J. Mater. Sci. Technol. ›› 2022, Vol. 130: 1-11.DOI: 10.1016/j.jmst.2022.03.038
• Research Article • Next Articles
H. Liua,*(
), Y. Liua, S.L. Lub, Y. Zhanga, H. Chenc, Y. Chenb, M. Qianb,*(
)
Received:2021-12-19
Revised:2022-03-15
Accepted:2022-03-16
Published:2022-12-10
Online:2022-12-07
Contact:
H. Liu,M. Qian
About author:E-mail addresses:ma.qian@rmit.edu.au (M. Qian)H. Liu, Y. Liu, S.L. Lu, Y. Zhang, H. Chen, Y. Chen, M. Qian. Alloy solidification: Assessment and improvement of an easy-to-apply model[J]. J. Mater. Sci. Technol., 2022, 130: 1-11.
| Model | Expression | Empty Cell | Refs. |
|---|---|---|---|
| Brody-Flemings (1966) | β=2α | [ | |
| Clyne-Kurz (1981) | [ | ||
| Ohnaka (1986) | [ | ||
| Voller (1999) | [ | ||
| Voller-Beckermann (1999) | [ | ||
| Won-Thomas (2001) | [ |
Table 1. The Brody-Flemings solidification microsegregation model and its variants.
| Model | Expression | Empty Cell | Refs. |
|---|---|---|---|
| Brody-Flemings (1966) | β=2α | [ | |
| Clyne-Kurz (1981) | [ | ||
| Ohnaka (1986) | [ | ||
| Voller (1999) | [ | ||
| Voller-Beckermann (1999) | [ | ||
| Won-Thomas (2001) | [ |
| Alloys | Empty Cell | Ds (m2/s) | Solidus temperature at 0.3 at.% solute (K) | Refs. |
|---|---|---|---|---|
| Fe-based | C in δ-Fe S in δ-Fe P in δ-Fe Mn in δ-Fe Si in δ-Fe | 5.7×10−9 2.9×10−10 6.5×10−11 2.5×10−11 5.2×10−11 | 1805 1806 1802 1807 1805 | [ |
| Al-based | Al-Cu Al-Mg Al-Si Al-Ni Al-Gd Al-Ge Al-Co Al-Fe Al-Mn Al-Cr Al-Ti Al-V | 1.4×10−12 2.7×10−12 3.6×10−12 3.3×10−12 6.9×10−12 2.2×10−12 7.2×10−12 3.8×10−13 1.9×10−14 1.5×10−15 3.1×10−16 1.9×10−17 | 931 930 930 913 923 897 930 931 931 930 933 933 | [ |
| Mg-based | Mg -Al Mg-Zn Mg-Ca Mg-Ag Mg-Sn Mg-Li Mg-Mn Mg-Nd Mg-Y | 1.4×10−12 7.3×10−12 4.0×10−12 7.2×10−12 1.2×10−12 4.1 ×10−12 2.6×10−13 5.5×10−13 5.5×10−13 | 921 921 877 909 921 922 923 923 902 | [ |
| Mg-Sr Mg-Si Mg-Zr | 1.7×10−11 5.1×10−13 3.3 ×10−16 | 856 911 923 | [ | |
| Ti-based | Ti-Cr Ti-Al Ti-Zr Ti-V Ti-Mo Ti-Sn Ti-Fe Ti-Co Ti-Mn Ti-Ni Ti-P | 6.8×10−11 2.1×10−11 3.7×10−11 5.6×10−11 1.9×10−11 2.5×10−11 3.9×10−10 7.1×10−10 2.0×10−10 7.9×10−10 9.1×10−10 | 1941 1944 1940 1943 1944 1943 1935 1930 1938 1921 1895 | [ |
| Cu-based | Cu-Sn Cu-Zn Cu-Sb Cu-Ni | 5.5×10−12 1.6×10−12 6.0×10−12 2.2×10−13 | 1347 1356 1335 1359 | [ |
| Ni-based | Ni-Al Ni-Co Ni-Cr Ni-Cu Ni-Ti | 1.5×10−12 6.8×10−13 9.6×10−13 1.2×10−12 1.5×10−12 | 1725 1728 1728 1727 1724 | [ |
| Zr-based | Zr-Ag Zr-Co Zr-Mo Zr-Nb | 2.3×10−10 2.0×10−9 2.8×10−11 4.0×10−11 | 2117 2076 2128 2120 | [ |
Table 2. Solute diffusion coefficients in the solid (Ds) in various alloys at solidus temperature
| Alloys | Empty Cell | Ds (m2/s) | Solidus temperature at 0.3 at.% solute (K) | Refs. |
|---|---|---|---|---|
| Fe-based | C in δ-Fe S in δ-Fe P in δ-Fe Mn in δ-Fe Si in δ-Fe | 5.7×10−9 2.9×10−10 6.5×10−11 2.5×10−11 5.2×10−11 | 1805 1806 1802 1807 1805 | [ |
| Al-based | Al-Cu Al-Mg Al-Si Al-Ni Al-Gd Al-Ge Al-Co Al-Fe Al-Mn Al-Cr Al-Ti Al-V | 1.4×10−12 2.7×10−12 3.6×10−12 3.3×10−12 6.9×10−12 2.2×10−12 7.2×10−12 3.8×10−13 1.9×10−14 1.5×10−15 3.1×10−16 1.9×10−17 | 931 930 930 913 923 897 930 931 931 930 933 933 | [ |
| Mg-based | Mg -Al Mg-Zn Mg-Ca Mg-Ag Mg-Sn Mg-Li Mg-Mn Mg-Nd Mg-Y | 1.4×10−12 7.3×10−12 4.0×10−12 7.2×10−12 1.2×10−12 4.1 ×10−12 2.6×10−13 5.5×10−13 5.5×10−13 | 921 921 877 909 921 922 923 923 902 | [ |
| Mg-Sr Mg-Si Mg-Zr | 1.7×10−11 5.1×10−13 3.3 ×10−16 | 856 911 923 | [ | |
| Ti-based | Ti-Cr Ti-Al Ti-Zr Ti-V Ti-Mo Ti-Sn Ti-Fe Ti-Co Ti-Mn Ti-Ni Ti-P | 6.8×10−11 2.1×10−11 3.7×10−11 5.6×10−11 1.9×10−11 2.5×10−11 3.9×10−10 7.1×10−10 2.0×10−10 7.9×10−10 9.1×10−10 | 1941 1944 1940 1943 1944 1943 1935 1930 1938 1921 1895 | [ |
| Cu-based | Cu-Sn Cu-Zn Cu-Sb Cu-Ni | 5.5×10−12 1.6×10−12 6.0×10−12 2.2×10−13 | 1347 1356 1335 1359 | [ |
| Ni-based | Ni-Al Ni-Co Ni-Cr Ni-Cu Ni-Ti | 1.5×10−12 6.8×10−13 9.6×10−13 1.2×10−12 1.5×10−12 | 1725 1728 1728 1727 1724 | [ |
| Zr-based | Zr-Ag Zr-Co Zr-Mo Zr-Nb | 2.3×10−10 2.0×10−9 2.8×10−11 4.0×10−11 | 2117 2076 2128 2120 | [ |
Fig. 1. Comparison of the Gong-Chen model with other microsegregation models for solidification of Fe-C (fast back-diffusion) and Al-Cu (slow back-diffusion) alloys up to fs?=?0.9.
| Alloy system | k | ml | ΔT0 | Ds | SDAS λ | Cooling rate, | Refs. | |
|---|---|---|---|---|---|---|---|---|
| X0 (at.%) | Empty Cell | (K/at.%) | (K) | (m2/s) | (μm) | T˙ (K/s) | Ds | λ,T˙ |
| Mg-0.3Al Mg-0.3Sn Al-0.3Cu Fe-0.3C Fe-0.3P | 0.36 0.31 0.15 0.16 0.29 | -6.63 -7.38 -7.03 -15.03 -22.27 | 3.54 4.93 11.95 24.01 21.15 | 1.2×10−4exp(−141814/RT) 1.1×10−4exp(−140925/RT) 4.4×10−5exp(−133900/RT) 1.3×10−6exp(−81398/RT) 2.9exp(−230175/RT) | 45 45 35 14 100 | 8 8 10 65 1.5 | [ [ [ | [ * [ [ |
Table 3. Basic parameters used for solving the Clyne-Kurz, Ohnaka and Won-Thomas models.
| Alloy system | k | ml | ΔT0 | Ds | SDAS λ | Cooling rate, | Refs. | |
|---|---|---|---|---|---|---|---|---|
| X0 (at.%) | Empty Cell | (K/at.%) | (K) | (m2/s) | (μm) | T˙ (K/s) | Ds | λ,T˙ |
| Mg-0.3Al Mg-0.3Sn Al-0.3Cu Fe-0.3C Fe-0.3P | 0.36 0.31 0.15 0.16 0.29 | -6.63 -7.38 -7.03 -15.03 -22.27 | 3.54 4.93 11.95 24.01 21.15 | 1.2×10−4exp(−141814/RT) 1.1×10−4exp(−140925/RT) 4.4×10−5exp(−133900/RT) 1.3×10−6exp(−81398/RT) 2.9exp(−230175/RT) | 45 45 35 14 100 | 8 8 10 65 1.5 | [ [ [ | [ * [ [ |
Fig. 2. Predictions of XL versus fs by different models for solidification of Al-0.3at.%Cu, Mg-0.3at.%Zn, Fe-0.3at.%P and Fe-0.3at.%C, covering slow to fast solute back diffusion.
Fig. 3. Comparison of the Gong-Chen model [1] with other microsegregation models for solidification of Fe-C alloys (fast back-diffusion) with fs?=?0.99?0.99999.
Fig. 4. Comparison of the Gong-Chen model [1] with other microsegregation models for solidification of Al-Cu alloys (slow back-diffusion) with fs?=?0.99?0.99999.
Fig. 5. Comparison of the Gong-Chen model [1] with other microsegregation models for solidification of Fe-P alloys (intermediate back-diffusion) with fs?=?0.99?0.99999.
Fig. 6. SEM image showing limited eutectic formation in Mg-2.71at.%Al (a) and Mg-0.63at.%Sn (b). (c, d) Predictions of remaining liquid composition at fs?=?0.9999 in each alloy.
| Model | Mg-2.71at.%Al | Mg-0.63at.%Sn |
|---|---|---|
| Level rule Clyne-Kurz Ohnaka Won-Thomas Gong-Chen | 8.7 25.6 27.6 16.4 10.4 | 2.0 6.0 6.5 4.8 2.5 |
| Maximum solubility at eutectic temperature | 11.8 | 3.4 |
Table 4. Remaining liquid composition XL (at.%) at fs?=?0.9999 by each model.
| Model | Mg-2.71at.%Al | Mg-0.63at.%Sn |
|---|---|---|
| Level rule Clyne-Kurz Ohnaka Won-Thomas Gong-Chen | 8.7 25.6 27.6 16.4 10.4 | 2.0 6.0 6.5 4.8 2.5 |
| Maximum solubility at eutectic temperature | 11.8 | 3.4 |
| Alloy (at.%) | fs(ΔT) | ||
|---|---|---|---|
| Mg-0.3Al Mg-0.3Sn Al-0.3Cu Fe-0.3C Fe-0.3P | 1 1 1 1 1 | 0.90 0.96 0.94 0.87 0.85 | 1.16 1.14 1.06 1.07 1.13 |
Table 5. The values of $f_{s}^{ Scheil } $ (ΔT) and $f_{s}^{ Lever } $ (ΔT) corresponding to fs(ΔT)=1 by the Gong-Chen model.
| Alloy (at.%) | fs(ΔT) | ||
|---|---|---|---|
| Mg-0.3Al Mg-0.3Sn Al-0.3Cu Fe-0.3C Fe-0.3P | 1 1 1 1 1 | 0.90 0.96 0.94 0.87 0.85 | 1.16 1.14 1.06 1.07 1.13 |
Fig. 7. (a) Schematic illustration of the solidification of a binary alloy: stage 1 (X0 < XL ≤ X0/k) and stage 2 (XL > X0/k). (b) Illustration of the extension from $f_{s}^{ Lever } $ to $f_{s’}^{ Lever } $ beyond $f_{s}^{ Lever } $?=?1 or X0/k, plotted using the data from the Mg-0.3at.%Sn alloy (k?=?0.31) for demonstration.
| k | Ds (m2/s) |
|---|---|
| 0.01−0.1 | ∼5 × 10−12 −1 × 10−11 |
| 0.1−0.5 | ∼5 × 10−11 −1 × 10−10 |
| 0.5−0.6 | ∼1 × 10−11 −1 × 10−10 |
| 0.6−0.8 | ∼5 × 10−10 −1 × 10−10 |
| 0.8−0.9 | ∼1 × 10−10 −1 × 10−9 |
| 0.9−0.99 | <1 × 10−9 |
Table 6. The applicable range of the Gong-Chen model.
| k | Ds (m2/s) |
|---|---|
| 0.01−0.1 | ∼5 × 10−12 −1 × 10−11 |
| 0.1−0.5 | ∼5 × 10−11 −1 × 10−10 |
| 0.5−0.6 | ∼1 × 10−11 −1 × 10−10 |
| 0.6−0.8 | ∼5 × 10−10 −1 × 10−10 |
| 0.8−0.9 | ∼1 × 10−10 −1 × 10−9 |
| 0.9−0.99 | <1 × 10−9 |
| [1] |
T. Gong, Y. Chen, S. Li, Y. Cao, D. Li, X. Chen, G. Reinhart, H. Nguyen-Thi, J. Mater. Sci. Technol. 74 (2021) 155-167.
DOI URL |
| [2] | G.H. Gulliver, J. Inst. Met. 9 (1913) 120. |
| [3] | E. Scheil, Z. Met. 34 (1942) 70-72. |
| [4] | W. Kurz, D.J. Fisher, Fundamentals of Solidification, 4th ed,Trans Tech Publica-tions, Switzerland, 1986 p.51, p.52, p.121. |
| [5] | M.E. Glicksman, Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts, Springer, 2010 Chapter 2 and Chapter 5. |
| [6] | J.A. Dantzig, M. Rappaz, in: 1st ed, EPFL Press, 2009, pp. 401-407. |
| [7] | D.M. Stefanescu, Science and Engineering of Casting Solidification, Springer, 2015 Chapter 4. |
| [8] |
T.P. Battle, Int. Mater. Rev. 37 (1992) 249-270.
DOI URL |
| [9] |
W. Kurz, D.J. Fisher, R. Trivedi, Int. Mater. Rev. 64 (2019) 311-354.
DOI URL |
| [10] |
W. Kurz, M. Rappaz, R. Trivedi, Int. Mater. Rev. 66 (2021) 30-76.
DOI URL |
| [11] | T. Kraft, Y.A. Chang, JOM 49 (1997) 20-28. |
| [12] |
M. Wu, J. Li, A. Ludwig, A. Kharicha, Comput. Mater. Sci. 79 (2013) 830-840.
DOI URL |
| [13] | H.D. Brody, M.C. Flemings, Trans. AIME 236 (1966) 615-624. |
| [14] |
T.W. Clyne, W. Kurz, Metall. Mater. Trans. A 12 (1981) 965-971.
DOI URL |
| [15] | I. Ohnaka, Trans. ISIJ 26 (1986) 1046-1050. |
| [16] |
V.R. Voller, J. Cryst. Growth 197 (1999) 333-340.
DOI URL |
| [17] |
V.R. Voller, C.A. Beckermann, Metall. Mater. Trans. A 30 (1999) 2183-2189.
DOI URL |
| [18] |
Y.M. Won, B.G. Thomas, Metall. Mater. Trans. A 32 (2001) 1755-1767.
DOI URL |
| [19] |
S.L. Sobolev, Phys. Stat. Solidi. a 156 (1996) 293-302.
DOI URL |
| [20] |
S.J. Cook, P. Clancy, J. Chem. Phys. 99 (1993) 2175-2191.
DOI URL |
| [21] |
S.L. Sobolev, Phys. Rev. E 55 (1997) 6 845-6 854.
DOI URL |
| [22] |
V. Mathier, A. Jacot, M. Rappaz, Model. Simul. Mater. Sci. Eng. 12 (2004) 479-490.
DOI URL |
| [23] | J. Guo, J.Z. Zhu, in:Proceedings of the 5th Decennial International Conference on Solidification Processing, Sheffield, 2007, pp. 549-553. |
| [24] |
M. Rappaz, A. Jacot, W. Boettinger, J. Metall. Mater. Trans. A 34 (2003) 467-479.
DOI URL |
| [25] |
Y. Du, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He, F.Y. Xie, Mater. Sci. Eng. A 363 (2003) 140-151.
DOI URL |
| [26] | W. Zhong, Measurement of Diffusion Coefficients of Nine Elements in Magne-sium and Establishment of a Comprehensive Mobility Database for Lightweight Magnesium Alloys, The Ohio State University, Columbus, Ohio, 2019 Ph.D. The-sisp.96. |
| [27] |
B. Zhou, S. Shang, Y. Wang, Z. Liu, Acta Mater. 103 (2016) 573-586.
DOI URL |
| [28] | G. Neumann, C. Tuijn, Self-Diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, Elsevier, Oxford, 2009 p.52, p.168. |
| [29] |
M.A. Talamantes-Silva, A. Rodríguez, J. Talamantes-Silva, S. Valtierra, R. Colás, Mater. Charact. 59 (2008) 1434-1439.
DOI URL |
| [30] | K. Kishitake, T. Okamoto, Tetsu Hagane 63 (1977) 425-431. |
| [31] |
N. Ofori-Opoku, N. Provatas, Acta Mater. 58 (2010) 2155-2164.
DOI URL |
| [32] |
H. Wang, F. Liu, G. Yang, Y. Zhou, Acta Mater. 58 (2010) 5402-5410.
DOI URL |
| [33] |
K. Kim, T. Yeo, K.H. Oh, D.N. Lee, ISIJ Int. 36 (1996) 284-289.
DOI URL |
| [34] |
C. Han, P. Jiang, S. Geng, S. Gao, G. Mi, C. Wang, Mater. Des. 211 (2021) 110146.
DOI URL |
| [35] |
Y.M. Won, T. Yeo, D.J. Seol, K.H. Oh, Metall. Mater. Trans. B 31 (2000) 779-794.
DOI URL |
| [36] |
N. Wang, S. Mokadem, M. Rappaz, W. Kurz, Acta Mater. 52 (2004) 3173-3182.
DOI URL |
| [37] |
W.J. Boettinger, S.R. Coriell, A.L. Greer, A. Karma, W. Kurz, M. Rappaz, R. Trivedi, Acta Mater. 48 (2000) 43-70.
DOI URL |
| [38] |
Q. Du, A. Jacot, Acta Mater. 53 (2005) 3479-3493.
DOI URL |
| [39] |
G.H. Hasani, R. Mahmudi, Mater. Des. 32 (2011) 3736-3741.
DOI URL |
| [40] |
Z. Zhao, P. Bai, R. Guan, V. Murugadoss, H. Liu, X. Wang, Z. Guo, Mater. Sci. Eng. A 734 (2018) 200-209.
DOI URL |
| [41] |
J.W. Fu, Y.S. Yang, J. Cryst. Growth 322 (2011) 84-90.
DOI URL |
| [42] |
C. Zhao, X. Chen, F. Pan, S. Gao, D. Zhao, X. Liu, Mater. Sci. Eng. A 713 (2018) 244-252.
DOI URL |
| [43] |
C. Zhao, F. Pan, S. Zhao, H. Pan, K. Song, A. Tang, Mater. Sci. Eng. C 54 (2015) 245-251.
DOI URL |
| [44] |
C. Zhao, F. Pan, S. Zhao, H. Pan, K. Song, A. Tang, Mater. Des. 70 (2015) 60-67.
DOI URL |
| [45] |
D. Kim, J. Lee, H. Lim, Mater. Trans. 49 (2008) 2405-2413.
DOI URL |
| [46] |
H. Liu, Y. Chen, Y. Tang, S. Wei, G. Niu, J. Alloy. Compd. 440 (2007) 122-126.
DOI URL |
| [47] | A.A. Luo, C. Zhang, A.K. Sachdev, Scr. Mater. 66 (2012) 4 91-4 94. |
| [48] |
A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, D.H. StJohn, J. Light Met. 1 (2001) 61-72.
DOI URL |
| [49] |
S. Xiong, M. Wu, Metall. Mater. Trans. A 43 (2012) 208-218.
DOI URL |
| [50] |
M. Marya, L.G. Hector, R. Verma, W. Tong, Mater. Sci. Eng. A 418 (2006) 341-356.
DOI URL |
| [51] |
J. Bohlen, S.B. Yi, J. Swiostek, D. Letzig, H.G. Brokmeier, K.U. Kainer, Scr. Mater. 53 (2005) 259-264.
DOI URL |
| [52] |
G.B. Hamu, D. Eliezer, L. Wagner, J. Alloy. Compd. 468 (2009) 222-229.
DOI URL |
| [53] |
M.J. Aziz, J. Appl. Phys. 53 (1982) 1158-1168.
DOI URL |
| [54] |
A. Ludwig, Phys. D 124 (1998) 271-284.
DOI URL |
| [1] | Xiangzhen Zhu, Shihao Wang, Xixi Dong, Xiangfa Liu, Shouxun Ji. Morphologically templated nucleation of primary Si on AlP in hypereutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2022, 100(0): 36-45. |
| [2] | Zi Yang, Igor Erdle, Chunhui Liu, John Banhart. Clustering and precipitation in Al-Mg-Si alloys during linear heating [J]. J. Mater. Sci. Technol., 2022, 120(0): 78-88. |
| [3] | Yue Wu, Yang Tang, Ya Zhang, Yanan Fu, Hui Xing, Jiao Zhang, Jun Jiang, Baode Sun. In situ radiographic study of the grain refining behavior of Al3Sc during the solidification of Al-10Cu alloy [J]. J. Mater. Sci. Technol., 2022, 122(0): 33-43. |
| [4] | X.B. Meng, J.G. Li, C.N. Jing, J.D. Liu, S.Y. Ma, J.J. Liang, C.W. Zhang, M. Wang, B.T. Tang, T. Lin, J.L. Chen, X.L. Zhang, Q. Li. Misorientation dependent thermal condition-solute field cooperative effect on competitive grain growth in the converging case during directional solidification of a nickel-base superalloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 151-159. |
| [5] | Chong Yang, Pengming Cheng, Baoan Chen, Jinyu Zhang, Gang Liu, Jun Sun. Solute clusters-promoted strength-ductility synergy in Al-Sc alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 325-331. |
| [6] | Xin Liu, Sansan Shuai, Chenglin Huang, Shijun Wu, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Microstructure and mechanical properties of directionally solidified Al-rich Ni3Al-based alloy under static magnetic field [J]. J. Mater. Sci. Technol., 2022, 110(0): 117-127. |
| [7] | Shucai Zhang, Jiangtao Yu, Huabing Li, Zhouhua Jiang, Yifeng Geng, Hao Feng, Binbin Zhang, Hongchun Zhu. Refinement mechanism of cerium addition on solidification structure and sigma phase of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 102(0): 105-114. |
| [8] | Na Yan, Delu Geng, Bingbo Wei. Damping performance and martensitic transformation of rapidly solidified Fe-17%Mn alloy [J]. J. Mater. Sci. Technol., 2022, 117(0): 1-7. |
| [9] | Yixuan He, Fan Bu, Yuhao Wu, Jianbao Zhang, Dawei Luo, Zhangchi Bian, Qing Zhou, Tie Liu, Qiang Wang, Jun Wang, Haifeng Wang, Jinshan Li, Eric Beaugnon. Liquid state dependent solidification of a Co-B eutectic alloy under a high magnetic field [J]. J. Mater. Sci. Technol., 2022, 116(0): 58-71. |
| [10] | Zhenzhuang Li, Zongbin Li, Yunzhuo Lu, Xing Lu, Liang Zuo. Enhanced elastocaloric effect and refrigeration properties in a Si-doped Ni-Mn-In shape memory alloy [J]. J. Mater. Sci. Technol., 2022, 117(0): 167-173. |
| [11] | Zs. Veres, A. Roósz, A. Rónaföldi, A. Sycheva, M. Svéda. The effect of melt flow induced by RMF on the meso- and micro-structure of unidirectionally solidified Al-7wt.% Si alloy Benchmark experiment under magnetic stirring [J]. J. Mater. Sci. Technol., 2022, 103(0): 197-208. |
| [12] | Xu Xiaolong, Tang Cheng, Wang Hongfu, An Yukang, Zhao Yuhong. Microstructure evolution and grain refinement mechanism of rapidly solidified single-phase copper based alloys [J]. J. Mater. Sci. Technol., 2022, 128(0): 160-179. |
| [13] | Bang Xiao, Wenpeng Jia, Huiping Tang, Jian Wang, Lian Zhou. Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting [J]. J. Mater. Sci. Technol., 2022, 108(0): 54-63. |
| [14] | Yinuo Guo, Haijun Su, Haotian Zhou, Zhonglin Shen, Yuan Liu, Jun Zhang, Lin Liu, Hengzhi Fu. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 298-306. |
| [15] | Romain Fleurisson, Oriane Senninger, Gildas Guillemot, Charles-André Gandin. Hybrid Cellular Automaton - Parabolic Thick Needle model for equiaxed dendritic solidification [J]. J. Mater. Sci. Technol., 2022, 124(0): 26-40. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
