J. Mater. Sci. Technol. ›› 2022, Vol. 125: 105-117.DOI: 10.1016/j.jmst.2022.03.009
• Research Article • Previous Articles Next Articles
Peng Chena, Jin Sua, Haoze Wanga, Lei Yangb, Haosong Caia, Maoyuan Lia, Zhaoqing Lia, Jie Liua, Shifeng Wena, Yan Zhouc, Chunze Yana,*(), Yusheng Shia
Received:
2021-08-03
Revised:
2022-03-15
Accepted:
2022-03-16
Published:
2022-04-16
Online:
2022-04-16
Contact:
Chunze Yan
About author:
* E-mail address: c_yan@hust.edu.cn (C. Yan).Peng Chen, Jin Su, Haoze Wang, Lei Yang, Haosong Cai, Maoyuan Li, Zhaoqing Li, Jie Liu, Shifeng Wen, Yan Zhou, Chunze Yan, Yusheng Shi. Mechanical properties and microstructure characteristics of lattice-surfaced PEEK cage fabricated by high-temperature laser powder bed fusion[J]. J. Mater. Sci. Technol., 2022, 125: 105-117.
Fig. 1. Powder properties and HT-LPBF processability. (a) Particle size and distribution, and (b) sintering window tested by a heating and cooling DSC cycle. Microscopic morphologies of (c) PEEK powder, (d) sintered monolayer, and (e) sintered bilayer.
Fig. 2. Effects of laser power on (a) ultimate tensile strength, while h is set as a constant of 0.2 mm and V is 2000 mm s-1. (b) Laser sintering condition of PEEK under 35 W when the EMR is 10.64. Effects of laser scanning velocity on (c) ultimate tensile strength, while h is set as a constant of 0.2 mm and P is 15 W. (d) Laser sintering condition at 500 mm s-1 and 15 W when the EMR is 18.24.
Fig. 3. (a) Scatter diagram of the relationship between ultimate tensile strength and EMR, and its GaussAmp fitting curve. (b) Stress-strain curve at the EMR of 15.2.
Fig. 4. Structural diagram of lattice-surfaced PEEK cage. (a) Side view of designed cage placed between vertebral bodies, (b) STL model of PEEK cage with lattice structures designed on the surface and the bottom, (c) Diamond TPMS lattice structure with a relative density of 20% and unit size of 2 mm, and (d) topology of Diamond unit cell.
Fig. 5. Schematic diagram of the intervertebral cage of PEEK. (a) PEEK cage with lattice structures designed on the surface and the bottom. (b) Standardized PEEK cage without lattice surface. (c) Internal Diamond structure of PEEK cage fabricated by HT-LPBF. (d) 3D map of the Diamond structure under the observation of an ultra-depth three-dimensional microscope.
Fig. 6. (a) Compressive stress-strain curve and its 1st derivative curve for the analysis of deformation stages: (1) elastic deformation, (2) yield strengthening, and (3) densification. (b) Comparison of stress-strain curves of cages with different lattice-surfaced areas.
Lattice-surfaced PEEK cage | Compression modulus Ec (MPa) | Yield strength σA (MPa) | Elastic limit σPe (MPa) | Energy absorption efficiency (%) |
---|---|---|---|---|
15 × 7 mm2 | 200.9 ± 24.8 | - | 33.1 ± 3.2 | 17.3 ± 0.7 |
12 × 5 mm2 | 310.3 ± 18.4 | 52.9 ± 6.5 | 43.6 ± 5.0 | 17.5 ± 0.4 |
8 × 3 mm2 | 322.5 ± 26.6 | 45.7 ± 2.3 | 47.9 ± 1.9 | 18.2 ± 0.1 |
Table 1. Mechanical properties of PEEK cage with different lattice-surfaced areas.
Lattice-surfaced PEEK cage | Compression modulus Ec (MPa) | Yield strength σA (MPa) | Elastic limit σPe (MPa) | Energy absorption efficiency (%) |
---|---|---|---|---|
15 × 7 mm2 | 200.9 ± 24.8 | - | 33.1 ± 3.2 | 17.3 ± 0.7 |
12 × 5 mm2 | 310.3 ± 18.4 | 52.9 ± 6.5 | 43.6 ± 5.0 | 17.5 ± 0.4 |
8 × 3 mm2 | 322.5 ± 26.6 | 45.7 ± 2.3 | 47.9 ± 1.9 | 18.2 ± 0.1 |
Fig. 7. (a) Comparison of energy absorption efficiency curves, and the illustration is the integral calculation for energy absorption efficiency. (b) Compression modulus and elastic limit of cages with different lattice-surfaced areas.
Fig. 8. Stress distribution at different views and heights of intervertebral cage. (a) Front view, (b) head view, and (c) tail view of the cage. Cross-section views of (d) middle height of the cage, (e) interface between Diamond surface and solid cage, and (f) interior of Diamond surface.
Fig. 9. Stress distribution in a cage slice with the one-period thickness of Diamond. (a) Standardized cage, (b) lattice-surfaced cage, and (c) enlargement of the dotted part of (b).
Fig. 10. Strain distribution of cage slices from different views. X-Z plane views of (a) standardized cage and (b) lattice-surfaced cage. (c) and (d) are Y-Z plane views of the two cages, respectively.
Fig. 11. Cross-sectional morphology characteristics of HT-LPBF processed PEEK at EMR of (a) 6.08, (d) 7.60, (g) 9.12, (j) 10.64. (b, c), (e, f), (h, i), and (k, l) are the enlarged morphologies at the corresponding EMR. z is the vertical building direction, and y is the horizontal printing direction.
Fig. 12. Comparison of (a) DSC curves between PEEK powder and HT-LPBF processed PEEK cages. (b) DSC curves of HT-LPBF processed PEEK cages under different EMR. (c) XRD curves and (d) evolution of lattice parameters of PEEK powder and HT-LPBF processed PEEK cages under different EMRs. (e) Schematic diagram of the change of orthorhombic unit cell and (1 0 0) crystal plane.
Empty Cell | Empty Cell | Peak melting temperature | Melting range Mr (°C) | Melting enthalpy | Crystallinity | Initial crystallization temperature | Peak crystallization temperature | Crystallization enthalpy ΔHc (J g-1) |
---|---|---|---|---|---|---|---|---|
PEEK powder | 338.46 | 23.31 (324.76-348.07) | 32.45 | 24.96 | 297.45 | 293.05 | -39.93 | |
HT-LPBF processed PEEK under different EMR | 6.08 | 343 | 13.69 (334.81-348.5) | 12.56 | 9.66 | 298.81 | 292.07 | -24.20 |
7.60 | 343.18 | 11.7 (335.9-347.6) | 11.06 | 8.51 | 298.82 | 292.25 | -22.61 | |
9.12 | 343.35 | 10.56 (336.57-347.13) | 11.38 | 8.75 | 299.38 | 291.25 | -25.37 | |
10.64 | 344.02 | 13.23 (334.96-348.19) | 13.39 | 10.3 | 300.32 | 292.58 | -29.39 |
Table 2. Comparison of thermal properties between PEEK powder and HT-LPBF processed PEEK under different EMRs.
Empty Cell | Empty Cell | Peak melting temperature | Melting range Mr (°C) | Melting enthalpy | Crystallinity | Initial crystallization temperature | Peak crystallization temperature | Crystallization enthalpy ΔHc (J g-1) |
---|---|---|---|---|---|---|---|---|
PEEK powder | 338.46 | 23.31 (324.76-348.07) | 32.45 | 24.96 | 297.45 | 293.05 | -39.93 | |
HT-LPBF processed PEEK under different EMR | 6.08 | 343 | 13.69 (334.81-348.5) | 12.56 | 9.66 | 298.81 | 292.07 | -24.20 |
7.60 | 343.18 | 11.7 (335.9-347.6) | 11.06 | 8.51 | 298.82 | 292.25 | -22.61 | |
9.12 | 343.35 | 10.56 (336.57-347.13) | 11.38 | 8.75 | 299.38 | 291.25 | -25.37 | |
10.64 | 344.02 | 13.23 (334.96-348.19) | 13.39 | 10.3 | 300.32 | 292.58 | -29.39 |
Empty Cell | EMR | lattice parameter (Å) | lattice volume (Å3) | ||
---|---|---|---|---|---|
a-axis | b-axis | c-axis | |||
PEEK powder | - | 7.84 | 5.97 | 10.26 | 480.22 |
HT-LPBF processed PEEK cage | 6.08 | 7.86 | 5.96 | 9.99 | 467.99 |
7.60 | 7.84 | 5.95 | 10.09 | 470.68 | |
9.12 | 7.84 | 5.97 | 10.12 | 473.66 | |
10.64 | 7.84 | 5.95 | 10.22 | 476.74 |
Table 3. Crystallography data of PEEK powder and HT-LPBF processed PEEK cages with different EMR.
Empty Cell | EMR | lattice parameter (Å) | lattice volume (Å3) | ||
---|---|---|---|---|---|
a-axis | b-axis | c-axis | |||
PEEK powder | - | 7.84 | 5.97 | 10.26 | 480.22 |
HT-LPBF processed PEEK cage | 6.08 | 7.86 | 5.96 | 9.99 | 467.99 |
7.60 | 7.84 | 5.95 | 10.09 | 470.68 | |
9.12 | 7.84 | 5.97 | 10.12 | 473.66 | |
10.64 | 7.84 | 5.95 | 10.22 | 476.74 |
Fig. 13. FT-IR spectra of PEEK powder and HT-LPBF processed PEEK cages with different EMR. FT-IR spectra in the range of (a) 2550-3450 cm-1, (b) 1120-1320 cm-1, (c) 1400-1800 cm-1, and (d) 650-950 cm-1, respectively. Degradation products of (e) dibenzofuran and (f) biphenyl formed by the recombination of adjacent radicals.
[1] |
A.G. Patwardhan, J.A. Sielatycki, R.M. Havey, S.C. Humphreys, S.D. Hodges, K.R. Blank, M.G. Muriuki, Spine J. 21 (2021) 708-719.
DOI PMID |
[2] |
C. Garot, G. Bettega, C. Picart, Adv. Funct. Mater. 31 (2021) 2006967.
DOI URL |
[3] |
T.M. Grupp, H.-J. Meisel, J.A. Cotton, J. Schwiesau, B. Fritz, W. Blömer, V. Jansson, Biomaterials 31 (2010) 523-531.
DOI URL |
[4] |
I. Matai, G. Kaur, A. Seyedsalehi, A. McClinton, C.T. Laurencin, Biomaterials 226 (2020) 119536.
DOI URL |
[5] |
J.L. Yan, W.H. Zhou, Z.J. Jia, P. Xiong, Y.Y. Li, P. Wang, Q.Y. Li, Y. Cheng, Y.F. Zheng, Acta Biomater. 79 (2018) 216-229.
DOI URL |
[6] | W. Liu, J.H. Li, M.Q. Cheng, Q.J. Wang, Y.B. Qian, K.W.K. Yeung, P.K. Chu, X.L. Zhang, Biomaterials 208 (2019) 8-20. |
[7] |
F.B. Torstrick, A.S.P. Lin, D. Potter, D.L. Safranski, T.A. Sulchek, K. Gall, R.E. Guldberg, Biomaterials 185 (2018) 106-116.
DOI PMID |
[8] | C.Z. Yan, G. Ma, A.N. Chen, Y. Chen, J.M. Wu, W Wang, S.F. Yang, Y.S. Shi 05 (2020) 20300002. |
[9] |
A.H.C. Poulsson, D. Eglin, S. Zeiter, K. Camenisch, C. Sprecher, Y. Agarwal, D. Nehrbass, J. Wilson, R.G. Richards, Biomaterials 35 (2014) 3717-3728.
DOI URL |
[10] | J. Khoury, S.R. Kirkpatrick, M. Maxwell, R.E. Cherian, A. Kirkpatrick, R.C. Svrluga, Nucl. Instrum. Methods in Phys. Res.-Sect. B 307 (2013) 630-634. |
[11] |
X.W. Yuan, L.P. Ouyang, Y. Luo, Z.J. Sun, C. Yang, J.X. Wang, X.Y. Liu, X.L. Zhang, Acta Biomater. 86 (2019) 323-337.
DOI URL |
[12] | S.L. Edwards, J.A. Werkmeister, J. Biomed. Mater. Res.-Pt. A 100 (2012) 3326-3331. |
[13] |
A.R. Siddiq, A.R. Kennedy, Mater. Sci. Eng. C 47 (2015) 180-188.
DOI URL |
[14] |
N.T. Evans, F.B. Torstrick, C.S.D. Lee, K.M. Dupont, D.L. Safranski, W.A. Chang, A.E. Macedo, A.S.P. Lin, J.M. Boothby, D.C. Whittingslow, R.A. Carson, R.E. Guldberg, K. Gall, Acta Biomater. 13 (2015) 159-167.
DOI URL |
[15] | L. Benedetti, B. Brulé, N. Decraemer, R. Davies, K.E. Evans, O. Ghita, Addit. Manuf. 36 (2020) 101540. |
[16] |
S. Berretta, K. Evans, O. Ghita, Mater. Des. 139 (2018) 141-152.
DOI URL |
[17] | J. Su, S.B. Hua, A.N. Chen, P. Chen, L. Yang, X. Yuan, D.H. Qi, H. Zhu, C.Z. Yan, J. Xiao, Y.S. Shi, Mater. Sci. Eng. C (2021) 112595. |
[18] |
D. Bourell, J.P. Kruth, M. Leu, G. Levy, D. Rosen, A.M. Beese, A. Clare, CIRP Ann. 66 (2017) 659-681.
DOI URL |
[19] |
S.Q. Yuan, F. Shen, C.K. Chua, K. Zhou, Prog. Polym. Sci. 91 (2019) 141-168.
DOI URL |
[20] | P. Chen, H.S. Cai, Z.Q. Li, M.Y. Li, H.Z. Wu, J. Su, S.F. Wen, Y. Zhou, J. Liu, C. J. Wang, C.Z. Yan, Y.S. Shi, Addit. Manuf. 36 (2020) 101615. |
[21] |
E.A. Guzzi, M.W. Tibbitt, Adv. Mater. 32 (2020) 1901994.
DOI URL |
[22] |
B. Yazdani, B. Chen, L. Benedetti, R. Davies, O. Ghita, Y. Zhu, Compos. Sci. Technol. 167 (2018) 243-250.
DOI URL |
[23] |
P. Chen, H.Z. Wu, L. Yang, Z.Q. Li, C.Z. Yan, J. Liu, S.F. Wen, Y.S. Shi, Polymer 167 (2019) 48-53.
DOI URL |
[24] |
P. Chen, J. Su, H.Z. Wang, L. Yang, M.Y. Li, Z.Q. Li, J. Liu, S.F. Wen, Y. Zhou, C. Z. Yan, Y.S. Shi, Mater. Des. 213 (2022) 110348.
DOI URL |
[25] |
S. Berretta, K.E. Evans, O. Ghita, Eur. Polym. J. 68 (2015) 243-266 Suppl. C.
DOI URL |
[26] |
S. Berretta, K.E. Evans, O.R. Ghita, Mater. Des. 105 (2016) 301-314.
DOI URL |
[27] |
S. Berretta, O. Ghita, K.E. Evans, Eur. Polym. J. 59 (2014) 218-229 59 Suppl. C.
DOI URL |
[28] |
B. Chen, S. Berretta, K. Evans, K. Smith, O. Ghita, Appl. Surf. Sci. 428 (2018) 1018-1028.
DOI URL |
[29] |
B.L. Chen, B. Yazdani, L. Benedetti, H. Chang, Y.Q. Zhu, O. Ghita, Compos. Sci. Technol. 170 (2019) 116-127.
DOI URL |
[30] |
K.H. Tan, C.K. Chua, K.F. Leong, C.M. Cheah, P. Cheang, M.S. Abu Bakar, S.W. Cha, Biomaterials 24 (2003) 3115-3123.
DOI PMID |
[31] |
D. Pohle, S. Ponader, T. Rechtenwald, M. Schmidt, K.A. Schlegel, H. Münstedt, F.W. Neukam, E. Nkenke, C. von Wilmowsky, Macromol. Symp. 253 (2007) 65-70.
DOI URL |
[32] |
J. Seo, D. Parisi, A.M. Gohn, A. Han, L. Song, Y.Z. Liu, R.P. Schaake, A.M. Rhoades, R.H. Colby, Macromolecules 53 (2020) 10040-10050.
DOI URL |
[33] |
G.R. Johnson, W.H. Cook, Eng. Fract. Mech. 21 (1985) 31-48.
DOI URL |
[34] |
S. Dupin, O. Lame, C. Barrès, J.Y. Charmeau, Eur. Polym. J. 48 (2012) 1611-1621.
DOI URL |
[35] |
B.B. Chen, Y. Wang, S. Berretta, O. Ghita, J. Mater. Sci. 52 (2017) 6004-6019.
DOI URL |
[36] |
O. Al-Ketan, R.K. Abu Al-Rub, Adv. Eng. Mater. 21 (2019) 1900524.
DOI URL |
[37] |
D. Barba, E. Alabort, R.C. Reed, Acta Biomater. 97 (2019) 637-656.
DOI PMID |
[38] | S.Q. Wu, L. Yang, X. Yang, P. Chen, J. Su, H.Z. Wu, Z.F. Liu, H.Z. Wang, C.S. Wang, C. Z. Yan, Y.S. Shi, Smart Manuf. (2022) 2150 0 01. |
[39] |
C. Bierwisch, S. Mohseni-Mofidi, B. Dietemann, M. Grünewald, J. Rudloff, M. Lang, Mater. Des. 199 (2021) 109432.
DOI URL |
[40] |
P. Peyre, Y. Rouchausse, D. Defauchy, G. Regnier, J. Mater. Process. Tech. 225 (2015) 326-336.
DOI URL |
[41] |
C. Cai, W.S. Tey, J.Y. Chen, W. Zhu, X.J. Liu, T. Liu, L.H. Zhao, K. Zhou, J. Mater. Process. Tech. 288 (2021) 116882.
DOI URL |
[42] |
P. Chen, M.C. Tang, W. Zhu, L. Yang, S.F. Wen, C.Z. Yan, Z.J. Ji, H. Nan, Y.S. Shi, Polym. Test. 67 (2018) 370-379.
DOI URL |
[43] | S. Rosso, R. Meneghello, L. Biasetto, L. Grigolato, G. Concheri, G. Savio, Addit. Manuf. 36 (2020) 101713. |
[44] |
M.J. Jenkins, J.N. Hay, N.J. Terrill, Polymer 44 (2003) 6781-6787.
DOI URL |
[45] |
Y. Wang, B. Chen, K. Evans, O. Ghita, Sci. Rep. 8 (2018) 1314.
DOI URL |
[46] |
P. Chen, H.Z. Wu, W. Zhu, L. Yang, Z.Q. Li, C.Z. Yan, S.F. Wen, Y.S. Shi, Polym. Test. 69 (2018) 366-374.
DOI URL |
[47] |
P.C. Dawson, D.J. Blundell, Polymer 21 (1980) 577-578.
DOI URL |
[48] |
P. Patel, T.R. Hull, R.W. McCabe, D. Flath, J. Grasmeder, M. Percy, Polym. Degrad. Stab. 95 (2010) 709-718.
DOI URL |
[1] | Hongge Li, Wenjie Zhao, Tian Chen, Yongjiang Huang, Jianfei Sun, Ping Zhu, Yunzhuo Lu, Alfonso H.W. Ngan, Daqing Wei, Qing Du, Yongchun Zou. Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy: cyclic vs single cryogenic cooling [J]. J. Mater. Sci. Technol., 2022, 115(0): 40-51. |
[2] | Qimin Shi, Shoufeng Yang, Yi Sun, Yifei Gu, Ben Mercelis, Shengping Zhong, Bart Van Meerbeek, Constantinus Politis. In-situ formation of Ti-Mo biomaterials by selective laser melting of Ti/Mo and Ti/Mo2C powder mixtures: A comparative study on microstructure, mechanical and wear performance, and thermal mechanisms [J]. J. Mater. Sci. Technol., 2022, 115(0): 81-96. |
[3] | W. Zheng, J.M. Wu, S. Chen, K.B. Yu, J. Zhang, Y.S. Shi. Improved mechanical properties of SiC fiber reinforced silica-based ceramic cores fabricated by stereolithography [J]. J. Mater. Sci. Technol., 2022, 116(0): 161-168. |
[4] | J. Ding, A. Inoue, F.L. Kong, S.L. Zhu, Y.L. Pu, E. Shalaan, A.A. Al-Ghamdi, A.L. Greer. Novel heating-and deformation-induced phase transitions and mechanical properties for multicomponent Zr50M50, Zr50(M,Ag)50 and Zr50(M,Pd)50 (M = Fe,Co,Ni,Cu) amorphous alloys [J]. J. Mater. Sci. Technol., 2022, 104(0): 109-118. |
[5] | Zhaoxin Du, Qiwei He, Ruirun Chen, Fei Liu, Jingyong Zhang, Fei Yang, Xueping Zhao, Xiaoming Cui, Jun Cheng. Rolling reduction -dependent deformation mechanisms and tensile properties in a β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 104(0): 183-193. |
[6] | Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy [J]. J. Mater. Sci. Technol., 2022, 114(0): 42-54. |
[7] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[8] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[9] | Xing Qi, Naoki Takata, Asuka Suzuki, Makoto Kobashi, Masaki Kato. Change in microstructural characteristics of laser powder bed fused Al-Fe binary alloy at elevated temperature [J]. J. Mater. Sci. Technol., 2022, 97(0): 38-53. |
[10] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[11] | Young-Kyun Kim, Min-Chul Kim, Kee-Ahn Lee. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 97(0): 10-19. |
[12] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
[13] | Pengyu Wen, Bin Hu, Jiansheng Han, Haiwen Luo. A strong and ductile medium Mn steel manufactured via ultrafast heating process [J]. J. Mater. Sci. Technol., 2022, 97(0): 54-68. |
[14] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
[15] | H. Zhang, Y. Wang, J.J. Wang, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma. Achieving superior mechanical properties of selective laser melted AlSi10Mg via direct aging treatment [J]. J. Mater. Sci. Technol., 2022, 108(0): 226-235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||