J. Mater. Sci. Technol. ›› 2022, Vol. 125: 118-127.DOI: 10.1016/j.jmst.2022.02.022
• Research Article • Previous Articles Next Articles
Edugulla Girija Shankar, Amit Kumar Das, Jae Su Yu()
Received:
2021-12-11
Revised:
2022-01-28
Accepted:
2022-02-10
Published:
2022-04-14
Online:
2022-04-14
Contact:
Jae Su Yu
About author:
* E-mail address: jsyu@khu.ac.kr (J.S. Yu).Edugulla Girija Shankar, Amit Kumar Das, Jae Su Yu. Entire onion source-derived redox porous carbon electrodes towards efficient quasi-solid-state solar charged hybrid supercapacitor[J]. J. Mater. Sci. Technol., 2022, 125: 118-127.
Fig. 2. Surface morphological studies of the prepared SROC-x compounds. FE-SEM images at different magnifications of (a-c) SROC-140, (d-f) SROC-160, and (g-i) SROC-180. TEM images of the SROC-160 at (j) low and (k) high magnifications. (l) SAED pattern and (m) EDX spectrum of the SROC-160. The inset of (m) shows the (i) layered image and (ii-vi) elemental mapping images.
Fig. 3. (a) XRD patterns of all the SROC-x compounds. XPS analysis of the SROC-160: Core-level spectra of (b) N 1s, (c) C 1s (d) O 1s, (e) P 2p, and (f) S 2p.
Fig. 4. (a) Comparative CV curves at a constant scan rate of 10 mV s-1 of the SROC-x electrodes and (b) CV curves at different scan rates for the SROC-160 electrode. (c) Comparative GCD curves at a constant current density of 3 A g-1 and (d) specific capacitance values at a constant current density of 3 A g-1 for the SROC-x electrodes. (e) GCD curves at different current densities of the SROC-160. (f) Comparative specific capacitance values at individual current densities and (g) comparative EIS plots for the SROC-x electrodes. (h) Logarithm relationship of anodic and cathodic peak current density vs. scan rate for the SROC-160 electrode. (i) Current contribution percentage of the SROC-160 electrode. (j) Cycling stability and (k) EIS plots before and after the cycling test for the SROC-160 electrode. (l) Schematic representation of the available surface functional groups for electrochemical redox reactions.
Biomass-derived carbons | Electrolyte concentration | Specific capacitance (F g-1) | Reference |
---|---|---|---|
Bamboo fiber | 1 M H2SO4 | 328 | [ |
Banana stem | 6 M KOH | 479.2 | [ |
N-activated carbon | 6 M KOH | 427 | [ |
Humic acids | 6 M KOH | 209 | [ |
Pigskin | 6 M KOH | 287.1 | [ |
Populus girinensis | 6 M KOH | 508 | [ |
Pine pollen | 6 M KOH | 419.6 | [ |
Perilla frutescens | 6 M KOH | 270 | [ |
Onion | 6 M KOH | 127 | [ |
Onion | 6 M KOH | 423 | [ |
Onion | 1 M Na2SO4 | 478 | [ |
Onion | 6 mol/L KOH | 133.5 | [ |
SROC-160 | 1 M KOH | 1805 | Present work |
Table 1. Comparative electrochemical properties of our electrode material with recently reported biomass-derived supercapacitor electrode materials.
Biomass-derived carbons | Electrolyte concentration | Specific capacitance (F g-1) | Reference |
---|---|---|---|
Bamboo fiber | 1 M H2SO4 | 328 | [ |
Banana stem | 6 M KOH | 479.2 | [ |
N-activated carbon | 6 M KOH | 427 | [ |
Humic acids | 6 M KOH | 209 | [ |
Pigskin | 6 M KOH | 287.1 | [ |
Populus girinensis | 6 M KOH | 508 | [ |
Pine pollen | 6 M KOH | 419.6 | [ |
Perilla frutescens | 6 M KOH | 270 | [ |
Onion | 6 M KOH | 127 | [ |
Onion | 6 M KOH | 423 | [ |
Onion | 1 M Na2SO4 | 478 | [ |
Onion | 6 mol/L KOH | 133.5 | [ |
SROC-160 | 1 M KOH | 1805 | Present work |
Fig. 5. QHSC device performance: (a) Schematic of QHSC device, (b) CV curves of the SROC-160 and TOGC electrodes, (c) CV curves measured at different potential windows of 1-1.5 V under the scan rate of 60 mV s-1, (d) CV curves at different scan rates, (e) GCD curves at different current densities, (f) specific capacitance values at individual current densities, (g) Ragone plot, (h) EIS plots before and after the cycling test, (i) cycling stability, and (j) QHSC device working mechanism.
Fig. 6. (a) Schematic illustration of the self-powered energy storage unit with QHSC device connect to solar energy harvesting system and (b) schematic illustration of the integration of the QHSC-based self-charging unit to bicycle. Real-life application: Photographic images of (c, d) charging process of the QHSC device using solar panel under natural sunlight and operating process of speedometer, (e, f) motor fan in off and on conditions, and (g, h) blowing green and blue LEDs.
[1] |
L. Zhi, W. Zhang, L. Dang, J. Sun, F. Shi, H. Xu, Z. Liu, Z. Lei, J. Power Sources 387 (2018) 108-116.
DOI URL |
[2] |
S.C. Sekhar, G. Nagaraju, J.S. Yu, Nano Energy 36 (2017) 58-67.
DOI URL |
[3] |
S. Li, J. Wen, X. Mo, H. Long, H. Wang, J. Wang, G. Fang, J. Power Sources 256 (2014) 206-211.
DOI URL |
[4] |
W. Fu, Y. Wang, W. Han, Z. Zhang, H. Zha, E. Xie, J. Mater. Chem. A 4 (2015) 173-182.
DOI URL |
[5] |
K.V. Sankar, S.C. Lee, Y. Seo, C. Ray, S. Liu, A. Kundu, S.C. Jun, J. Power Sources 373 (2018) 211-219.
DOI URL |
[6] |
G. Nagaraju, S. Chandra Sekhar, L. Krishna Bharat, J.S. Yu, ACS Nano 11 (2017) 10860-10874.
DOI PMID |
[7] |
S. Xu, C. Su, T. Wang, Y. Ma, J. Hu, J. Hu, N. Hu, Y. Su, Y. Zhang, Z. Yang, Electrochim. Acta 259 (2018) 617-625.
DOI URL |
[8] |
M.A. Azam, N.S.N. Ramli, N.A.N.M. Nor, T.I.T. Nawi, Int. J. Energy Res. 45 (2021) 8335-8346.
DOI URL |
[9] |
G. Nagaraju, R. Kakarla, S.M. Cha, J.S. Yu, Nano Res. 8 (2015) 3749-3763.
DOI URL |
[10] | P. Sinha, A. Yadav, A. Tyagi, P. Paik, H. Yokoi, A.K. Naskar, T. Kuila, K.K. Kar, Carbon, 168 (2020) 419-438. |
[11] |
A. Adan-Mas, L. Alcaraz, P. Arévalo-Cid, F.A. López-Gómez, F. Montemor, Waste Manag. 120 (2021) 280-289.
DOI URL |
[12] |
W. Chen, H. Wang, W. Lan, D. Li, A. Zhang, C. Liu, Ind. Crops Prod. 170 (2021) 113700.
DOI URL |
[13] |
S. Sathyamoorthi, N. Phattharasupakun, M. Sawangphruk, Electrochim. Acta 286 (2018) 148-157.
DOI URL |
[14] |
A.K. Das, U.N. Pan, V. Sharma, N.H. Kim, J.H. Lee, Chem. Eng. J. 417 (2021) 128019.
DOI URL |
[15] |
A.K. Das, R. Bera, A. Maitra, S.K. Karan, S. Paria, L. Halder, S.K. Si, A. Bera, B.B. Khatua, J. Mater. Chem. A 5 (2017) 22242-22254.
DOI URL |
[16] |
M. Li, M. Dolci, P. Roussel, A. Barras, S. Szunerits, R. Boukherroub, Electrochim. Acta 354 (2020) 136664.
DOI URL |
[17] |
F. Wu, H. Su, K. Wang, W.K. Wong, X. Zhu, Int. J. Nanomed. 12 (2017) 7375-7391.
DOI URL |
[18] |
Z. Zhu, F. Liang, Z. Zhou, X. Zeng, D. Wang, P. Dong, J. Zhao, S. Sun, Y. Zhang, X. Li, J. Mater. Chem. A 6 (2018) 1513-1522.
DOI URL |
[19] |
C. Wang, T. Liu, J. Alloys Compd. 696 (2017) 42-50.
DOI URL |
[20] |
D.W. Wang, F. Li, L.C. Yin, X. Lu, Z.G. Chen, I.R. Gentle, G.Q. Lu, H.M. Cheng, Chem. - A Eur. J. 18 (2012) 5345-5351.
DOI URL |
[21] |
K.N. Chaudhari, M.Y. Song, J.S. Yu, Small 10 (2014) 2625-2636.
DOI PMID |
[22] |
W. Si, J. Zhou, S. Zhang, S. Li, W. Xing, S. Zhuo, Electrochim. Acta 107 (2013) 397-405.
DOI URL |
[23] |
B. Peng, Y. Xu, K. Liu, X. Wang, F.M. Mulder, ChemElectroChem. 4 (2017) 2140-2144.
DOI URL |
[24] |
C. Lu, Q. Zhu, X. Zhang, Q. Liu, J. Nie, F. Feng, Q. Zhang, L. Ma, W. Han, X. Li, Catalysts 9 (2019) 177.
DOI URL |
[25] |
D. He, J. Niu, M. Dou, J. Ji, Y. Huang, F. Wang, Electrochim. Acta 238 (2017) 310-318.
DOI URL |
[26] |
M. Hillion, H. Antelmann, Biol. Chem. 396 (2015) 415-444.
DOI URL |
[27] | L. Zu, X. Gao, H. Lian, X. Cai, C. Li, Y. Zhong, Y. Hao, Y. Zhang, Z. Gong, Y. Liu, X. Wang, X. Cui, Nanomaterials 8 (2018). |
[28] |
M. Zhang, H. Fan, X. Ren, N. Zhao, H. Peng, C. Wang, X. Wu, G. Dong, C. Long, W. Wang, Y. Gao, L. Ma, P. Wu, H. Li, X. Jiang, J. Power Sources 418 (2019) 202-210.
DOI URL |
[29] |
K.V. Sankar, S.C. Lee, Y. Seo, C. Ray, S. Liu, A. Kundu, S.C. Jun, J. Power Sources 373 (2018) 211-219.
DOI URL |
[30] |
S. Cho, J. Han, J. Kim, Y. Jo, H. Woo, S. Lee, A.T. Aqueel Ahmed, H.C. Chavan, S. M. Pawar, J.L. Gunjakar, J. Kwak, Y. Park, A.I. Inamdar, H. Kim, H. Kim, H. Im, Curr. Appl. Phys. 17 (2017) 1189-1193.
DOI URL |
[31] |
L. Ji, B. Wang, Y. Yu, N. Wang, J. Zhao, Electrochim. Acta 331 (2020) 135348.
DOI URL |
[32] |
S. Ghosh, R. Santhosh, S. Jeniffer, V. Raghavan, G. Jacob, K. Nanaji, P. Kollu, S.K. Jeong, A.N. Grace, Sci. Rep. 9 (2019) 1-15.
DOI URL |
[33] |
S. Zhang, X. Shi, X. Chen, D. Zhang, X. Liu, Z. Zhang, P.K. Chu, T. Tang, E. Mijowska, ACS Appl. Energy Mater. 2 (2019) 4234-4243.
DOI URL |
[34] | Y. Zhu, M. Chen, Y. Zhang, W. Zhao, C. Wang, Carbon 140 (2018) 404-412. |
[35] |
Y. Zhou, J. Ren, Y. Yang, Q. Zheng, J. Liao, F. Xie, W. Jie, D. Lin, J. Solid State Chem. 268 (2018) 149-158.
DOI URL |
[36] | M. Liu, K. Zhang, M. Si, H. Wang, L. Chai, Y. Shi, Carbon 153 (2019) 707-716. |
[37] |
L. Wan, P. Song, J. Liu, D. Chen, R. Xiao, Y. Zhang, J. Chen, M. Xie, C. Du, J. Power Sources 438 (2019) 227013.
DOI URL |
[38] |
B. Liu, Y. Liu, H. Chen, M. Yang, H. Li, J. Power Sources 341 (2017) 309-317.
DOI URL |
[39] |
M.D. Mehare, A.D. Deshmukh, S.J. Dhoble, J. Mater. Sci. 55 (2020) 4213-4224.
DOI URL |
[40] |
T.R. Kumar, R.A. Senthil, Z. Pan, J. Pan, Y. Sun, J. Energy Storage 32 (2020) 101903.
DOI URL |
[41] |
A. Gopalakrishnan, S. Badhulika, J. Energy Storage 38 (2021) 102533.
DOI URL |
[42] |
J. Xu, W. Zhang, D. Hou, W. Huang, H. Lin, Chin. Chem. Lett. 28 (2017) 2295-2297.
DOI URL |
[1] | Zhichao Lou, Qiuyi Wang, Xiaodi Zhou, Ufuoma I. Kara, Rajdeep S. Mamtani, Hualiang Lv, Meng Zhang, Zhihong Yang, Yanjun Li, Chenxuan Wang, Solomon Adera, Xiaoguang Wang. An angle-insensitive electromagnetic absorber enabling a wideband absorption [J]. J. Mater. Sci. Technol., 2022, 113(0): 33-39. |
[2] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
[3] | Fei Pan, Lei Cai, Yanyan Dong, Xiaojie Zhu, Yuyang Shi, Wei Lu. Mixed-dimensional hierarchical configuration of 2D Ni2P nanosheets anchored on 1D silk-derived carbon fiber for extraordinary electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 101(0): 85-94. |
[4] | Shi Zhongting, Sun Gan, Yuan Ruiwen, Chen Wenxiao, Wang Zhuo, Zhang Lu, Zhan Ke, Zhu Min, Yang Junhe, Zhao Bin. Scalable fabrication of NiCo2O4/reduced graphene oxide composites by ultrasonic spray as binder-free electrodes for supercapacitors with ultralong lifetime [J]. J. Mater. Sci. Technol., 2022, 99(0): 260-269. |
[5] | Wenjuan Wang, Yan Zhao, Yongguang Zhang, Ning Liu, Zhumabay Bakenov. Nickel embedded porous macrocellular carbon derived from popcorn as sulfur host for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 69-77. |
[6] | Xuemin Yin, Hejun Li, Ruimei Yuan, Jinhua Lu. Metal-organic framework derived hierarchical NiCo2O4 triangle nanosheet arrays@SiC nanowires network/carbon cloth for flexible hybrid supercapacitors [J]. J. Mater. Sci. Technol., 2021, 81(0): 162-174. |
[7] | Licheng Zhao, Ping Zhang, Yanan Zhang, Zhi Zhang, Lei Yang, Zhi-Gang Chen. Facile synthesis of hierarchical Ni3Se2 nanodendrite arrays for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 54(0): 69-76. |
[8] | Hao Jiang, Xuemin Geng, Simin Li, Hongyu Tu, Jiliang Wang, Lixia Bao, Peng Yang, Yanfen Wan. Multi-3D hierarchical biomass-based carbon particles absorber for solar desalination and thermoelectric power generator [J]. J. Mater. Sci. Technol., 2020, 59(0): 180-188. |
[9] | Jin Li, Qin Wang, Lei Zheng, Hongbo Liu. A novel graphene aerogel synthesized from cellulose with high performance for removing MB in water [J]. J. Mater. Sci. Technol., 2020, 41(0): 68-75. |
[10] | Shuhe Liu, Shuchun Zhao, Yaochun Yao, Peng Dong, Chao Yang. Crystallined Hybrid Carbon Synthesized by Catalytic Carbonization of Biomass and in-situ Growth of Carbon Nanofibers [J]. J. Mater. Sci. Technol., 2014, 30(5): 466-472. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||