J. Mater. Sci. Technol. ›› 2022, Vol. 130: 112-123.DOI: 10.1016/j.jmst.2022.05.006
• Research Article • Previous Articles Next Articles
C.L. Jiaa,b, L.H. Wua,b,c,*(
), P. Xuea,c, D.R. Nia,b, B.L. Xiaoa,b, Z.Y. Maa,b,*(
)
Received:2022-02-18
Revised:2022-04-19
Accepted:2022-05-04
Published:2022-12-10
Online:2022-12-07
Contact:
L.H. Wu,Z.Y. Ma
About author:E-mail addresses: zyma@imr.ac.cn (Z.Y. Ma)C.L. Jia, L.H. Wu, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effect of static annealing on superplastic behavior of a friction stir welded Ti-6Al-4V alloy joint and microstructural evolution during deformation[J]. J. Mater. Sci. Technol., 2022, 130: 112-123.
Fig. 2. (a) Cross-section of friction stir welded Ti-6Al-4V joint, and transmission electron microscope (TEM) images of: (b) base material (BM) and (c, d) nugget zone (NZ), and (e) high resolution transmission electron microscope (HR-TEM) image for marked lamellar structure in (d).
Fig. 3. Scanning electron microscope (SEM) images of (a, b) BM and (c, d) NZ after annealing at 900 °C for (a, c) 5 min, (b, d) 180 min, respectively.
Fig. 4. Superplastic flow stress of BM and NZ after annealing at 900 °C for 5, 60 and 180 min: (a) true stress-strain curves of BM and NZ at 900 °C, 3 × 10?3 s?1, (b) variation of flow stress at true strain of 0.1 with strain rate from 1 × 10?4 s?1 to 1 × 10?2 s?1. The flow stress for the BM and NZ at 1 × 10?3 s?1 in (b) has been reported in Ref. [25].
Fig. 5. (a) Variation of initial flow stress and average grain size with annealing time, and (b) macroscopic tensile specimens after fracture at 900 °C, 3 × 10?3 s?1 for BM and NZ after annealing for different times.
Fig. 6. Inverse pole figure (IPF) maps of (a-c) BM and (d-f) NZ at engineering strain of (a, d) 0%, (b, e) 40% and (c, f) 200% after annealing for 5 min before deformation, respectively.
Fig. 7. IPF maps of (a-c) BM and (d-f) NZ at engineering strain of (a, d) 0%, (b, e) 40% and (c, f) 200% after annealing for 180 min before deformation, respectively.
Fig. 8. Variation of (a) average grain size for BM and NZ, and (b) aspect ratio and spheroidization fraction for lamellar structure in NZ with engineering strain.
Fig. 9. Schmid factor evolution for basal slip and prismatic slip of BM at engineering strain of (a, d) 0%, (b, e) 40% and (c, f) 200% after annealing for 180 min before deformation, respectively.
Fig. 10. Schmid factor evolution for basal slip and prismatic slip of NZ at engineering strain of (a, d) 0%, (b, e) 40% and (c, f) 200% after annealing for 180 min before deformation, respectively.
Fig. 12. <0002> pole figure for a distribution of Schmid factor of the basal slip in left and texture in right for (a-c) BM-5 and (d-f) BM-180 and at an engineering strain of (a, d) 0%, (b, e) 40% and (c, f) 200% during superplastic deformation.
Fig. 13. <0002> pole figure for a distribution of Schmid factor for the basal slip in left and texture in right for (a-c) NZ-5 and (d-f) NZ-180 and at an engineering strain of (a, d) 0%, (b, e) 40% and (c, f) 200% during superplastic deformation.
Fig. 14. Schematic of microstructural evolution in BM during annealing and subsequent deformation: (a) initial microstructure for BM, (b) grain coarsening for BM after static annealing, (c) intragranular deformation occurred in coarse grains with lower CRSS, (d) coarse grains occurred recrystallization to be smaller ones.
Fig. 15. Schematic of spheroidization process of lamellar structure in NZ during annealing and subsequent deformation: (a) fully lamellar structure in NZ, (b) static spheroidization for lamellar structure after static annealing, (c) dynamic spheroidization process for lamellar structure, (d) spheroidized grains after deformation.
| [1] | Z.Q. Li, H.P. Guo, Mater. Sci. Forum 475-479 (2005) 3037-3042. |
| [2] |
A.J. Barnes, J. Mater. Eng. Perform. 16 (4) (2007) 440-454.
DOI URL |
| [3] |
M. Ramulu, P.D. Edwards, D.G. Sanders, A.P. Reynolds, T. Trapp, Mater. Des. 31 (6) (2010) 3056-3061.
DOI URL |
| [4] |
P.D. Edwards, D.G. Sanders, M. Ramulu, J. Mater. Eng. Perform. 19 (4) (2010) 510-514.
DOI URL |
| [5] |
P.D. Edwards, M. Ramulu, Sci. Technol. Weld. Join. 14 (5) (2013) 476-483.
DOI URL |
| [6] |
L. Ma, M. Wan, W. Li, J. Shao, X. Bai, J. Zhang, Mater. Sci. Eng. A 817 (2021) 141419.
DOI URL |
| [7] |
B. Kong, G. Liu, D. Wang, K. Wang, S. Yuan, Mater. Des. 90 (2016) 723-732.
DOI URL |
| [8] |
C. Homer, J.P. Lechten, B. Baudelet, Metall. Trans. A 8 (7) (1977) 1191-1193.
DOI URL |
| [9] |
S. Chen, J. Huang, D. Cheng, H. Zhang, X. Zhao, Mater. Sci. Eng. A 541 (2012) 110-119.
DOI URL |
| [10] |
B. Guo, S.L. Semiatin, J.J. Jonas, Mater. Sci. Eng. A 761 (2019) 138047.
DOI URL |
| [11] |
R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R 50 (1-2) (2005) 1-78.
DOI URL |
| [12] |
L.H. Wu, X.B. Hu, X.X. Zhang, Y.Z. Li, Z.Y. Ma, X.L. Ma, B.L. Xiao, Acta Mater. 166 (2019) 371-385.
DOI |
| [13] |
Z.Y. Ma, A.L. Pilchak, M.C. Juhas, J.C. Williams, Scr. Mater. 58 (5) (2008) 361-366.
DOI URL |
| [14] |
L.H. Wu, B.L. Xiao, D.R. Ni, Z.Y. Ma, X.H. Li, M.J. Fu, Y.S. Zeng, Scr. Mater. 98 (2015) 44-47.
DOI URL |
| [15] |
W. Zhang, H. Liu, H. Ding, H. Fujii, Mater. Sci. Eng. A 785 (2020) 139390.
DOI URL |
| [16] |
W. Zhang, H. Liu, H. Ding, H. Fujii, J. Alloy. Compd. 803 (2019) 901-911.
DOI URL |
| [17] |
H. Mirzadeh, Mater. Sci. Eng. A 819 (2021) 141499.
DOI URL |
| [18] |
L.H. Wu, P. Xue, B.L. Xiao, Z.Y. Ma, Scr. Mater. 122 (2016) 26-30.
DOI URL |
| [19] |
H.J. Liu, L. Zhou, P. Liu, Q.W. Liu, Int. J. Hydrog. Energy 34 (11) (2009) 9596-9602.
DOI URL |
| [20] |
H.J. Liu, L Zhou, Q.W. Liu, Scr. Mater. 61 (11) (2009) 1008-1011.
DOI URL |
| [21] |
L.H. Wu, C.L. Jia, S.C. Han, N. Li, D.R. Ni, B.L. Xiao, Z.Y. Ma, M.J. Fu, Y.Q. Wang, Y.S. Zeng, J. Alloy. Compd. 787 (2019) 1320-1326.
DOI |
| [22] |
J. Xu, W. Zeng, H. Ma, D. Zhou, J. Alloy. Compd. 736 (2018) 99-107.
DOI URL |
| [23] |
S. Zherebtsov, M. Murzinova, G. Salishchev, S.L. Semiatin, Acta Mater. 59 (10) (2011) 4138-4150.
DOI URL |
| [24] |
M. Cabibbo, S. Zherebtsov, S. Mironov, G. Salishchev, J. Mater. Sci. 48 (3) (2012) 1100-1110.
DOI URL |
| [25] | C.L. Jia, L.H. Wu, P. Xue, H. Zhang, D.R. Ni, B.L. Xiao, Z.Y. Ma, J. Mater. Sci. Tech-nol. 119 (2022) 1-10. |
| [26] | L.H. Wu, D. Wang, B.L. Xiao, Z.Y. Ma, Scr. Mater. 78-79 (2014) 17-20. |
| [27] |
H. Masuda, E. Sato, Acta Mater. 197 (2020) 235-252.
DOI URL |
| [28] |
S. Balachandran, A. Kashiwar, A. Choudhury, D. Banerjee, R. Shi, Y. Wang, Acta Mater. 106 (2016) 374-387.
DOI URL |
| [29] | S.L. Semiatin, B.C. Kirby, G.A. Salishchev, Metall. Mater. Trans. A 35A (9) (2004) 2809-2819. |
| [30] |
S. Roy, S. Suwas, J. Alloy. Compd. 548 (2013) 110-125.
DOI URL |
| [31] |
J.H. Kim, S.L. Semiatin, C.S. Lee, Acta Mater. 51 (18) (2003) 5613-5626.
DOI URL |
| [32] |
T.K. Ha, Y.W. Chang, Acta Mater. 46 (8) (1998) 2741-2749.
DOI URL |
| [33] |
E. Alabort, D. Putman, R.C. Reed, Acta Mater. 95 (2015) 428-442.
DOI URL |
| [34] |
J. Han, S.H. Kang, S.J. Lee, M. Kawasaki, H.J. Lee, D. Ponge, D. Raabe, Y.K. Lee, Nat. Commun. 8 (1) (2017) 751.
DOI URL |
| [35] |
E. Alabort, P. Kontis, D. Barba, K. Dragnevski, R.C. Reed, Acta Mater. 105 (2016) 449-463.
DOI URL |
| [36] | W.A. Rachinger, J. Inst. Met. 81 (1) (1952) 33-41. |
| [37] |
T.G. Langdon, Mater. Trans. 46 (9) (2005) 1951-1956.
DOI URL |
| [38] |
T.G. Langdon, Mater. Sci. Eng. A 283 (1-2) (2000) 266-273.
DOI URL |
| [39] |
T.G. Langdon, J. Mater. Sci. 41 (3) (2006) 597-609.
DOI URL |
| [40] | G. Lütjering, J.C. Williams, Titanium, 2nd ed, Springer, NewYork, 2007. |
| [41] |
X. Zheng, S. Zheng, J. Wang, Y. Ma, H. Wang, Y. Zhou, X. Shao, B. Zhang, J. Lei, R. Yang, X. Ma, Acta Mater. 181 (2019) 479-490.
DOI URL |
| [42] |
S. Balachandran, S. Kumar, D. Banerjee, Acta Mater. 131 (2017) 423-434.
DOI URL |
| [1] | Lulu Guo, Lina Zhang, Joel Andersson, Olanrewaju Ojo. Additive manufacturing of 18% nickel maraging steels: Defect, structure and mechanical properties: A review [J]. J. Mater. Sci. Technol., 2022, 120(0): 227-252. |
| [2] | Xiaodong Lin, Qunjia Peng, En-Hou Han, Wei Ke. Deformation and cracking behaviors of proton-irradiated 308L stainless steel weld metal strained in simulated PWR primary water [J]. J. Mater. Sci. Technol., 2022, 120(0): 36-52. |
| [3] | Zhiquan Wang, Chun Li, Ragnar Kiebach, Ilaria Ritucci, Ming Chen, Jian Cao. Joining of Co coated ferritic stainless steel to ceramic solid oxide cells by a novel Ag-SiO2 braze [J]. J. Mater. Sci. Technol., 2022, 121(0): 174-180. |
| [4] | Yingmei Tan, Ruirun Chen, Hongze Fang, Yangli Liu, Hongzhi Cui, Yanqing Su, Jingjie Guo, Hengzhi Fu. Enhanced strength and ductility in Ti46Al4Nb1Mo alloys via boron addition [J]. J. Mater. Sci. Technol., 2022, 102(0): 16-23. |
| [5] | Xu Liu, Lin Song, Andreas Stark, Uwe Lorenz, Zhanbing He, Junpin Lin, Florian Pyczak, Tiebang Zhang. Deformation and phase transformation behaviors of a high Nb-containing TiAl alloy compressed at intermediate temperatures [J]. J. Mater. Sci. Technol., 2022, 102(0): 89-96. |
| [6] | Haoming Pang, Zhenbang Xu, Longjiang Shen, Jun Li, Junshuo Zhang, Zhiyuan Li, Shouhu Xuan, Xinglong Gong. The dynamic compressive properties of magnetorheological plastomers: enhanced magnetic-induced stresses by non-magnetic particles [J]. J. Mater. Sci. Technol., 2022, 102(0): 195-203. |
| [7] | Z.W. Wang, J.F. Zhang, G.M. Xie, L.H. Wu, H. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 102(0): 213-223. |
| [8] | Zhang N.B., Xu J., Feng Z.D., Sun Y.F., Huang J.Y., Zhao X.J., Yao X.H., Chen S., Lu L., Luo S.N.. Shock compression and spallation damage of high-entropy alloy Al0.1CoCrFeNi [J]. J. Mater. Sci. Technol., 2022, 128(0): 1-9. |
| [9] | Hui Shen, Qingquan Zhang, Ying Yang, Yang Ren, Yanbao Guo, Yafeng Yang, Zhonghan Li, Zhiwei Xiong, Xiangguang Kong, Zhihui Zhang, Fangmin Guo, Lishan Cui, Shijie Hao. Selective laser melted high Ni content TiNi alloy with superior superelasticity and hardwearing [J]. J. Mater. Sci. Technol., 2022, 116(0): 246-257. |
| [10] | Lin He, Shiwei Wu, Anping Dong, Haibin Tang, Dafan Du, Guoliang Zhu, Baode Sun, Wentao Yan. Selective laser melting of dense and crack-free AlCoCrFeNi2.1 eutectic high entropy alloy: Synergizing strength and ductility [J]. J. Mater. Sci. Technol., 2022, 117(0): 133-145. |
| [11] | M.S. Moyle, N. Haghdadi, X.Z. Liao, S.P. Ringer, S. Primig. On the microstructure and texture evolution in 17-4 PH stainless steel during laser powder bed fusion: Towards textural design [J]. J. Mater. Sci. Technol., 2022, 117(0): 183-195. |
| [12] | Yifeng Wang, Yilin Song, Kaikai Song, Lin Pan, Changchun Chen, Kunihito Koumoto, Qingfeng Liu. Enhanced thermoelectric performance of n-type Bi2Te2.7Se0.3 via a simple liquid-assisted shear exfoliation [J]. J. Mater. Sci. Technol., 2022, 117(0): 251-258. |
| [13] | Young-Kyun Kim, Kee-Ahn Lee. Stabilized sub-grain and nano carbides-driven 1.2 GPa grade ultra-strong CrMnFeCoNi high-entropy alloy additively manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 117(0): 8-22. |
| [14] | Xinyu Zhang, Chuanwei Li, Mengyao Zheng, Xudong Yang, Zhenhua Ye, Jianfeng Gu. Chemical, microstructure, and mechanical property of TiAl alloys produced by high-power direct laser deposition [J]. J. Mater. Sci. Technol., 2022, 117(0): 99-108. |
| [15] | Seungmi Kwak, Jaehwang Kim, Hongsheng Ding, Xuesong Xu, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Using multiple regression analysis to predict directionally solidified TiAl mechanical property [J]. J. Mater. Sci. Technol., 2022, 104(0): 285-291. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
