J. Mater. Sci. Technol. ›› 2022, Vol. 125: 97-104.DOI: 10.1016/j.jmst.2022.02.030
• Research Article • Previous Articles Next Articles
Biao Wanga,b,1, Dongyue Suna,1, Yilun Rena, Xiaoya Zhoua,b, Yujie Maa, Shaochun Tanga,b,*(), Xiangkang Menga,*(
)
Received:
2022-01-19
Revised:
2022-02-18
Accepted:
2022-02-23
Published:
2022-10-20
Online:
2022-04-09
Contact:
Shaochun Tang,Xiangkang Meng
About author:
mengxk@nju.edu.cn (X. Meng).1 Biao Wang and Dongyue Sun contributed equally to this work.
Biao Wang, Dongyue Sun, Yilun Ren, Xiaoya Zhou, Yujie Ma, Shaochun Tang, Xiangkang Meng. MOFs derived ZnSe/N-doped carbon nanosheets as multifunctional interlayers for ultralong-Life lithium-sulfur batteries[J]. J. Mater. Sci. Technol., 2022, 125: 97-104.
Fig. 1. Schematic illustration of (a) the synthesis process of ZnSe/NC nanosheets, and (b) a Li-S battery with the ZnSe/NC nanosheets as a multifunctional interlayer.
Fig. 2. TEM images of (a, d) Zn-MOF, (b, e) NC nanosheets, and (c, f, g) ZnSe/NC nanosheets; (h) Fourier-transformed crystalline lattice form (g); (i) SAED patterns of ZnSe/NC nanosheets.
Fig. 3. (a) XRD patterns, (b) Raman spectrum, and (c) N2 sorption isotherm of NC and ZnSe/NC nanosheets; XPS spectra of ZnSe/NC nanosheets-(d) Survey spectrum, (e-h) high-resolution XPS of C 1s, N 1s, Zn 2p, and Se 3d, respectively; SEM images of ZnSe/NC-separator-(i) Top-view, (j) cross-section; (k) digital photos of ZnSe/NC-separator.
Fig. 4. (a) CV curves at a scan rate of 0.3 mV s-1; (b) values of peak voltages obtained from the CV curves; (c) EIS of different cells before cycling; CV curves of cells with (d) ZnSe/NC-separator, (e) NC-separator, and (f) KB-separator at different scan rates; plot of CV peak current versus square root scan rates for the cells with (g) ZnSe/NC-separator, (h) NC-separator, and (i) KB-separator.
Fig. 5. (a) Rate capacity of different cells; GCD profiles of (b) different cells at 0.1 C, (c) ZnSe/NC-separator cell at different current densities, and (d) ZnSe/NC-separator cell at different cycles at 0.2 C; GITT voltage profiles of cells with (e) ZnSe/NC-separator, (f) NC-separator, and (g) KB-separator at 0.1 C; (h) prolonged cycling performance of ZnSe/NC-separator cell at 1 C; (i) cell performance comparison with previously reported Li-S cells.
Fig. 6. (a) Digital image of Li2S6 solutions containing blank, KB, NC, and ZnSe/NC; (b) UV-Vis spectra of the Li2S6 solution mixed with the different adsorbents after 6 h; high resolution XPS spectra of (c) N 1s and (d) Zn 2p for ZnSe/NC before and after adsorption of Li2S6; (e) cycling performance at 5 C; (f) cycling performance at 0.1 C with different S loadings.
[1] |
Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Chem. Soc. Rev. 45 (2016) 5605-5634.
DOI URL |
[2] |
Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang, G. Wang, Adv. Mater. 33 (2021) 2003666.
DOI URL |
[3] | Y. Sun, Y. Yang, X.-L. Shi, G. Suo, S. Lu, Z.-G. Chen, Appl. Mater. Today 24 (2021) 101137. |
[4] |
Q. Hu, B. Wang, S. Chang, C. Yang, Y. Hu, S. Cao, J. Lu, L. Zhang, H. Ye, J. Mater. Sci. Technol. 84 (2021) 191-199.
DOI URL |
[5] | C. Zhou, Z. Li, X. Xu, L. Mai, Natl. Sci. Rev. 8 (2021) nwab055. |
[6] | C. Li, R. Liu, Y. Xiao, F. Cao, H. Zhang, Energy Storage Mater. 40 (2021) 439-460. |
[7] |
Y. Tsao, H. Gong, S. Chen, G. Chen, Y. Liu, T.Z. Gao, Y. Cui, Z. Bao, Adv. Energy Mater. 11 (2021) 2101449.
DOI URL |
[8] |
C. Zhao, G.L. Xu, Z. Yu, L. Zhang, I. Hwang, Y.X. Mo, Y. Ren, L. Cheng, C.J. Sun, Y. Ren, X. Zuo, J.T. Li, S.G. Sun, K. Amine, T. Zhao, Nat. Nanotechnol. 16 (2021) 166-173.
DOI PMID |
[9] |
H. Zhang, L.K. Ono, G. Tong, Y. Liu, Y. Qi, Nat. Commun. 12 (2021) 4738.
DOI PMID |
[10] |
Y. Liu, A. Chatterjee, P. Rusch, C. Wu, P. Nan, M. Peng, F. Bettels, T. Li, C. Ma, C. Zhang, B. Ge, N.C. Bigall, H. Pfnur, F. Ding, L. Zhang, ACS Nano 15 (2021) 15047-15056.
DOI URL |
[11] |
Z. Zhao, G. Li, Z. Wang, M. Feng, M. Sun, X. Xue, R. Liu, H. Jia, Z. Wang, W. Zhang, H. Li, Z. Chen, J. Power Sources 434 (2019) 226729.
DOI URL |
[12] |
J. Xie, B.Q. Li, H.J. Peng, Y.W. Song, M. Zhao, X. Chen, Q. Zhang, J.Q. Huang, Adv. Mater. 31 (2019) 1903813.
DOI URL |
[13] |
D. Cai, M. Lu, J.Cao Li, D. Chen, H. Tu, J. Li, W. Han, Small 15 (2019) 1902605.
DOI URL |
[14] |
Z. Shi, Z. Sun, J. Cai, X. Yang, C. Wei, M. Wang, Y. Ding, J. Sun, Adv. Mater. 33 (2021) 2103050.
DOI URL |
[15] |
J. Xu, S. An, X. Song, Y. Cao, N. Wang, X. Qiu, Y. Zhang, J. Chen, X. Duan, J. Huang, W. Li, Y. Wang, Adv. Mater. 33 (2021) 2105178.
DOI URL |
[16] |
M. Wang, Z. Sun, H. Ci, Z. Shi, L. Shen, C. Wei, Y. Ding, X. Yang, J. Sun, Angew. Chem. Int. Ed. Engl. 60 (2021) 24558-24565.
DOI URL |
[17] |
E. Kim, J. Kim, T. Lee, H. Kang, S. Yu, J.-W. Park, S.G. Lee, O.L. Li, J.H. Lee, Chem. Eng. J. 430 (2022) 132679.
DOI URL |
[18] |
S.-H. Chung, A. Manthiram, Adv. Funct. Mater. 24 (2014) 5299-5306.
DOI URL |
[19] |
Y.S. Su, A. Manthiram, Nat. Commun. 3 (2012) 1166.
DOI URL |
[20] |
Z. Du, C. Guo, L. Wang, A. Hu, S. Jin, T. Zhang, H. Jin, Z. Qi, S. Xin, X. Kong, Y.G. Guo, H. Ji, L.J. Wan, ACS Appl. Mater. Interfaces 9 (2017) 43696-43703.
DOI URL |
[21] |
G. Zhou, L. Li, D.W. Wang, X.Y. Shan, S. Pei, F. Li, H.M. Cheng, Adv. Mater. 27 (2015) 641-647.
DOI URL |
[22] |
H.J. Peng, D.W. Wang, J.Q. Huang, X.B. Cheng, Z. Yuan, F. Wei, Q. Zhang, Adv. Sci. 3 (2016) 1500268.
DOI URL |
[23] |
Y. Wang, J. He, Z. Zhang, Z. Liu, C. Huang, Y. Jin, ACS Appl. Mater. Interfaces 11 (2019) 35738-35745.
DOI URL |
[24] |
H.M. Kim, J.Y. Hwang, A. Manthiram, Y.K. Sun, ACS Appl. Mater. Interfaces 8 (2016) 983-987.
DOI URL |
[25] |
M.X. Tran, R. Enggar Anugrah Ardhi, G. Liu, J.Y. Kim, J.K. Lee, Chem. Eng. J. 401 (2020) 126075.
DOI URL |
[26] |
W. Yao, W. Zheng, J. Xu, C. Tian, K. Han, W. Sun, S. Xiao, ACS Nano 15 (2021) 7114-7130.
DOI URL |
[27] |
X. Dou, G. Li, W. Zhang, F. Lu, D. Luo, W. Liu, A. Yu, Z. Chen, J. Mater. Chem. A 8 (2020) 5062-5069.
DOI URL |
[28] |
N. Li, F. Chen, X. Chen, Z. Chen, Y. Qi, X. Li, X. Sun, J. Mater. Sci. Technol. 55 (2020) 152-158.
DOI URL |
[29] |
Y. Zhang, X. Ge, Q. Kang, Z. Kong, Y. Wang, L. Zhan, Chem. Eng. J. 393 (2020) 124570.
DOI URL |
[30] |
W. Xue, Q.-B. Yan, G. Xu, L. Suo, Y. Chen, C. Wang, C.-A. Wang, J. Li, Nano Energy 38 (2017) 12-18.
DOI URL |
[31] |
R. Liu, Z. Liu, W. Liu, Y. Liu, X. Lin, Y. Li, P. Li, Z. Huang, X. Feng, L. Yu, D. Wang, Y. Ma, W. Huang, Small 15 (2019) 1804533.
DOI URL |
[32] |
S.D. Seo, D. Park, S. Park, D.W. Kim, Adv. Funct. Mater. 29 (2019) 1903712.
DOI URL |
[33] |
Q. Hu, J. Lu, C. Yang, C. Zhang, J. Hu, S. Chang, H. Dong, C. Wu, Y. Hong, L. Zhang, Small 16 (2020) 2002046.
DOI URL |
[34] |
X. Huang, J. Tang, B. Luo, R. Knibbe, T. Lin, H. Hu, M. Rana, Y. Hu, X. Zhu, Q. Gu, D. Wang, L. Wang, Adv. Energy Mater. 9 (2019) 1901872.
DOI URL |
[35] |
Z. Ye, Y. Jiang, T. Yang, L. Li, F. Wu, R. Chen, Adv. Sci. 9 (2021) 2103456.
DOI URL |
[36] |
D. Yang, C. Zhang, J.J. Biendicho, X. Han, Z. Liang, R. Du, M. Li, J. Li, J. Arbiol, J. Llorca, Y. Zhou, J.R. Morante, A. Cabot, ACS Nano 14 (2020) 15492-15504.
DOI URL |
[37] |
J. He, A. Manthiram, Adv. Energy Mater. 10 (2020) 2002654.
DOI URL |
[38] |
T. Zhao, Y. Ye, X. Peng, G. Divitini, H.-K. Kim, C.-Y. Lao, P.R. Coxon, K. Xi, Y. Liu, C. Ducati, R. Chen, R.V. Kumar, Adv. Funct. Mater. 26 (2016) 8418-8426.
DOI URL |
[39] |
Z. Li, Q. Zhang, L. Hencz, J. Liu, P. Kaghazchi, J. Han, L. Wang, S. Zhang, Nano Energy 89 (2021) 106331.
DOI URL |
[40] |
J.-L. Yang, S.-X. Zhao, Y.-M. Lu, X.-T. Zeng, W. Lv, G.-Z. Cao, J. Mater. Chem. A 8 (2020) 231-241.
DOI URL |
[41] |
Z. Li, F. Zhang, L. Tang, Y. Tao, H. Chen, X. Pu, Q. Xu, H. Liu, Y. Wang, Y. Xia, Chem. Eng. J. 390 (2020) 124653.
DOI URL |
[42] |
L. Yan, Z. Xu, W. Hu, J. Ning, Y. Zhong, Y. Hu, Nano Energy 82 (2021) 105710.
DOI URL |
[43] |
S. Lu, T. Zhu, H. Wu, Y. Wang, J. Li, A. Abdelkader, K. Xi, W. Wang, Y. Li, S. Ding, G. Gao, R.V. Kumar, Nano Energy 59 (2019) 762-772.
DOI URL |
[44] |
X. Wang, W. Zhao, W. Zhang, K.W. Wong, J. Wu, T. Chen, S. Huang, ACS Sustain, Chem. Eng. 9 (2021) 11705-11713.
DOI URL |
[45] | Y. He, L. Wang, C. Dong, C. Li, X. Ding, Y. Qian, L. Xu, Energy Storage Mater. 23 (2019) 35-45. |
[46] |
Z. Ye, Y. Jiang, J. Qian, W. Li, T. Feng, L. Li, F. Wu, R. Chen, Nano Energy 64 (2019) 103965.
DOI URL |
[47] |
S. Xinxing, L. Shuangke, S. Weiwei, L. Yujie, W. Danqin, G. Qingpeng, H. Xi-aobin, X. Jing, Z. Chunman, Electrochim. Acta 398 (2021) 139302.
DOI URL |
[48] |
Y. Zhu, Y. Zuo, F. Ye, J. Zhou, Y. Tang, Y. Chen, Chem. Eng. J. 428 (2022) 131109.
DOI URL |
[49] |
J. Qian, Y. Xing, Y. Yang, Y. Li, K. Yu, W. Li, T. Zhao, Y. Ye, L. Li, F. Wu, R. Chen, Adv. Mater. 33 (2021) 2100810.
DOI URL |
[50] |
C. Zhang, R. Du, J.J. Biendicho, M. Yi, K. Xiao, D. Yang, T. Zhang, X. Wang, J. Ar-biol, J. Llorca, Y. Zhou, J.R. Morante, A. Cabot, Adv. Energy Mater. 11 (2021) 2100432.
DOI URL |
[51] |
R. Meng, Q. Du, N. Zhong, X. Zhou, S. Liu, S. Yin, X. Liang, Adv. Energy Mater. 11 (2021) 2102819.
DOI URL |
[52] | Z. Wu, S. Chen, L. Wang, Q. Deng, Z. Zeng, J. Wang, S. Deng, Energy Storage Mater. 38 (2021) 381-388. |
[1] | Yuanchang Li, Wenda Li, Xiujuan Yan, Zhenfang Zhou, Xiaosong Guo, Jing Liu, Changming Mao, Zhonghua Zhang, Guicun Li. Terminal sulfur atoms formation via defect engineering strategy to promote the conversion of lithium polysulfides [J]. J. Mater. Sci. Technol., 2022, 103(0): 221-231. |
[2] | Siyao Guo, Yunfeng Bao, Ying Li, Hailong Guan, Dongyi Lei, Tiejun Zhao, Baomin Zhong, Zhihong Li. Super broadband absorbing hierarchical CoFe alloy/porous carbon@carbon nanotubes nanocomposites derived from metal-organic frameworks [J]. J. Mater. Sci. Technol., 2022, 118(0): 218-228. |
[3] | Ting He, Jiajia Ru, Yutong Feng, Dapeng Bi, Jiansheng Zhang, Feng Gu, Chi Zhang, Jinhu Yang. Templated spherical coassembly strategy to fabricate MoS2/C hollow spheres with physical/chemical polysulfides trapping for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 98(0): 136-142. |
[4] | Heng Ma, Xin Liu, Ning Liu, Yan Zhao, Yongguang Zhang, Zhumabay Bakenov, Xin Wang. Defect-rich porous tubular graphitic carbon nitride with strong adsorption towards lithium polysulfides for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 115(0): 140-147. |
[5] | Riguang Cheng, Yanxun Guan, Yumei Luo, Chenchen Zhang, Sheng Wei, Mengmeng Zhao, Qi Lin, Hao Li, Shiyou Zheng, Federico Rosei, Lixian Sun, Fen Xu, Hongge Pan. Guanine-assisted N-doped ordered mesoporous carbons as efficient capacity decaying suppression materials for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 101(0): 155-164. |
[6] | Jianen Zhou, Qingyun Yang, Qiongyi Xie, Hong Ou, Xiaoming Lin, Akif Zeb, Lei Hu, Yongbo Wu, Guozheng Ma. Recent progress in Co-based metal-organic framework derivatives for advanced batteries [J]. J. Mater. Sci. Technol., 2022, 96(0): 262-284. |
[7] | Jin Luo, Keke Guan, Wen Lei, Shaowei Zhang, Quanli Jia, Haijun Zhang. One dimensional carbon-based composites as cathodes for lithium-sulfur battery [J]. J. Mater. Sci. Technol., 2022, 122(0): 101-120. |
[8] | Rui Liu, Xiang He, Miao Miao, Shaomei Cao, Xin Feng. In-situ growth of porous Cu3(BTC)2 on cellulose nanofibrils for ultra-low dielectric films with high flexibility [J]. J. Mater. Sci. Technol., 2022, 112(0): 202-211. |
[9] | Mengting Cao, Fengli Yang, Quan Zhang, Juhua Zhang, Lu Zhang, Lingfeng Li, Xiaohao Wang, Wei-Lin Dai. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2021, 76(0): 189-199. |
[10] | Wenjuan Wang, Yan Zhao, Yongguang Zhang, Ning Liu, Zhumabay Bakenov. Nickel embedded porous macrocellular carbon derived from popcorn as sulfur host for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 69-77. |
[11] | Man Zhang, Di Hu, Zhenhao Xu, Biying Liu, Mebrouka Boubeche, Zuo Chen, Yuchen Wang, Huixia Luo, Kai Yan. Facile synthesis of Ni-, Co-, Cu-metal organic frameworks electrocatalyst boosting for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 72(0): 172-179. |
[12] | Na Li, Fei Chen, Xiangtao Chen, Zhongxu Chen, Yang Qi, Xiaodong Li, Xudong Sun. A bipolar modified separator using TiO2 nanosheets anchored on N-doped carbon scaffold for high-performance Li-S batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 152-158. |
[13] | Tingmin Di, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. CdS nanosheets decorated with Ni@graphene core-shell cocatalyst for superior photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 56(0): 170-178. |
[14] | Zhenya Luo, Xiao Wang, Weixin Lei, Pengtao Xia, Yong Pan. Confining sulfur in sandwich structure of bamboo charcoal and aluminum fluoride (BC@S@AlF3) as a long cycle performance cathode for Li-S batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 159-166. |
[15] | Haifeng Xu, Guang Zhu, Baoming Hao. Metal-organic frameworks derived flower-like Co3O4/nitrogen doped graphite carbon hybrid for high-performance sodium-ion batteries [J]. J. Mater. Sci. Technol., 2019, 35(1): 100-108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||