027
DOI |
[55] |
X.X Yin, P. Mu, Q.T. Wang, J. Li, ACS Appl. Mater. Interfaces 12 (2020) 35453-35463.
DOI URL |
[56] |
F. Zhang, C.L. Zhang, R.C. Zeng, L. Song, L. Guo, X.W. Huang, Metals 6 (2016) 85.
DOI URL |
[57] |
L. Wu, X.X. Ding, Z.C. Zheng, A.T. Tang, G. Zhang, A. Atrens, F.S. Pan, J. Mater. Sci. Technol. 64 (2021) 66-72.
DOI URL |
[58] |
Y.H. Song, Y. Tang, L. Fang, F. Wu, X.G. Zeng, J. Hu, S.F. Zhang, B. Jiang, H.J. Luo, J. Magnes. Alloy. 9 (2021) 658-667.
DOI URL |
[59] |
J.F. Chen, W.X. Lin, S.Y. Liang, L.C. Zou, C. Wang, B.S. Wang, M.F. Yan, X.P. Cui, Appl. Surf. Sci. 463 (2019) 535-544.
DOI URL |
[60] |
H.P. Han, R.Q. Wang, Y.K. Wu, X.Z. Zhang, D.D. Wang, Z. Yang, Y. Su, D.J. Shen, P. Nash, J. Alloys Compd. 811 (2019) 152010.
DOI URL |
[61] |
C.Q. Wu, Q. Liu, R.R. Chen, J.Y. Liu, H.S. Zhang, R.M. Li, K. Takahashi, P.L. Liu, J. Wang, ACS Appl. Mater. Interfaces 9 (2017) 11106-11115.
DOI URL |
[62] | J.L. Chen, L. Fang, F. Wu, J. Xie, J. Hu, B. Jiang, H.J. Luo, Prog. Org. Coat. 136 (2019) 105234. |
[63] |
J.L. Zhang, C.D. Gu, J.P. Tu, ACS Appl. Mater. Interfaces 9 (2017) 11247- 11257.
DOI URL |
[64] |
Z.H. Wang, J.M. Zhang, Y. Li, L.J. Bai, G.J. Zhang, Trans. Nonferrous Met. Soc. China 29 (2019) 2066-2077.
DOI URL |
[65] |
F. Zhang, Z.G. Liu, R.C. Zeng, S.Q. Li, H.Z. Cui, L. Song, E.H. Han, Surf. Coat. Technol. 258 (2014) 1152-1158.
DOI URL |
[66] |
J.L. Chen, L. Fang, F. Wu, X.G. Zeng, J. Hu, S.F. Zhang, B. Jiang, H.J. Luo, Trans. Nonferrous Met. Soc. China 30 (2020) 2424-2434.
DOI URL |
[67] |
L.Y. Cui, X.H. Fang, W. Cao, R.C. Zeng, S.Q. Li, X.B. Chen, Y.H. Zou, S.K. Guan, E.H. Han, Appl. Surf. Sci. 457 (2018) 49-58.
DOI URL |
[68] |
C. Zhang, L. Wu, Z.L. Zhao, G.S. Huang, B. Jiang, A. Atrens, F.S. Pan, J. Magnes. Alloy. 9 (2021) 1339-1348.
DOI URL |
[69] |
R.F. Zhang, D.Y. Shan, R.S. Chen, E.H. Han, Mater. Chem. Phys. 107 (2008) 356-363.
DOI URL |
[70] |
Z.M. Shi, G.L. Song, A. Atrens, Corros. Sci. 48 (2006) 3531-3546.
DOI URL |
[71] |
Y.N. Chen, J.J. Li, W.G. Yang, S.Y. Gao, R. Cao, Appl. Surf. Sci. 493 (2019) 1224-1235.
DOI URL |
[72] |
B. Ramezanzadeh, E. Ghasemi, M. Mahdavian, E. Changizi, M.H. Mo-hamadzadeh Moghadam, Carbon 93 (2015) 555-573.
DOI URL |
[73] |
J. Chen, L. Wu, X.X. Ding, Q. Liu, X. Dai, J.F. Song, B. Jiang, A. Atrens, F.S. Pan, J. Mater. Sci. Technol. 64 (2021) 10-20.
DOI URL |
[74] |
M. Toorani, M. Aliofkhazraei, R. Naderi, J. Alloys Compd. 785 (2019) 669- 683.
DOI URL |
[75] |
O. Khaselev, D. Weiss, J. Yahalom, Corros. Sci 43 (2001) 1295-1307.
DOI URL |
[76] |
D. Asefi, N.M. Mahmoodi, M. Arami, Colloids Surf. A 355 (2010) 183-186.
DOI URL |
[77] |
Y. Feng, Y.F. Cheng, Chem. Eng. J. 315 (2017) 537-551.
DOI URL |
[78] |
M. Toorani, M. Aliofkhazraei, R. Naderi, M. Golabadi, A. Sabour Rouhaghdam, J. Ind. Eng. Chem. 53 (2017) 213-227.
DOI URL |
[79] |
H.B. Yang, L. Wu, B. Jiang, W.J. Liu, J.F. Song, G.S. Huang, D.F. Zhang, F.S. Pan, J. Mater. Sci. Technol. 62 (2021) 128-138.
DOI URL |
[80] |
J.J. Low, A.I. Benin, P. Jakubczak, J.F. Abrahamian, S.A. Faheem, R.R. Willis, J. Am. Chem. Soc. 131 (2009) 15834-15842.
DOI URL |
[81] |
M. Ramezanzadeh, B. Ramezanzadeh, M. Mahdavian, G. Bahlakeh, Carbon 161 (2020) 231-251.
DOI URL |
[82] |
H. Zhang, M. Zhao, Y.S. Lin, Microporous Mesoporous Mater. 279 (2019) 201-210.
DOI URL |
[83] |
R.A. Reichle, K.G. McCurdy, L.G. Hepler, Can. J. Chem. 53 (1975) 3841-3845.
DOI URL |
[84] |
L.C. Yan, M. Zhou, X.L. Pang, K.W. Gao, Langmuir 35 (2019) 6312-6320.
DOI URL |
[85] |
Q. Li, Y.F. Lu, Q. Luo, X.H. Yang, Y. Yang, J. Tan, Z.H. Dong, J. Dang, J.B. Li, Y. Chen, B. Jiang, S.H. Sun, F.S. Pan, J. Magnes. Alloy 9 (2021) 1922-1941.
DOI URL |
[86] |
Q. Li, X. Lin, Q. Luo, Y.A. Chen, J.F. Wang, B. Jiang, F.S. Pan, Int. J. Miner. Metall. Mater. 29 (2022) 32-48.
DOI URL |
[1] | Jun Xu, Bin Jiang, Yuehua Kang, Jun Zhao, Weiwen Zhang, Kaihong Zheng, Fusheng Pan. Tailoring microstructure and texture of Mg-3Al-1Zn alloy sheets through curve extrusion process for achieving low planar anisotropy [J]. J. Mater. Sci. Technol., 2022, 113(0): 48-60. |
[2] | Zhao-Hui Zhang, Zuan-Yu Chen, Yi-Hao Tang, Yu-Tong Li, Dequan Ma, Guo-Dong Zhang, Rabah Boukherroub, Cheng-Fei Cao, Li-Xiu Gong, Pingan Song, Kun Cao, Long-Cheng Tang. Silicone/graphene oxide co-cross-linked aerogels with wide-temperature mechanical flexibility, super-hydrophobicity and flame resistance for exceptional thermal insulation and oil/water separation [J]. J. Mater. Sci. Technol., 2022, 114(0): 131-142. |
[3] | Lijun Fan, Wenxin Sun, Yuhong Zou, Qian-qian Xu, Rong-Chang Zeng, Jingrui Tian. Enhanced corrosion resistance, antibacterial activity and biocompatibility of gentamicin-montmorillonite coating on Mg alloy-in vitro and in vivo studies [J]. J. Mater. Sci. Technol., 2022, 111(0): 167-180. |
[4] | B.Q. Shi, L.Y. Zhao, X.L. Shang, B.H. Nie, D.C. Chen, C.Q. Li, Y.Q. Cheng. Reduction effect of final-pass heavy reduction rolling on the texture development, tensile property and stretch formability of ZWK100 alloy plates [J]. J. Mater. Sci. Technol., 2022, 111(0): 211-223. |
[5] | Ł. Maj, D. Wojtas, A. Jarzębska, M. Bieda, K. Trembecka-Wójciga, R. Chulist, W. Kozioł, A. Góral, A. Trelka, K. Janus, J. Kawałko, M. Kulczyk, F. Muhaffel, H. Çimenoğlu, K. Sztwiertnia. Titania coating formation on hydrostatically extruded pure titanium by micro-arc oxidation method [J]. J. Mater. Sci. Technol., 2022, 111(0): 224-235. |
[6] | J. Wang, X.L. Lu, Y. Tian, Q.Y. Huang, H.B. Xie, B.Z. Sun, L.R. Liu. An insight into a novel Mg2InSm prismatic plate in Mg-In-Sm alloy [J]. J. Mater. Sci. Technol., 2022, 125(0): 222-230. |
[7] | Shan Chen, Zhongyu Huang, Mingzhe Yuan, Guang Huang, Honglei Guo, Guozhe Meng, Zhiyuan Feng, Ping Zhang. Trigger and response mechanisms for controlled release of corrosion inhibitors from micro/nanocontainers interpreted using endogenous and exogenous stimuli: A review [J]. J. Mater. Sci. Technol., 2022, 125(0): 67-80. |
[8] | Yumin Zhang, Jiulong Sun, Xinzhe Xiao, Ning Wang, Guozhe Meng, Lin Gu. Graphene-like two-dimensional nanosheets-based anticorrosive coatings: A review [J]. J. Mater. Sci. Technol., 2022, 129(0): 139-162. |
[9] | Dongdong Zhang, Jielong Zhou, Feng Peng, Ji Tan, Xianming Zhang, Shi Qian, Yuqin Qiao, Yu Zhang, Xuanyong Liu. Mg-Fe LDH sealed PEO coating on magnesium for biodegradation control, antibacteria and osteogenesis [J]. J. Mater. Sci. Technol., 2022, 105(0): 57-67. |
[10] | Bo Hu, Zixin Li, Dejiang Li, Tao Ying, Xiaoqin Zeng, Wenjiang Ding. A hot tearing criterion based on solidification microstructure in cast alloys [J]. J. Mater. Sci. Technol., 2022, 105(0): 68-80. |
[11] | Wenhui Yao, Liang Wu, Jingfeng Wang, Bin Jiang, Dingfei Zhang, Maria Serdechnova, Tatsiana Shulha, Carsten Blawert, Mikhail L. Zheludkevich, Fusheng Pan. Micro-arc oxidation of magnesium alloys: A review [J]. J. Mater. Sci. Technol., 2022, 118(0): 158-180. |
[12] | W.L. Wang, W.Q. Liu, X. Yang, R.R. Xu, Q.Y. Dai. Multi-scale simulation of columnar-to-equiaxed transition during laser selective melting of rare earth magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 119(0): 11-24. |
[13] | Yanhui Cao, Dajiang Zheng, Fan Zhang, Jinshan Pan, Changjian Lin. Layered double hydroxide (LDH) for multi-functionalized corrosion protection of metals: A review [J]. J. Mater. Sci. Technol., 2022, 102(0): 232-263. |
[14] | Inime Ime Udoh, Hongwei Shi, Enobong Felix Daniel, Jianyang Li, Songhua Gu, Fuchun Liu, En-Hou Han. Active anticorrosion and self-healing coatings: A review with focus on multi-action smart coating strategies [J]. J. Mater. Sci. Technol., 2022, 116(0): 224-237. |
[15] | Wenhao Qian, Tao Song, Mao Ye, Xiaoyu Huang, Yongjun Li, Bingjie Hao. Functionalized nanographene oxide/PEG/rhodamine B/gold nanocomposite for electrochemical determination of glucose [J]. J. Mater. Sci. Technol., 2022, 122(0): 141-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||