J. Mater. Sci. Technol. ›› 2022, Vol. 124: 243-251.DOI: 10.1016/j.jmst.2022.01.031
• Research Article • Previous Articles Next Articles
Xiang He, Min Wang, Fengren Cao, Wei Tian(), Liang Li(
)
Received:
2021-10-08
Revised:
2021-12-19
Accepted:
2022-01-26
Published:
2022-10-10
Online:
2022-04-09
Contact:
Wei Tian,Liang Li
About author:
lli@suda.edu.cn (L. Li)Xiang He, Min Wang, Fengren Cao, Wei Tian, Liang Li. Hydrophobic long alkyl chain organic cations induced 2D/3D heterojunction for efficient and stable perovskite solar cells[J]. J. Mater. Sci. Technol., 2022, 124: 243-251.
Fig. 1. (a) Schematic diagram of the formation process for 2D/3D perovskite. (b) XRD spectra of perovskite film treated with different concentrations of DABr. (c) Enlarged XRD patterns of different samples at 3°-11°. (d) Steady-state PL spectra of perovskite film treated with different concentrations of DABr. Inset: Enlarged PL pattern of different samples between 450 and 600 nm. (e) Absorption spectra of perovskite film treated with different concentrations of DABr.
Fig. 2. (a) Corresponding cross-sectional SEM image of a 2D/3D PSC. (b) Corresponding energy band diagrams of the cell. The XPS spectra of Pb 4f orbital and I 3d orbital for (c) pristine and (d) 2D/3D samples. (e) KPFM images of pristine and 2D/3D samples. (The yellow bulb and the gray bulb represent the illumination conditions and the dark conditions, respectively.).
Fig. 3. (a) Mott-Schottky plots of the pristine and 2D/3D devices at 10 kHz. (b) Steady-state PL spectra and (c) TRPL decay spectra of pristine and 2D/3D perovskite films on SnO2/ITO substrate. (d) Voc of PSCs plotted against light intensity (dot lines), together with linear fits (solid lines). (e) Dark I-V characteristics of electron-only devices with an inset showing the structure of ITO/SnO2/perovskite/C60/Ag. (f) Nyquist plots of pristine and 2D/3D PSCs. The inset is the equivalent circuit diagram of the EIS test.
Fig. 4. (a) Reverse scan J-V curves of devices based on pristine and 2D/3D perovskite. (b) Statistic distribution of PCEs from 20 PSCs based on pristine and 2D/3D perovskite, respectively. (c) EQE spectra along with integrated Jsc of 2D/3D device. (d) Reverse scan J-V curves of devices without HTL based on pristine and 2D/3D perovskite.
Fig. 5. (a) Optical images of pristine and 2D/3D samples aging in an ambient condition with a relative humidity of 85% and temperature of 25 °C. UV-Vis absorption spectra evolution of (b) pristine and (c) 2D/3D perovskite films exposed to ambient air with a relative humidity of 85%. Inset: contact angle images of water droplets on surfaces of pristine and 2D/3D perovskite films. (d) Normalized PCE of PSCs with a relative humidity of 15% and temperature of 25 °C in ambient air. (e) Normalized PCE of PSCs under 85 °C in a nitrogen atmosphere.
[1] |
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131 (2009) 6050-6051.
DOI URL |
[2] | https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200406. |
[3] |
F. Gao, Y. Zhao, X.W. Zhang, J.B. You, Adv. Energy Mater. 10 (2020) 1902650.
DOI URL |
[4] |
Q. Jiang, Y. Zhao, X.W. Zhang, X.L. Yang, Y. Chen, Z.M. Chu, Q.F. Ye, X.X. Li, Z.G Yin, J.B You, Nat. Photonics 13 (2019) 460-466.
DOI |
[5] |
Y.W. Jang, S. Lee, K.M. Yeom, K. Jeong, K. Choi, M. Choi, J.H. Noh, Nat. Energy 6 (2021) 63-71.
DOI URL |
[6] |
H.W. Zhu, Y.H. Liu, F.T. Eickemeyer, L.F. Pan, D. Ren, M.A. Ruiz-Preciado, B. Carlsen, B.W. Yang, X.F. Dong, Z.W. Wang, H.L. Liu, S.R. Wang, S.M. Zakeerud-din, A. Hagfeldt, M.I. Dar, X.G. Li, M. Gratzel, Adv. Mater. 32 (2020) 1907757.
DOI URL |
[7] |
C.M. Wolff, P. Caprioglio, M. Stolterfoht, D. Neher, Adv. Mater. 31 (2019) 1902762.
DOI URL |
[8] |
S. Jeong, S. Seo, H. Yang, H. Park, S. Shin, H. Ahn, D. Lee, J.H. Park, N.G. Park, H. Shin, Adv. Energy Mater. 11 (2021) 2102236.
DOI URL |
[9] |
B.B. Liu, H. Bi, D.M. He, L. Bai, W.Q. Wang, H.K. Yuan, Q.L. Song, P.Y. Su, Z.G. Zang, T.W. Zhou, J.Z. Chen, ACS Energy Lett. 6 (2021) 2526-2538.
DOI URL |
[10] |
E. Ochoa-Martinez, M. Ochoa, R.D. Ortuso, P. Ferdowsi, R. Carron, A.N. Tiwari, U. Steiner, M. Saliba, ACS Energy Lett. 6 (2021) 2626-2634.
DOI URL |
[11] |
H. Tsai, W. Nie, J.C. Blancon, C.C. Stoumpos, R. Asadpour, B. Harutyunyan, A.J. Neukirch, R. Verduzco, J.J. Crochet, S. Tretiak, L. Pedesseau, J. Even, M.A. Alam, G. Gupta, J. Lou, P.M. Ajayan, M.J. Bedzyk, M.G. Kanatzidis, Nature 536 (2016) 312-316.
DOI URL |
[12] |
L.N. Quan, M. Yuan, R. Comin, O. Voznyy, E.M. Beauregard, S. Hoogland, A. Buin, A.R. Kirmani, K. Zhao, A. Amassian, D.H. Kim, E.H. Sargent, J. Am. Chem. Soc. 138 (2016) 2649-2655.
DOI PMID |
[13] |
A.A. Sutanto P. Caprioglio, N. Drigo, Y.J. Hofstetter, I. Garcia-Benito, V.I. Queloz, D. Neher, M.K. Nazeeruddin, M. Stolterfoht, Y.J.C. Vaynzof, Chem 7 (2021) 1903-1916.
DOI URL |
[14] |
Y. Cho, A.M. Soufiani, J.S. Yun, J. Kim, D.S. Lee, J. Seidel, X. Deng, M.A. Green, S. Huang, A.W.Y. Ho-Baillie, Adv. Energy Mater. 8 (2018) 1703392.
DOI URL |
[15] |
H. Kim, S.U. Lee, D.Y. Lee, M.J. Paik, H. Na, J. Lee, S.I. Seok, Adv. Energy Mater. 9 (2019) 1902740.
DOI URL |
[16] |
Q. Zhou, Y.F. Gao, C.S. Cai, Z.Z. Zhang, J.B. Xu, Z.Y. Yuan, P. Gao, Angew. Chem. Int. Ed. 60 (2021) 8303-8312.
DOI PMID |
[17] |
K.T. Cho, G. Grancini, Y. Lee, E. Oveisi, J. Ryu, O. Almora, M. Tschumi, P.A. Schouwink, G. Seo, S. Heo, J. Park, J. Jang, S. Paek, G. Garcia-Belmonte, M.K. Nazeeruddin, Energy Environ. Sci. 11 (2018) 952-959.
DOI URL |
[18] |
J.J. Yoo, S. Wieghold, M.C. Sponseller, M.R. Chua, S.N. Bertram, N.T.P. Hartono, J.S. Tresback, E.C. Hansen, J.P. Correa-Baena, V. Bulovi ´ c, T. Buonassisi, S.S. Shin, M.G. Bawendi, Energy Environ. Sci. 12 (2019) 2192-2199.
DOI URL |
[19] |
T.K. Zhang, M.Z. Long, M.C. Qin, X.H. Lu, S. Chen, F.Y. Xie, L. Gong, J. Chen, M. Chu, Q. Miao, Z.F. Chen, W.Y. Xu, P.Y. Liu, W.G. Xie, J.B. Xu, Joule 2 (2018) 2706-2721.
DOI URL |
[20] |
L.L. Min, W. Tian, F.R. Cao, J. Guo, L. Li, Adv. Mater. 33 (2021) 2101714.
DOI URL |
[21] |
M.J. Yang, T.Y. Zhang, P. Schulz, Z. Li, G. Li, D.H. Kim, N.J. Guo, J.J. Berry, K. Zhu, Y.X. Zhao, Nat. Commun. 7 (2016) 12305.
DOI URL |
[22] |
J. Hu, I.W.H. Oswald, S.J. Stuard, M.M. Nahid, N.H. Zhou, O.F. Williams, Z.K. Guo, L. Yan, H.M. Hu, Z. Chen, X. Xiao, Y. Lin, Z.B. Yang, J.S. Huang, A.M. Moran, H. Ade, J.R. Neilson, W. You, Nat. Commun. 10 (2019) 1276.
DOI URL |
[23] |
J.Q. Ma, C. Fang, C. Chen, L. Jin, J.Q. Wang, S. Wang, J. Tang, D.H. Li, ACS Nano 13 (2019) 3659-3665.
DOI URL |
[24] |
R. Wang, J. Xue, K.L. Wang, Z.K. Wang, Y. Luo, D. Fenning, G.W. Xu, S. Nuryyeva, T.Y. Huang, Y.J.S. Zhao, Science 366 (2019) 1509-1513.
DOI PMID |
[25] |
R. Wang, J.J. Xue, L. Meng, J.W. Lee, Z.P. Zhao, P.Y. Sun, L. Cai, T.Y. Huang, Z.X. Wang, Z.K. Wang, Y. Duan, J.L. Yang, S. Tan, Y.H. Yuan, Y. Huang, Y. Yang, Joule 3 (2019) 1464-1477.
DOI |
[26] |
L.G. Wang, H.P. Zhou, J.N. Hu, B.L. Huang, M.Z. Sun, B.W. Dong, G.H.J. Zheng, Y. Huang, Y.H. Chen, L. Li, Z.Q. Xu, N.X. Li, Z. Liu, Q. Chen, L.D. Sun, C.H. Yan, Science 363 (2019) 265-270.
DOI URL |
[27] |
X.X. Gao, W. Luo, Y. Zhang, R.Y. Hu, B. Zhang, A. Zuttel, Y.Q. Feng, M. K. Nazeeruddin, Adv. Mater. 32 (2020) 1905502.
DOI URL |
[28] |
N.D. Pham, V.T. Tiong, P. Chen, L.Z. Wang, G.J. Wilson, J. Bell, H.X. Wang, J. Mater. Chem. A 5 (2017) 5195-5203.
DOI URL |
[29] |
Q. Jiang, Z.Y. Ni, G.Y. Xu, Y. Lin, P.N. Rudd, R.M. Xue, Y.W. Li, Y.F. Li, Y.L. Gao, J.S. Huang, Adv. Mater. 32 (2020) 2001581.
DOI URL |
[30] |
M. Zhang, J.S. Yun, Q. Ma, J.H. Zheng, C.F.J. Lau, X.F. Deng, J. Kim, D. Kim, J. Seidel, M.A. Green, S.J. Huang, A.W.Y. Ho-Baillie, ACS Energy Lett. 2 (2017) 438-444.
DOI URL |
[31] |
X.F. Ling, J.Y. Yuan, D.Y. Liu, Y.J. Wang, Y.N. Zhang, S. Chen, H.H. Wu, F. Jin, F.P. Wu, G.Z. Shi, X. Tang, J.W. Zheng, S.F. Liu, Z.K. Liu, W.L. Ma, ACS Appl. Mater. Interfaces 9 (2017) 23181-23188.
DOI URL |
[32] |
J.H. Lee, J. Kim, G. Kim, D. Shin, S.Y. Jeong, J. Lee, S. Hong, J.W. Choi, C.L. Lee, H. Kim, Y. Yi, K. Lee, Energy Environ. Sci. 11 (2018) 1742-1751.
DOI URL |
[33] |
Q. Lou, Y.F. Han, C. Liu, K.H. Zheng, J.S. Zhang, X. Chen, Q. Du, C. Chen, Z.Y. Ge, Adv. Energy Mater. 11 (2021) 2101416.
DOI URL |
[34] |
J. Dou, C. Zhu, H. Wang, Y. Han, S. Ma, X.X. Niu, N.X. Li, C.B. Shi, Z.W. Qiu, H.P. Zhou, Y. Bai, Q. Chen, Adv. Mater. 33 (2021) 2102947.
DOI URL |
[35] |
M.H. Li, T.G. Sun, J.Y. Shao, Y.D. Wang, J.S. Hu, Y.W. Zhong, Nano Energy 79 (2021) 105462.
DOI URL |
[36] |
M.S. de Holanda, R. Szostak, P.E. Marchezi, L.G.T.A. Duarte, J.C. Germino, T.D.Z Atvars, A.F Nogueira, Sol. RRL 3 (2019) 1900199.
DOI URL |
[1] | Diyan Yang, Jihui Han, Jie Yin, Haoyue Xue, Jiagang Wu. Tailoring depolarization temperature by phase transition causing properties evolution in Bi0.5(Na1-xKx)0.5TiO3 ceramics [J]. J. Mater. Sci. Technol., 2022, 114(0): 111-119. |
[2] | Dapeng Zhu, Weiwei Liu, Rongzhi Zhao, Zhen Shi, Xiangyang Tan, Zhenhua Zhang, Yixing Li, Lianze Ji, Xuefeng Zhang. Microscopic insights into hydrophobicity of cerium oxide: Effects of crystal orientation and lattice constant [J]. J. Mater. Sci. Technol., 2022, 109(0): 20-29. |
[3] | Yazi Wang, Shasha Lv, Zhengcao Li. Review on incorporation of alkali elements and their effects in Cu(In,Ga)Se2 solar cells [J]. J. Mater. Sci. Technol., 2022, 96(0): 179-189. |
[4] | Mun Sik Jeong, Tak Min Park, Dong-Il Kim, Hidetoshi Fujii, Hye Ji Im, Pyuck-Pa Choi, Seung-Joon Lee, Jeongho Han. Improving toughness of medium-Mn steels after friction stir welding through grain morphology tuning [J]. J. Mater. Sci. Technol., 2022, 118(0): 243-254. |
[5] | H.R. Lashgari, M. Ferry, S. Li. Additive manufacturing of bulk metallic glasses: Fundamental principle, current/future developments and applications [J]. J. Mater. Sci. Technol., 2022, 119(0): 131-149. |
[6] | DongHwi Kim, Jee-Hyun Kang, Hojun Gwon, JooHyun Ryu, Sung-Joon Kim. Counter-balancing effects of Si on C partitioning and stacking fault energy of austenite in 10Mn quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 98(0): 248-257. |
[7] | Lulu Zhang, Junchen Luo, Shu Zhang, Jun Yan, Xuewu Huang, Ling Wang, Jiefeng Gao. Interface sintering engineered superhydrophobic and durable nanofiber composite for high-performance electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 98(0): 62-71. |
[8] | Yuanyuan Zhang, Li Guo, Yingxian Wang, Tianyu Wang, Taoxia Ma, Zhuangzhuang Zhang, Danjun Wang, Bin Xu, Feng Fu. In-situ anion exchange based Bi2S3/OV-Bi2MoO6 heterostructure for efficient ammonia production: A synchronized approach to strengthen NRR and OER reactions [J]. J. Mater. Sci. Technol., 2022, 110(0): 152-160. |
[9] | Shuang Liu, Enhui Wang, Shichun Liu, Chunyu Guo, Hailong Wang, Tao Yang, Xinmei Hou. Mild fabrication of SiC/C nanosheets with prolonged cycling stability as supercapacitor [J]. J. Mater. Sci. Technol., 2022, 110(0): 178-186. |
[10] | Qiong Lu, Yaozha Lv, Chi Zhang, Hongbo Zhang, Wei Chen, Zhanyuan Xu, Peizhong Feng, Jinglian Fan. Highly oxidation-resistant Ti-Mo alloy with two-scale network Ti5Si3 reinforcement [J]. J. Mater. Sci. Technol., 2022, 110(0): 24-34. |
[11] | Libo Wang, Xingang Fei, Liuyang Zhang, Jiaguo Yu, Bei Cheng, Yuhua Ma. Solar fuel generation over nature-inspired recyclable TiO2/g-C3N4 S-scheme hierarchical thin-film photocatalyst [J]. J. Mater. Sci. Technol., 2022, 112(0): 1-10. |
[12] | Long Sun, Lingling Li, Jiajie Fan, Quanlong Xu, Dekun Ma. Construction of highly active WO3/TpPa-1-COF S-scheme heterojunction toward photocatalytic H2 generation [J]. J. Mater. Sci. Technol., 2022, 123(0): 41-48. |
[13] | Quanlong Xu, S. Wageh, Ahmed A. Al-Ghamdi, Xin Li. Design principle of S-scheme heterojunction photocatalyst [J]. J. Mater. Sci. Technol., 2022, 124(0): 171-173. |
[14] | Zicong Jiang, Bei Cheng, Yong Zhang, S. Wageh, Ahmed A. Al‐Ghamdi, Jiaguo Yu, Linxi Wang. S-scheme ZnO/WO3 heterojunction photocatalyst for efficient H2O2 production [J]. J. Mater. Sci. Technol., 2022, 124(0): 193-201. |
[15] | Kai Wang, Quanpeng Wang, Kaijia Zhang, Guohong Wang, Hukun Wang. Selective solar-driven CO2 reduction mediated by 2D/2D Bi2O2SiO3/MXene nanosheets heterojunction [J]. J. Mater. Sci. Technol., 2022, 124(0): 202-208. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||