J. Mater. Sci. Technol. ›› 2022, Vol. 130: 103-111.DOI: 10.1016/j.jmst.2022.05.012
• Research Article • Previous Articles Next Articles
Jia Liua,*(
), Cuiying Maa, Lianli Wanga, Ke Renb,*(
), Hongpei Ranc, Danni Fenga, Huiling Dua, Yiguang Wangb
Received:2022-01-30
Revised:2022-03-10
Accepted:2022-03-18
Published:2022-12-10
Online:2022-12-07
Contact:
Jia Liu,Ke Ren
About author:E-mail addresses: renke@bit.edu.cn (K. Ren)Jia Liu, Cuiying Ma, Lianli Wang, Ke Ren, Hongpei Ran, Danni Feng, Huiling Du, Yiguang Wang. Single-phase formation mechanism and dielectric properties of sol-gel-derived Ba(Ti0.2Zr0.2Sn0.2Hf0.2Ce0.2)O3 high-entropy ceramics[J]. J. Mater. Sci. Technol., 2022, 130: 103-111.
Fig. 2. Phase evolution of the BTZSHC high-entropy ceramics: (a) XRD patterns of the BTZSHC high-entropy ceramics after calcination at 600, 800, 900, 1000, 1100, and 1200 °C for 2 h; (b) magnified patterns in the range from 25° to 35°.
Fig. 3. Phase structure of the BTZSHC ceramic powders after calcination at 1200 °C for 2 h: (a) XRD pattern; (b) magnified pattern in the range from 40° to 46°; (c) refined XRD data.
| Ion | Ba2+ | Ti4+ | Zr4+ | Sn4+ | Hf4+ | Ce4+ | O2- |
|---|---|---|---|---|---|---|---|
| Ionoic radius (Å) | 1.61 | 0.605 | 0.72 | 0.69 | 0.71 | 0.87 | 1.4 |
Table 1. The ionic radii of Ba2+, Ti4+, Zr4+, Sn4+, Hf4+, Ce4+, and O2-.
| Ion | Ba2+ | Ti4+ | Zr4+ | Sn4+ | Hf4+ | Ce4+ | O2- |
|---|---|---|---|---|---|---|---|
| Ionoic radius (Å) | 1.61 | 0.605 | 0.72 | 0.69 | 0.71 | 0.87 | 1.4 |
Fig. 4. Microstructure and elemental distribution of the BTZSHC ceramic powders after calcination at 1200 °C for 2 h: (a) HRTEM image, (b) SAED pattern, and (c) EDS elemental maps.
Fig. 5. Phase stability of the BTZSHC high-entropy ceramics: (a) XRD patterns of the BTZSHC ceramic powders after annealing at 800, 900, 1000, 1100, and 1200 °C for 4 h and quenching in the air; (b) magnified patterns in the range from 40° to 48°.
Fig. 6. Morphology and elemental distribution of the dense BTZSHC high-entropy ceramics: (a) surface morphology, (b) high-magnification morphology of the area surrounded by the rectangle in (a), and (c) EDS elemental maps.
Fig. 7. Dielectric properties of the BTZSHC high-entropy ceramics: (a) dielectric constant of the as-sintered BTZSHC ceramics as a function of temperature in the frequency range from 1 kHz to 1 MHz; (b) fitted ln(1/εr ? 1/εm) vs ln(T ? Tm) curve.
| [1] |
K.K. Rahangdale, S. Ganguly, Mater. Chem. Phys. 260 (2021) 124114.
DOI URL |
| [2] |
C.Y. Ma, H.L. Du, J. Liu, X. Du, D.N. Feng, Ceram. Int. 48 (2022) 5428-5433.
DOI URL |
| [3] | J. Shi, X. Liu, W.C. Tian, J. Mater. Sci. Technol. 12 (2018) 2371-2374. |
| [4] |
J. Shi, R.R. Rao, W.C. Tian, X.M. Xu, X. Liu, Ceram. Int. 48 (2022) 5210-5216.
DOI URL |
| [5] |
M.M. Hoque, A. Dutta, S. Kumar, T.P. Sinha, J. Mater. Sci. Technol. 30 (2014) 311-320.
DOI URL |
| [6] | M. Arshad, H.L. Du, M.S. Javed, A. Maqsood, I. Ashraf, S. Hussain, W.L. Ma, H.P. Ran, Ceram. Int. 46 (2020) 2338-2246. |
| [7] |
X. Liu, Y.X. Zhao, J. Shi, H.L. Du, X.M. Xu, H. Lu, J.F. Che, X.Y. Li, J. Alloy. Compd. 799 (2019) 231-238.
DOI URL |
| [8] |
F. Li, M.J. Cabral. B. Xu, Z.X. Cheng, E.C. Dickey, J.M. LeBeau, J.L. Wang, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L.Q. Chen, T.R. Shrout, S.J. Zhang, Science 364 (2019) 264-268.
DOI URL |
| [9] |
H.L. Du, C.Y. Ma, W.X. Ma, H.T. Wang, Process. Appl. Ceram. 12 (2018) 303-312.
DOI URL |
| [10] |
C. Wang, Q. Li, W.M. Zhang, H.Q. Fan, J. Mater. Sci. Technol. 45 (2020) 15-22.
DOI |
| [11] |
H.Y. Wang, M.H. Cao, T.L. Mao, J.Q. Fu, W.G. Pan, H. Hao, Z.H. Yao, H.X. Liu, Scr. Mater. 196 (2021) 113753.
DOI URL |
| [12] |
R.R. Rao, X. Liu, Y.Y. Wang, J. Shi, Y.X. Zhao, H.L. Du, ECS J. Solid State Sci. Technol. 10 (2021) 083003.
DOI URL |
| [13] |
H.P. Ran, H.L. Du, C.Y. Ma, Y.Y. Zhao, D.N. Feng, H. Xu, Sci. Adv. Mater. 13 (2021) 741-747.
DOI URL |
| [14] |
J.Y. He, X. Liu, Y.Y. Zhao, H.L. Du, T. Zhang, J. Shi, ACS Appl. Electron. Mater. 4 (2022) 735-743.
DOI URL |
| [15] |
X.P. Lu, J.W. Xu, L. Yang, C.G. Zhou, Y.Y. Zhao, Q.N. Li, C.L. Yuan, G.H. Chen, H. Wang, J. Materiomics 2 (2016) 87-93.
DOI URL |
| [16] |
X. Liu, R.R. Rao, J. Shi, J.Y. He, Y.X. Zhao, J. Liu, H.L. Du, J. Alloy. Compd. 875 (2021) 159999.
DOI URL |
| [17] |
C.Y. Ma, H.L. Du, J. Liu, X. Du, X.Y. Xi, H.P. Ran, Ceram. Int. 47 (2021) 25029-25036.
DOI URL |
| [18] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
| [19] |
D.B. Miracle, O.N. Senkow, Acta Mater. 122 (2017) 448-511.
DOI URL |
| [20] |
Y.P. Pu, Q.W. Zhang, R. Li, M. Chen, X.Y. Du, S.Y. Zhou, Appl. Phys. Lett. 115 (2019) 223901.
DOI URL |
| [21] | E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 5 (2019) 515-534. |
| [22] |
Y. Zhang, W.M. Guo, Z.B. Jiang, Q.Q. Zhu, S.K. Sun, Y. You, K. Plucknett, H.T. Lin, Scr. Mater. 164 (2019) 135-139.
DOI URL |
| [23] |
K. Wang, L. Chen, C.G. Xu, W. Zhang, Z.G. Liu, Y.J. Wang, J.H. Ouyang, X.H. Zhang, Y.D. Fu, Y. Zhou, J. Mater. Sci. Technol. 39 (2020) 99-105.
DOI |
| [24] |
S.C. Luo, W.M. Guo, Y.Z. Zhou, K. Plucknett, H.T. Lin, J. Mater. Sci. Technol. 94 (2021) 99-103.
DOI URL |
| [25] |
H. Chen, H.M. Xiang, F.Z. Dai, J.C. Liu, Y.C. Zhou, J. Mater. Sci. Technol. 35 (2019) 2404-2408.
DOI |
| [26] |
K. Ren, Q.K. Wang, Y.J. Cao, G. Shao, Y.G. Wang, J. Eur. Ceram. Soc. 41 (2021) 1720-1725.
DOI URL |
| [27] |
S.X. Deng, G. He, Z.C. Yang, J.X. Wang, J.T. Li, L. Jiang, J. Mater. Sci. Technol. 107 (2022) 259-265.
DOI URL |
| [28] |
Y. Dong, K. Ren, Q.K. Wang, G. Shao, Y.G. Wang, J. Adv. Ceram. 11 (2022) 66-74.
DOI URL |
| [29] |
H.C. Xiang, L. Yao, J.Q. Chen, A.H. Yang, H.T. Yang, L. Fang, J. Mater. Sci. Technol. 93 (2021) 28-32.
DOI URL |
| [30] |
F.N. Zhang, F.H. Cheng, C.F. Cheng, M. Guo, Y.F. Liu, Y. Miao, F. Gao, X.M. Wang, J. Mater. Sci. Technol. 105 (2022) 122-130.
DOI URL |
| [31] |
P. Zhang, Z.H. Lou, M.J. Qin, J. Xu, J.T. Zhu, Z.G. Shi, Q. Chen, M.J. Reece, H.X. Yan, F. Gao, J. Mater. Sci. Technol. 97 (2022) 182-189.
DOI |
| [32] |
C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.P. Maria, Nat. Commun. 6 (2015) 8485.
DOI URL |
| [33] | J.L. Liu, G. Shao, D.G. Liu, K.P. Chen, K.W. Wang, B.S. Ma, K. Ren, Y.G. Wang, Mater. Today Adv. 8 (2020) 100114. |
| [34] |
A. Gautam, M.I. Ahmad, Ceram. Int. 47 (2021) 22225-22228.
DOI URL |
| [35] |
J. Liu, K. Ren, C.Y. Ma, H.L. Du, Y.G. Wang, Ceram. Int. 46 (2020) 20576- 20581.
DOI URL |
| [36] |
Y.Q. Liang, B.C. Luo, H.J. Dong, D.Y. Wang, Ceram. Int. 47 (2021) 20196- 20200.
DOI URL |
| [37] | V.M. Goldschmidt, Die gesetze der krystallochemie, Naturwissenchaften 14 (1926) 477-485. |
| [38] |
S.C. Jiang, T. Hu, J. Gild, N.X. Zhou, J.Y. Nie, M.D. Qin, T. Harrington, K. Vecchio, J. Luo, Scr. Mater. 142 (2018) 116-120.
DOI URL |
| [39] |
Z.B. An, S.C. Mao, Y.N. Liu, Wang L, H. Zhou, B. Gan, Z. Zhang X. D. Han, J. Mater. Sci. Technol. 79 (2021) 109-117.
DOI URL |
| [40] |
C.Y. Zhang, X.Q. Shen, J.X. Zhou, M.X. Jing, K. Cao, J. Sol-Gel Sci. Technol. 42 (20 07)95-10 0.
DOI URL |
| [41] |
H.J. Zhang, X.L. Jia, Z.J. Liu, D.Y. Yang, Y.Y. Yan, Mater. Res. Bull. 39 (2004) 839-850.
DOI URL |
| [42] | Y.F. Wang, F. Zhang, Y.B. Duan, K.J. Wang, W.J. Zhang, J. Hu, Dig. J. Nanomater. Bios. 12 (2017) 733-740. |
| [43] |
Z.X. Yue, Zhou J, L.T. Li, H.G. Zhang, Z.L. Gui, J. Magn. Magn. Mater. 208 (20 0 0) 55-60.
DOI URL |
| [44] |
H. Ramadass, Mater. Sci. Eng. 36 (1978) 231-239.
DOI URL |
| [45] |
W.P. Cao, W.L. Li, X.F. Dai, T.D. Zhang, J. Sheng, Y.F. Hou, W.D. Fei, J. Eur. Ceram. Soc. 36 (2016) 593-600.
DOI URL |
| [46] |
B.L. Ye, T.Q. Wen, K.H. Huang, C.Z. Wang, Y.H. Chu, J. Am. Ceram. Soc. 102 (2019) 4344-4352.
DOI URL |
| [47] |
B.L. Ye, T.Q. Wen, M.C. Nguyen, L.Y. Hao, C.Z. Wang, Y.H. Chu, Acta Mater. 170 (2019) 15-23.
DOI URL |
| [48] |
N. Shulumba, O. Hellman, Z. Raza, B. Alling, J. Barrirero, Phys. Rev. Lett. 117 (2016) 205502.
DOI URL |
| [49] |
J. D ˛abrowa, M. Zajusz, W. Kucza, G. Cie ´ slak, K. Berent, T. Czeppe, T. Kulik, M. Danielewski, J. Alloy. Compd. 783 (2019) 193-207.
DOI URL |
| [50] |
Q. Du, J.H. Yan, X.Y. Zhang, J.S. Li, X.Y. Liu, J.R. Zhang, X. W.P.J. Qi, Mater. Sci. Mater. Electron. 31 (2020) 7760-7765.
DOI URL |
| [51] |
X. Liu, J. Shi, F.Y. Zhu, H.L. Du, T.Y. Li, X.C. Liu, J. Materiomics 4 (2018) 202-207.
DOI URL |
| [52] |
X. Zhang, D. Hu, Z.B. Pan, X.J. Lv, Z.Y. He, F. Yang, P. Li, J.J. Liu, J.W. Zhai, Chem. Eng. J. 406 (2021) 126818.
DOI URL |
| [1] | Ping Zhang, Zhihao Lou, Mengjie Qin, Jie Xu, Jiatong Zhu, Zongmo Shi, Qian Chen, Michael J. Reece, Haixue Yan, Feng Gao. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications [J]. J. Mater. Sci. Technol., 2022, 97(0): 182-189. |
| [2] | Ze Zhang, Shizhen Zhu, Fu-Zhi Dai, Huimin Xiang, Yanbo Liu, Ling Liu, Zhuang Ma, Shijiang Wu, Fei Liu, Kuang Sun, Yanchun Zhou. Theoretical predictions and experimental verification on the phase stability of enthalpy-stabilized HE TMREB2s [J]. J. Mater. Sci. Technol., 2022, 121(0): 154-162. |
| [3] | Juntao Song, Guiqing Chen, Huimin Xiang, Fuzhi Dai, Shun Dong, Wenbo Han, Xinghong Zhang, Yanchun Zhou. Regulating the formation ability and mechanical properties of high-entropy transition metal carbides by carbon stoichiometry [J]. J. Mater. Sci. Technol., 2022, 121(0): 181-189. |
| [4] | Menglong Xu, Linfeng Wei, Li Ma, Jiawei Lu, Tao Liu, Ling Zhang, Ling Zhao, Chul B. Park. Microcellular foamed polyamide 6/carbon nanotube composites with superior electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 117(0): 215-224. |
| [5] | Rui Liu, Xiang He, Miao Miao, Shaomei Cao, Xin Feng. In-situ growth of porous Cu3(BTC)2 on cellulose nanofibrils for ultra-low dielectric films with high flexibility [J]. J. Mater. Sci. Technol., 2022, 112(0): 202-211. |
| [6] | Yan Xing, Wenqing Dan, Yicun Fan, Xing'ao Li. Low temperature synthesis of high-entropy (Y0.2Yb0.2Sm0.2Eu0.2Er0.2)2O3 nanofibers by a novel electrospinning method [J]. J. Mater. Sci. Technol., 2022, 103(0): 215-220. |
| [7] | Haolin Zhu, Ling Liu, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Zhuang Ma, Yanbo Liu, Yanchun Zhou. Improved thermal stability and infrared emissivity of high-entropy REMgAl11O19 and LaMAl11O19 (RE=La, Nd, Gd, Sm, Pr, Dy; M=Mg, Fe, Co, Ni, Zn) [J]. J. Mater. Sci. Technol., 2022, 104(0): 131-144. |
| [8] | Yupeng Shi, Dan Li, Haoxu Si, Zhiyang Jiang, Mengyuan Li, Chunhong Gong. TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum [J]. J. Mater. Sci. Technol., 2022, 130(0): 249-255. |
| [9] | Wei Fan, Yu Bai, Yanfen Liu, Taotao Li, Binmao Li, Lei Zhang, Chenmin Gao, Shiyu Shan, Haocen Han. Principal element design of pyrochlore-fluorite dual-phase medium- and high-entropy ceramics [J]. J. Mater. Sci. Technol., 2022, 107(0): 149-154. |
| [10] | Huaicheng Xiang, Lei Yao, Junqi Chen, Aihong Yang, Haitao Yang, Liang Fang. Microwave dielectric high-entropy ceramic Li(Gd0.2Ho0.2Er0.2Yb0.2Lu0.2)GeO4 with stable temperature coefficient for low-temperature cofired ceramic technologies [J]. J. Mater. Sci. Technol., 2021, 93(0): 28-32. |
| [11] | Alexander Tkach, Olena Okhay. Comment on “Hole-pinned defect-dipoles induced colossal permittivity in Bi doped SrTiO3 ceramics with Sr deficiency” [J]. J. Mater. Sci. Technol., 2021, 65(0): 151-153. |
| [12] | Haiming Zhang, Biao Zhao, Fu-Zhi Dai, Huimin Xiang, Zhili Zhang, Yanchun Zhou. (Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B: A novel high-entropy monoboride with good electromagnetic interference shielding performance in K-band [J]. J. Mater. Sci. Technol., 2021, 77(0): 58-65. |
| [13] | Zifan Zhao, Heng Chen, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Wei Xu, Kuang Sun, Zhijian Peng, Yanchun Zhou. High-entropy (Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3: A promising thermal/environmental barrier material for oxide/oxide composites [J]. J. Mater. Sci. Technol., 2020, 47(0): 45-51. |
| [14] | Zifan Zhao, Huimin Xiang, ZhiDai Fu, Zhijian Peng, Yanchun Zhou. (TiZrHf)P2O7: An equimolar multicomponent or high entropy ceramic with good thermal stability and low thermal conductivity [J]. J. Mater. Sci. Technol., 2019, 35(10): 2227-2231. |
| [15] | Ying Gong, Wenying Zhou, Zijun Wang, Li Xu, Yujia Kou, Huiwu Cai, Xiangrong Liu, Qingguo Chen, Zhi-Min Dang. Towards suppressing dielectric loss of GO/PVDF nanocomposites with TA-Fe coordination complexes as an interface layer [J]. J. Mater. Sci. Technol., 2018, 34(12): 2415-2423. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
