J. Mater. Sci. Technol. ›› 2022, Vol. 125: 222-230.DOI: 10.1016/j.jmst.2022.02.046
• Research Article • Previous Articles Next Articles
J. Wanga, X.L. Lua, Y. Tiana, Q.Y. Huanga, H.B. Xiea, B.Z. Suna,b,*(), L.R. Liuc
Received:
2022-01-15
Revised:
2022-02-23
Accepted:
2022-02-27
Published:
2022-04-19
Online:
2022-04-19
Contact:
B.Z. Sun
About author:
* School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China. E-mail address: bzsun@imp.neu.edu.cn (B.Z. Sun).J. Wang, X.L. Lu, Y. Tian, Q.Y. Huang, H.B. Xie, B.Z. Sun, L.R. Liu. An insight into a novel Mg2InSm prismatic plate in Mg-In-Sm alloy[J]. J. Mater. Sci. Technol., 2022, 125: 222-230.
Fig. 1. A set of bright-field TEM micrographs and the corresponding SAED patterns of Mg-In-Sm alloy aged at 200 °C for 24 h. The electron beam is parallel to (a, b) ${{\left[ 0001 \right]}_{\alpha }}$ and (c, d) ${{\left[ 1\bar{2}10 \right]}_{\alpha }}$.
Fig. 2. Low magnification HAADF-STEM images of the prismatic platelets in Mg-In-Sm alloys aged at 200 °C for (a, b) 24 h and (c, d) 96 h. The incident beam is parallel to (a, c) ${{\left[ 0001 \right]}_{\alpha }}$ and (b, d) ${{\left[ 11\bar{2}0 \right]}_{\alpha }}$. The inset in (d) is a distribution of the aspect ratio based on the statistical results of 30 prismatic plates.
Fig. 3. Series of STEM images of the prismatic platelets in Mg-In-Sm alloy aged at 200 °C for 24 h. (a, b) High magnification and atomic scale ${{\left[ 0001 \right]}_{\alpha }}$ HAADF-STEM images. (c, d) A pair of ${{\left[ 11\bar{2}0 \right]}_{\alpha }}$ HAADF and ABF-STEM images. The insets in (a–c) are the intensity profiles of the corresponding rectangle and the insets in (d) are the FFT and IFFT images of the green dotted frame.
Fig. 5. A series of analysis results from the ${{\left\{ 10\bar{1}0 \right\}}_{\alpha }}$ prismatic platelet viewed along ${{\left[ 0001 \right]}_{\alpha }}$(upper) and ${{\left[ 11\bar{2}0 \right]}_{\alpha }}$ (below). (a, b) Atomic arrangements of the ideal and relaxed states. (c) Charge distribution. (d) Simulated HAADF-STEM images.
Fig. 7. Projections of the Mg3Sm-D019 (β″) and (Mg2In)Sm-D019 (generalized β″) supercells along (a) ${{\left[ 0001 \right]}_{\alpha }}$ and (b) $\langle 11\bar{2}0{{\rangle }_{\alpha }}$.
Fig. 8. Schematic diagram of the stability and formation ranges of β″ phase in α-Mg and Mg/In matrixes, and the left pictures give compared experimental images of β″ phases in Mg-La and Mg-In-Sm alloys. The gray background in table denotes the unstudied RE element in Mg alloys.
Fig. 9. A schematic diagram of the formation process of Mg2InSm prismatic platelet with an extended aging time. (a) Isolated Mg3In-type $\text{D}{{0}_{19}}$ structure, (b) The agglomeration of Mg3In-type $\text{D}{{0}_{19}}$ structures and formation of Mg3In-type $\text{D}{{0}_{19}}$ two-dimensional structure, (c) The nucleation of Mg2InSm-type $\text{D}{{0}_{19}}$ structures, (d) The growth and formation of Mg2InSm prismatic platelets.
[1] |
T.M. Pollock, Science 328 (2010) 986-987.
DOI PMID |
[2] |
Y.W. Gui, Y.J. Cui, H.K. Bian, Q.A. Li, L.X. Ouyang, A. Chiba, J. Mater. Sci. Technol. 80 (2021) 279-296.
DOI URL |
[3] |
G. Liu, Y. Wang, Z. Fan, Mater. Sci. Eng. A 472 (2008) 251-257.
DOI URL |
[4] |
J.F. Nie, Metall. Mater. Trans. A 43 (2012) 3891-3939.
DOI URL |
[5] |
J.X. Guo, H. Fu, G.D. Zou, B.Z. Liu, Q.M. Peng, J. Alloy Compd. 632 (2015) 68-72.
DOI URL |
[6] |
S.H. Lv, F.Z. Meng, Q. Yang, K. Guan, J. Meng, Mater. Des. 208 (2021) 109904.
DOI URL |
[7] |
Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[8] |
Y.J. Feng, L. Wei, X.B. Chen, M.C. Li, Y.F. Cheng, Q. Li, Corros. Sci. 159 (2019) 108133.
DOI URL |
[9] |
Z. Tian, Q. Yang, K. Guan, Z.Y. Cao, J. Meng, Rare Met. 40 (2021) 2188-2196.
DOI URL |
[10] |
J.X. Zheng, W.M. Zhou, B. Chen, Mater. Sci. Eng. A 669 (2016) 304-311.
DOI URL |
[11] |
G.L. Jia, L.P. Wang, Y.C. Feng, E.J. Guo, Y.H. Chen, C.L. Wang, Rare Met. 40 (2021) 2197-2205.
DOI URL |
[12] |
F.Z. Meng, S.H. Lv, Q. Yang, X. Qiu, Z.X. Yan, Q. Duan, J. Meng, J. Magnes. Alloy 10 (2022) 209-223.
DOI URL |
[13] |
D.D. Zhang, Q. Yang, B.S. Li, K. Guan, N. Wang, B. Jiang, C. Sun, D.P. Zhang, X. L. Li, Z.Y. Cao, J. Meng, J. Alloy Compd. 805 (2019) 811-821.
DOI URL |
[14] |
M. Yuan, C. He, J. Zhao, H.B. Yang, Y. Song, B. Lei, X.Y. Qian, Z.H. Dong, Q. Li, B. Jiang, F.S. Pan, J. Mater. Res. Technol. 15 (2021) 2518-2528.
DOI URL |
[15] |
B. Smola, I. Stulikova, F.V. Buch, B.L. Mordike, Mater. Sci. Eng. A 324 (2002) 113-117.
DOI URL |
[16] |
Y. Zhang, W. Rong, Y.J. Wu, L.M. Peng, J.F. Nie, N. Birbilis, J. Alloy Compd. 777 (2019) 531-543.
DOI |
[17] |
Z.X. Yan, Q. Yang, R. Ma, S.H. Lv, X.H. Wu, X.J. Liu, J.Q. Zhang, C.G. Yao, F.Z. Meng, X. Qiu, Mater. Sci. Eng. A 831 (2022) 142264.
DOI URL |
[18] |
Y.X. Li, G.Z. Zhu, D. Qiu, D.D. Yin, Y.H. Rong, M.X. Zhang, J. Alloy Compd. 660 (2016) 252-257.
DOI URL |
[19] |
B.Z. Sun, Y. Dong, J. Tan, Y. Tian, J.X. Ren, Scr. Mater. 194 (2021) 113625.
DOI URL |
[20] |
S.Z. Wu, X.G. Qiao, M.Y. Zheng, J. Mater. Sci. Technol. 45 (2020) 117-124.
DOI |
[21] |
H. Liu, F. Xue, J. Bai, J. Zhou, Y.S. Sun, J. Mater. Sci. Technol. 30 (2014) 128-133.
DOI URL |
[22] |
J.F. Nie, Scr. Mater. 48 (2003) 1009-1015.
DOI URL |
[23] |
Y. Dong, J. Tan, Y.H. Sun, X.D. Sun, B.Z. Sun, Mater. Charact. 158 (2019) 109965.
DOI URL |
[24] |
X. Gao, S.M. He, X.Q. Zeng, L.M. Peng, W.J. Ding, J.F. Nie, Mater. Sci. Eng. A 431 (2006) 322-327.
DOI URL |
[25] |
X.M. Zhang, C.P. Tang, Y.L. Deng, L. Yang, W.J. Liu, J. Alloy Compd. 509 (2011) 6170-6174.
DOI URL |
[26] |
B.B. Li, J. Dong, Z.Y. Zhang, J.F. Nie, L. Bourgeois, L.M. Peng, Mater. Des. 116 (2017) 419-426.
DOI URL |
[27] |
T. Honma, T. Ohkubo, S. Kamado, K. Hono, Acta Mater. 55 (2007) 4137-4150.
DOI URL |
[28] |
J.F. Nie, N.C. Wilson, Y.M. Zhu, Z. Xu, Acta Mater. 106 (2016) 260-271.
DOI URL |
[29] |
K. Saito, A. Yasuhara, M. Nishijima, K. Hiraga, Mater. Trans. 52 (2011) 1009-1015.
DOI URL |
[30] |
C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, A. Pisch, Acta Mater. 51 (2003) 5335-5348.
DOI URL |
[31] |
X.W. Wang, W. Wang, W. Chen, D.M. Chen, Mater. Charact. 177 (2021) 111157.
DOI URL |
[32] |
J.R. Li, Z.Y. Chen, J.P. Jing, J. Hou, J. Mater. Sci. Technol. 41 (2020) 33-42.
DOI URL |
[33] |
M. Yin, L.F. Hou, X.D. Liu, Z.W. Wang, B.S. Liu, J.W. Jia, S.H. Zhang, Y.H. Wei, J. Alloy Compd. 811 (2019) 152024.
DOI URL |
[34] |
X.J. Wang, Y.B. Zhang, E.Y. Guo, Z.N. Chen, H.J. Kang, X.Q. Liu, P. Han, T. M. Wang, J. Alloy Compd. 877 (2021) 160294.
DOI URL |
[35] |
Y.M. Zhu, M. Weyland, N.V. Medhekar, C.L. Mendis, K. Hono, J.F. Nie, Scr. Mater. 101 (2015) 16-19.
DOI URL |
[36] |
Y. Tian, W.X. Lou, J.X. Ren, J. Wang, Q.Y. Huang, G.M. Xie, H.B. Xie, J. Tan, N. Xiao, B.Z. Sun, Mater. Charact. 178 (2021) 111280.
DOI URL |
[37] |
H.B. Xie, J.Y. Bai, H.C. Pan, X.Y. Pang, Y.P. Ren, S.N. Sun, L.Q. Wang, H. Zhao, B.S. Liu, G.W. Qin, IUCrJ 5 (2018) 823-829.
DOI URL |
[38] |
C.Q. Liu, H.W. Chen, M. Song, J.F. Nie, J. Mater. Sci. Technol. 84 (2021) 133-138.
DOI URL |
[39] |
M. Nishijima, K. Hiraga, Mater. Trans. 48 (2007) 10-15.
DOI URL |
[40] |
Y. Matsuoka, K. Matsuda, K. Watanabe, J. Nakamura, W. Lefebvre, D. Nakagawa, S. Saikawa, S. Ikeno, Mater. Trans. 55 (2014) 1051-1057.
DOI URL |
[41] |
H.Z. Ji, L. Yuan, D.B. Shan, J. Mater. Sci. Technol. 27 (2011) 797-801.
DOI URL |
[42] |
X. Hua, Q. Yang, D.D. Zhang, F.Z. Meng, C. Chen, Z.H. You, J.H. Zhang, S.G. Lv, J. Meng, J. Mater. Sci. Technol. 53 (2020) 174-184.
DOI URL |
[43] |
H.B. Xie, B.S. Liu, J.Y. Bai, C.L. Guan, D.F. Lou, X.Y. Pang, H. Zhao, S.S. Li, Y.P. Ren, H. C. Pan, C.L. Yang, J. Alloy Compd. 814 (2020) 152320.
DOI URL |
[44] | K. Guan, R. Ma, J.H. Zhang, R.Z. Wu, Q. Yang, J. Meng, J. Alloy Compd. 9 (2021) 1098-1109. |
[45] |
M. Nishijima, K. Hiraga, M. Yamasaki, Y. Kawamura, Mater. Trans. 50 (2009) 1747-1752.
DOI URL |
[46] |
Y. Dong, B.Z. Sun, J. Tan, Y.H. Sun, X.D. Sun, Mater. Lett. 277 (2020) 128367.
DOI URL |
[47] | P. Miao, J.Y. Yang, Y.K. Liu, H.Z. Xie, K.J. Chen, J. Kong, Cryst. Growth Des. 20 (2020) 4 818-4826. |
[48] |
B.Z. Sun, Y. Dong, J. Tan, H.X. Zhang, Y.H. Sun, Mater. Des. 181 (2019) 107939.
DOI URL |
[49] |
K. Saito, K. Hiraga, Mater. Trans. 52 (2011) 1860-1867.
DOI URL |
[50] |
W. Lefebvre, V. Kopp, C. Pareige, Appl. Phys. Lett. 100 (2012) 141906.
DOI URL |
[51] |
A. Issa, J.E. Saal, C. Wolverton, Acta Mater. 83 (2015) 75-83.
DOI URL |
[52] |
Y.L. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[53] |
Q. Li, Y.F. Lu, Q. Luo, X.H. Yang, Y. Yang, J. Tan, Z.H. Dong, J. Dang, J.B. Li, Y. Chen, B. Jiang, S.H. Sun, F.S. Pan, J. Magnes. Alloy 9 (2021) 1922-1941.
DOI URL |
[54] |
Q. Li, X. Lin, Q. Luo, Y.A. Chen, J.F. Wang, B. Jiang, F.S. Pan, Int. J. Miner. Metall. Mater. 29 (2022) 32-48.
DOI URL |
[55] |
T.C. Xie, H. Shi, H.B. Wang, Q. Luo, Q. Li, K. Chou, J. Mater. Sci. Technol. 97 (2022) 147-155.
DOI URL |
[56] |
Y.P. Pang, D.K. Sun, Q.F. Gu, K. Chou, X.L. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
[1] | Xu Liu, Lin Song, Andreas Stark, Uwe Lorenz, Zhanbing He, Junpin Lin, Florian Pyczak, Tiebang Zhang. Deformation and phase transformation behaviors of a high Nb-containing TiAl alloy compressed at intermediate temperatures [J]. J. Mater. Sci. Technol., 2022, 102(0): 89-96. |
[2] | Haoming Pang, Zhenbang Xu, Longjiang Shen, Jun Li, Junshuo Zhang, Zhiyuan Li, Shouhu Xuan, Xinglong Gong. The dynamic compressive properties of magnetorheological plastomers: enhanced magnetic-induced stresses by non-magnetic particles [J]. J. Mater. Sci. Technol., 2022, 102(0): 195-203. |
[3] | Z.W. Wang, J.F. Zhang, G.M. Xie, L.H. Wu, H. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 102(0): 213-223. |
[4] | Dina Bayoumy, Kwangsik Kwak, Torben Boll, Stefan Dietrich, Daniel Schliephake, Jie Huang, Junlan Yi, Kazuki Takashima, Xinhua Wu, Yuman Zhu, Aijun Huang. Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 121-133. |
[5] | Gang Zhou, Yan Yang, Hanzhu Zhang, Faping Hu, Xueping Zhang, Chen Wen, Weidong Xie, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 186-196. |
[6] | Zs. Veres, A. Roósz, A. Rónaföldi, A. Sycheva, M. Svéda. The effect of melt flow induced by RMF on the meso- and micro-structure of unidirectionally solidified Al-7wt.% Si alloy Benchmark experiment under magnetic stirring [J]. J. Mater. Sci. Technol., 2022, 103(0): 197-208. |
[7] | Lei Li, Huanzheng Jiao, Congfu Liu, Lin Yang, Yusong Suo, Ruixue Zhang, Tie Liu, Jianzhong Cui. Microstructures, mechanical properties and in vitro corrosion behavior of biodegradable Zn alloys microalloyed with Al, Mn, Cu, Ag and Li elements [J]. J. Mater. Sci. Technol., 2022, 103(0): 244-260. |
[8] | Jiantao Fan, Liming Fu, Yanle Sun, Feng Xu, Yi Ding, Mao Wen, Aidang Shan. Unveiling the precipitation behavior and mechanical properties of Co-free Ni47-xFe30Cr12Mn8AlxTi3 high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 118(0): 25-34. |
[9] | Qianying Guo, Zongqing Ma, Zhixia Qiao, Chong Li, Teng Zhang, Jun Li, Chenxi Liu, Yongchang Liu. A new type-γ′/γ′′ coprecipitation behavior and its evolution mechanism in wrought Ni-based ATI 718Plus superalloy [J]. J. Mater. Sci. Technol., 2022, 119(0): 98-110. |
[10] | Lulu Guo, Lina Zhang, Joel Andersson, Olanrewaju Ojo. Additive manufacturing of 18% nickel maraging steels: Defect, structure and mechanical properties: A review [J]. J. Mater. Sci. Technol., 2022, 120(0): 227-252. |
[11] | Xiaodong Lin, Qunjia Peng, En-Hou Han, Wei Ke. Deformation and cracking behaviors of proton-irradiated 308L stainless steel weld metal strained in simulated PWR primary water [J]. J. Mater. Sci. Technol., 2022, 120(0): 36-52. |
[12] | J. Ding, A. Inoue, F.L. Kong, S.L. Zhu, Y.L. Pu, E. Shalaan, A.A. Al-Ghamdi, A.L. Greer. Novel heating-and deformation-induced phase transitions and mechanical properties for multicomponent Zr50M50, Zr50(M,Ag)50 and Zr50(M,Pd)50 (M = Fe,Co,Ni,Cu) amorphous alloys [J]. J. Mater. Sci. Technol., 2022, 104(0): 109-118. |
[13] | Seungmi Kwak, Jaehwang Kim, Hongsheng Ding, Xuesong Xu, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Using multiple regression analysis to predict directionally solidified TiAl mechanical property [J]. J. Mater. Sci. Technol., 2022, 104(0): 285-291. |
[14] | Mehmet R. Abul, Robert F. Cochrane, Andrew M. Mullis. Microstructural development and mechanical properties of drop tube atomized Al-2.85 wt% Fe [J]. J. Mater. Sci. Technol., 2022, 104(0): 41-51. |
[15] | M.C. Niu, K. Yang, J.H. Luan, W. Wang, Z.B. Jiao. Cu-assisted austenite reversion and enhanced TRIP effect in maraging stainless steels [J]. J. Mater. Sci. Technol., 2022, 104(0): 52-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||